
Classes for record linkage of big data sets

Andreas Borg, Murat Sariyar

January 11, 2012

As of version 0.3, the package RecordLinkage includes extensions to over-
come the problem of high memory consumption that arises when processing
a large number of records (i.e. building record pairs out of ≥ 1000 records
without blocking). In versions 0.3 x, this was achieved by blockwise on-demand
creation of comparison patterns in an embedded SQLite database (through pack-
age RSQLite). Package version 0.4 replaces this mechanism by using file-based
data structures from package ff. This approach restricts the amount of data
pairs to the available disk space but speeds up execution and facilitates the im-
plementation of methods that need to process the whole set of record pairs (e.g.
calculation of optimal classification thresholds).

The interface to the “big data” methods has is compatible to code written
for version 0.3 x, so users familiar with these can stick to their existing workflow
(unless access to internal structures like object slots is involved). Therefore, the
following text sticks to the vignette already included in versions before 0.4 and
only technical details are changed to reflect the different implementation.

In order to facilitate a tidier design, S4 classes and methods were used to
implement the extensions. In favor of backward compatibility and development
time, plans of a complete transition to S4 were dismissed. Nevertheless, the
existing functions were joined with their new counterparts, resulting in methods
which dispatch on the new S4 as well as on the existing S3 classes. This approach
combines two advantages: First, existing code using the package still works,
second, the new classes and methods offer (nearly) the same interface, i.e. the
necessary function calls for a linkage task differ only slightly. An exception is
getPairs, whose arguments differ from the exisiting version (see man page).

1 Defining data and comparison parameters

The existing S3 class "RecLinkData" is supplemented by the S4 classes "RL-

BigDataLinkage" and "RLBigDataDedup" for linking two datasets and dedupli-
cation of one dataset respectively. Both share the common abstract superclass
"RLBigData".

> library(RecordLinkage)

> showClass("RLBigData")

Virtual Class "RLBigData" [package "RecordLinkage"]

Slots:

1

Name: frequencies blockFld excludeFld

Class: numeric list numeric

Name: strcmpFld strcmpFun phoneticFld

Class: numeric character numeric

Name: phoneticFun pairs Wdata

Class: character ffdf ff_vector

Name: WdataInd M U

Class: ff_vector ff_vector ff_vector

Known Subclasses: "RLBigDataDedup", "RLBigDataLinkage"

> showClass("RLBigDataDedup")

Class "RLBigDataDedup" [package "RecordLinkage"]

Slots:

Name: data identity frequencies

Class: data.frame factor numeric

Name: blockFld excludeFld strcmpFld

Class: list numeric numeric

Name: strcmpFun phoneticFld phoneticFun

Class: character numeric character

Name: pairs Wdata WdataInd

Class: ffdf ff_vector ff_vector

Name: M U

Class: ff_vector ff_vector

Extends: "RLBigData"

> showClass("RLBigDataLinkage")

Class "RLBigDataLinkage" [package "RecordLinkage"]

Slots:

Name: data1 data2 identity1

Class: data.frame data.frame factor

Name: identity2 frequencies blockFld

Class: factor numeric list

Name: excludeFld strcmpFld strcmpFun

Class: numeric numeric character

2

Name: phoneticFld phoneticFun pairs

Class: numeric character ffdf

Name: Wdata WdataInd M

Class: ff_vector ff_vector ff_vector

Name: U

Class: ff_vector

Extends: "RLBigData"

For the two non-virtual classes, the constructor-like function RLBigDataD-

edup and RLBigDataLinkage exist, which correspond to compare.dedup and
compare.linkage for the S3 classes and share most of their arguments.

The following example shows the basic usage of the constructors, for details
consult their documentation.

> # deduplicate dataset with two blocking iterations and string comparison

> data(RLdata500)

> data(RLdata10000)

> rpairs1 <- RLBigDataDedup(RLdata500, identity = identity.RLdata500, blockfld = list(1,3),

+ strcmp = 1:4)

> # link two datasets with phonetic code, exclude lname_c2

> s1 <- 471:500

> s2 <- sample(1:10000, 300)

> identity2 <- c(identity.RLdata500[s1], rep(NaN, length(s2)))

> dataset <- rbind(RLdata500[s1,], RLdata10000[s2,])

> rpairs2 <- RLBigDataLinkage(RLdata500, dataset, identity1 = identity.RLdata500,

+ identity2 = identity2, phonetic = 1:4, exclude = "lname_c2")

2 Supervised classification

The existing function classifySupv was transformed to a S4 method which
handles the old S3 object ("RecLinkData") as well as the new classes. How-
ever, at the moment a classificator can only be trained with an object of class
"RecLinkData".

> train <- getMinimalTrain(compare.dedup(RLdata500, identity = identity.RLdata500,

+ blockfld = list(1,3)))

> rpairs1 <- RLBigDataDedup(RLdata500, identity = identity.RLdata500)

> classif <- trainSupv(train, "rpart", minsplit=2)

> result <- classifySupv(classif, rpairs1)

The result is an object of class "RLResult" which contains the classification
result along with the data object.

> showClass("RLResult")

Class "RLResult" [package "RecordLinkage"]

3

Slots:

Name: data prediction

Class: RLBigData ff_vector

A contingency table can be viewed via getTable, various error measures are
calculated by getErrorMeasures.

> getTable(result)

classification

true status N P L

0 124691 0 9

1 1 0 49

> getErrorMeasures(result)

$alpha

[1] 0.02

$beta

[1] 7.217322e-05

$accuracy

[1] 0.9999198

$precision

[1] 0.8448276

$sensitivity

[1] 0.98

$specificity

[1] 0.9999278

$ppv

[1] 0.8448276

$npv

[1] 0.999992

3 Weight-based classification

As with "RecLinkData" objects, weight-based classification with "RLBigData*"

classes includes weight calculation and classification based on one or two thresh-
olds, dividing links, non-links and, if desired, possible links. The following ex-
ample applies classification with Epilink (see documentation of epiWeights for
details):

> rpairs1 <- epiWeights(rpairs1)

> result <- epiClassify(rpairs1, 0.5)

> getTable(result)

4

classification

true status N P L

0 124699 0 1

1 4 0 46

4 Evaluation and results

In addition to getTable and getErrorMeasures, getPairs, which was re-
designed as a versatile S4 method, is an important tool to inspect data and
linkage results. For example, the following code extracts all links with weights
greater or equal than 0.7 from the result set obtained in the last example:

> getPairs(result, min.weight=0.7, filter.link="link")

==

id fname_c1 fname_c2 lname_c1 lname_c2 by bm

1 290 HELGA ELFRIEDE BERGER <NA> 1989 1

2 466 HELGA ELFRIEDE BERGER <NA> 1989 1

3

4 313 URSULA BIRGIT MUELLRR <NA> 1940 6

5 457 URSULA BIRGIT MUELLER <NA> 1940 6

6

7 467 ULRIKE NICOLE BECKRR <NA> 1982 8

8 472 ULRIKE NICOLE BECKER <NA> 1982 8

9

bd is_match Class Weight

1 18

2 28 TRUE L 0.7786012

3

4 15

5 15 TRUE L 0.7293529

6

7 4

8 4 TRUE L 0.7293529

9

A frequent use case is to inspect misclassifed record pairs; for this purpose
two shortcuts are included that call getPairs with appropriate arguments:

> getFalsePos(result)

==

id fname_c1 fname_c2 lname_c1 lname_c2 by bm

1 388 ANDREA <NA> WEBER <NA> 1945 5

2 408 ANDREA <NA> SCHMIDT <NA> 1945 2

3

bd is_match Class Weight

1 20

2 20 FALSE L 0.5067013

3

5

> getFalseNeg(result)

==

id fname_c1 fname_c2 lname_c1 lname_c2 by

1 353 INGE <NA> SEIDEL <NA> 1949

2 355 INGEU <NA> SEIDEL <NA> 1949

3

4 285 ERIKA <NA> WEBER <NA> 1995

5 379 ERIKA <NA> WEBER <NA> 1992

6

7 127 KARL <NA> KLEIN <NA> 2002

8 142 KARL <NA> KLEIBN <NA> 2002

9

10 37 HARTMHUT <NA> HOFFMSNN <NA> 1929

11 72 HARTMUT <NA> HOFFMANN <NA> 1929

12

bm bd is_match Class Weight

1 9 4

2 8 4 TRUE N 0.4948059

3

4 2 1

5 2 29 TRUE N 0.4782410

6

7 6 20

8 6 29 TRUE N 0.4692532

9

10 12 29

11 12 29 TRUE N 0.4081096

12

>

6

