Benchmarking rtn()’s Performance

Jonathan Olmsted
jpolmstedgmail.com

September 3, 2014

This brief document shows some performance benchmarks of ReppTN’s rtn() compared to
other truncated Normal distribution RNG’s in R. The other functions considered come from the R
packages truncnorm and msm.

1 Three different RNG’s

Broadly speaking, calls to the three different R functions are similar. In the simplest case (no
truncation), they even identical return values.

library ("RcppTN")

library("truncnorm")

library ("msm"

library("microbenchmark")

set.seed (1)
rtn()

[1] -0.6264538

set.seed (1)
rtnorm(n=1)

[1] -0.6264538

set.seed (1)
rtruncnorm(n=1)

[1] -0.6264538

But, this is not true in general. Differences in return values result from the use of different
algorithms and different implementations of the same algorithm. First, consider a standard Normal
distribution truncated below 4 and above 4.1. Here, the output from the RcppTN package and
the truncnorm package agree.

set.seed (1)

rtn(.mean = 0, .sd

=1, .low = 4, .high = 4.1)

Benchmarking rtn()’s Performance

[1] 4.026551

set.seed (1)
rtnorm(n=1, mean = 0, sd = 1, lower = 4, upper = 4.1)

[1] 4.034397

set.seed (1)
rtruncnorm(n=1, mean = 0, sd = 1, a

4, b =4.1)
[1] 4.026551

Yet, in the case of truncation below 5 without any truncation from above, the output from
the RcppTN and the msm package agree. Again, this is just a result of how each sampler is
implemented using R’s base RNG functionality. None of these return values is incorrect, per se,
but it is worth noting that the functions do not produce identical output, even if they are all valid
RNG?’s for the same distribution.

set.seed (1)
rtn(.mean = 0, .sd = 1, .low = 5, .high = Inf)

[1] 5.145435

set.seed (1)
rtnorm(n=1, mean = 0, sd = 1, lower = 5, upper = Inf)

[1] 5.145435

set.seed (1)
rtruncnorm(n=1, mean = 0, sd = 1, a

5, b Inf)

[1] 5.151036

2 Compiled Code is faster than Interpreted Code

In setting up a series of conditions under which to compare performance, we will consider drawing
samples of size 10, 1,000, and 100,000. And will consider standard Normal distributions restricted
to the intervals [—1, 1], [5, o0], [—00, 10], [4,7], [4,4.1], [-00, o0], and [50, 100].

sizes <- c(lel, 1e3, 1eb)
lows <- c(-1, 5, -Inf, 4, 4, -Inf, 50)
highs <- c(1, Inf, 10, 7, 4.1, Inf, 100)

Both ReppTN and truncnorm use compiled code for their RNG. However, the RNG in msm
is written in R. As a result, the performance cost that one would expect manifests in even the a
simple case where the standard Normal distribution is truncated below at -1 and above at 1. This
case is sufficiently easy that even a naive Accept-Reject sampler works perfectly fine. Yet, the
C(++)-based implementations are over 15 times faster in drawing samples of size 1,000

Benchmarking rtn()’s Performance

s <- sizes[2]

microbenchmark (
"rtn" = rtn(.mean = rep(0, s),
.low = rep(lows[1], s),
.high = rep(highs[1], s),
.checks = FALSE
),
"rtruncnorm" = rtruncnorm(n = s,
a = rep(lows[1], s),
b = rep(highs[1], s)
),

"rtnorm" = rtnorm(n = s,

lower = rep(lows[1], s),

upper = rep(highs[1], s)

s

times = 100

)
Unit: microseconds
#i#t expr min 1q mean median uq max neval
rtn 139.844 147.0310 171.9281 150.9480 164.3575 1411.007 100
rtruncnorm 155.970 158.8685 188.3300 161.7520 166.9810 2300.541 100
rtnorm 691.414 722.6430 1002.7170 737.6945 1204.0055 3201.541 100

A similarly large performance cost due to writing the RNG in R is seen in a harder case: a
standard Normal distribution truncated below at 4 and above at 4.1. The sample size is still 1,000.

microbenchmark (
"rtn" = rtn(.mean = rep(0, s),
.low = rep(lows[5], s),
.high = rep(highs[5], s),
.checks = FALSE
),
"rtruncnorm" = rtruncnorm(n = s,
a = rep(lows[5], s),
b = rep(highs[5], s)
),

"rtnorm" = rtnorm(n = s,

lower = rep(lows[5], s),

upper = rep(highs[5], s)

),

times = 100

)
Unit: microseconds
#Hit expr min 1q mean median uq max neval
#it rtn 105.234 112.128 122.4467 117.996 129.235 191.536 100

Benchmarking rtn()’s Performance

rtruncnorm 160.533 167.328 179.1963 174.119 181.001 278.646 100
rtnorm 1122.528 1213.619 1630.0178 1300.100 1729.848 5186.062 100

For this reason, the rtnorm() function from the msm package is excluded from subsequent
analysis. Not only is it assumed that it will be the slowest for the different sample sizes and
truncation bounds considered, but it will just take too long to build the vignette if it is included.

3 RcppTN vs. truncnorm

The RNG’s in RecppTN and truncnorm are written in Rcpp-based C++ and C, respectively.
However, they implement different mathematical algorithms. The former uses Robert (1995) and

the latter uses Geweke (1991). To compare the R-level performance of the two, the full set of
conditions described above is considered.

10
8-
4-
° [
o
[]
1]
i:‘:l [[L ; 9 § } L _f_+ 4—_{;
o
—
[%2]
2
o 5
$ 301 , S
[72] ° 8
e ,
5 201 - —
;é s) —
= 151 : i - P
104 e .
100001 —— P . — . .
-
o
o
o
e o
2500 . 8
== | : éé
1000 éé ;ﬁ $ e éé
(-1,1) (-Inf,10) (-Inf,Inf) (4,4.1) (4.7) (5,Inf) (50, 100)
Interval

R Function E rn() E rtruncnorm()

Benchmarking rtn()’s Performance

Results of benchmarking comparing RNG performance for Truncated Normal distributions from Rcpp TN
and truncnorm.

The motivation for ReppTN isn’t speed, but the Rcpp-based implementation performs quite-
well.

