
Using RcppTN in R and C++

Jonathan Olmsted

jpolmsted@gmail.com

September 3, 2014

This brief document shows simple usage of the function rtn() provided by the R package
RcppTN for drawing from an arbitrary sequence of truncated Normal distributions. Much of
the value added by the RcppTN package comes from providing a C++-level API to call in devel-
opment of other Rcpp-based C++ codes. Use of this API is also demonstrated. While no other R

packages currently provide this functionality in an API, some existing implementations for drawing
from a truncated Normal distribution at the R-level include truncnorm and msm.

1 Installation

Currently, there is no CRAN version of the package, so the simplest installation mechanism is using
the install_github() function from the devtools package.

library("devtools")

install_github(repo = "RcppTN",

username = "olmjo",

subdir = "pkg",

ref = "development"

)

2 R-level Usage

2.1 RNG

Usage of the rtn() function in R is straightforward (albeit not feature-rich). Without any options,
we get a single draw from the standard Normal distribution. And, this draw respects R’s RNG
state so the stream of output is reproducible.

library("RcppTN")

set.seed(1)

rtn()

[1] -0.6264538

set.seed(1)

rtn()

[1] -0.6264538

1

Using RcppTN in R and C++

Under this implementation of the Robert (1995) algorithm, a request for a single draw from a
Standard Normal distribution truncated from −∞ to ∞ — the default behavior of the function
when called without any arguments — results in the same return value as a single draw from a
Standard Normal distribution using rnorm(). This is just a by-product of the implementation and
holds no practical significance.1

set.seed(1)

rtn()

[1] -0.6264538

set.seed(1)

rtn(.mean = 0, .sd = 1, .low = -Inf, .high = Inf)

[1] -0.6264538

set.seed(1)

rtn()

[1] -0.6264538

set.seed(1)

rnorm(1)

[1] -0.6264538

Of course, rtn()’s behavior given RNG seeds is exactly as you would expect for any other
generator in R.

set.seed(11)

rtn()

[1] -0.5910311

rtn()

[1] 0.02659437

set.seed(1)

rtn()

[1] -0.6264538

rtn()

[1] 0.1836433

set.seed(11)

rtn()

1See the R package documentation for the citation to the algorithm.

2

Using RcppTN in R and C++

[1] -0.5910311

rtn()

[1] 0.02659437

In practice, this R-level function will likely be used in one of two ways:

1. drawing many values from the same truncated Normal distribution

2. drawing many values from different truncated Normal distributions

For the rtn() function, these two uses look very similar. The function accepts a .mean argument,
an .sd argument, a .low argument, and a .high argument. Each should be a vector of length K

corresponding to the K distributions of interest. The function does not handle value recycling for
the user, so the construction of these vectors must be done before or during the call of the rtn()

function. Incorrectly sized inputs result in an error.

Not Run -- will cause error

rtn(.mean = c(0, 1), .sd = 1)

Importantly, this function returns an NA value for draws corresponding to invalid input parame-
ters along with a warning. NA-inducing input parameters don’t interfere with other valid parameters
and a vector of the requested length is returned.

For example,

rtn(0, -1, 0, 1)

Warning in checkOutputs(out): NAs returned. Check for invalid parameters.

[1] NA

rtn(0, 1, 0, -1)

Warning in checkOutputs(out): NAs returned. Check for invalid parameters.

[1] NA

rtn(c(0,0), c(1,1), c(0,0), c(-Inf,Inf))

Warning in checkOutputs(out): NAs returned. Check for invalid parameters.

[1] NA 1.178489

To suppress input and output checks, use the following:

Not Run -- no warning given

rtn(0, -1, 0, 1, .checks = FALSE)

However, this is not recommended unless inputs are being checked before use. Skipping checks
in rtn() provides a slight performance advantage, but most applications will benefit more from
safer code.

3

Using RcppTN in R and C++

2.1.1 Multiple Draws from a Single Distribution

Multiple draws from the same distribution may be requested with a function call like the following:

set.seed(1)

output <- rtn(.mean = rep(0, 1000),

.sd = rep(1, 1000),

.low = rep(1, 1000),

.high = rep(2, 1000)

)

length(output)

[1] 1000

mean(output)

[1] 1.388858

Here, we are generating 1,000 draws, with each draw, x, coming from N(0, 1) truncated below
at 1 and above at 2. The population mean of this distribution is

E[x] = µ+
φ(a−µ

σ
)− φ(b−µ

σ
)

Φ(b−µ
σ

)− Φ(a−µ
σ

)
· σ,

where µ = 0, σ = 1, φ denotes the pdf of the standard Normal distribution, Φ denotes the
standard cdf of the standard Normal distribution, and a and b are the lower and upper bounds of
truncation, respectively. So, for the above parameter values we have

E[x] = µ+
φ(a−µ

σ
)− φ(b−µ

σ
)

Φ(b−µ
σ

)− Φ(a−µ
σ

)
· σ

= 0 +
.242− .054

.977− .841
· 1

≈ 1.383

Our sample mean for the 1,000 draws (1.389) is close to the population mean (1.383). To get
a better sense of how dispersed the sampling distribution for the mean of a sample of 1,000 draws
from this distribution is, we can simulate it.

bigoutput <- rep(NA, 1000)

for (i in 1:length(bigoutput)) {

bigoutput[i] <- mean(rtn(.mean = rep(0, 1000),

.sd = rep(1, 1000),

.low = rep(1, 1000),

.high = rep(2, 1000)

)

)

}

summary(bigoutput)

4

Using RcppTN in R and C++

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.357 1.377 1.383 1.383 1.389 1.409

Looking at the summary of the sample means, we see that the sampling distribution of sample
means is centered directly on the population mean.

As shown above, valid input for rtn() includes -Inf and Inf. Below are histograms for four
different truncated Normal distributions. The rtn() function works perfectly well in simulating
draws from regions that have a low (read nearly 0) density in a non-truncated Normal distribution.
Distribution “D” is an example of this.

outputA <- rtn(.mean = rep(0, 5000),

.sd = rep(1, 5000),

.low = rep(-1, 5000),

.high = rep(Inf, 5000)

)

outputB <- rtn(.mean = rep(0, 5000),

.sd = rep(1, 5000),

.low = rep(0, 5000),

.high = rep(1, 5000)

)

outputC <- rtn(.mean = rep(0, 5000),

.sd = rep(1, 5000),

.low = rep(-Inf, 5000),

.high = rep(Inf, 5000)

)

outputD <- rtn(.mean = rep(0, 5000),

.sd = rep(1, 5000),

.low = rep(5, 5000),

.high = rep(Inf, 5000)

)

dfOutput <- rbind(data.frame(value = outputA, dist = "A"),

data.frame(value = outputB, dist = "B"),

data.frame(value = outputC, dist = "C"),

data.frame(value = outputD, dist = "D")

)

5

Using RcppTN in R and C++

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5 5.0

value

de
ns

ity

Distribution A B C D

2.1.2 Multiple Draws from Different Distributions

Taking multiple draws from different distributions proceeds in a similar way, though the construction
of the arguments passed to rtn() changes a bit. If we were interested in characterizing a distribution
of draws from a truncated Normal distribution where one (or more) of the parameters was, itself,
stochastic, rtn() could easily be put to use. Here, the vector of lower bounds and upper bounds
are each the result of an rtn() function call (notice that a < b by construction).

Then, we cam sample 1,000 draws from this truncated Normal distribution of interest where the
mean and standard deviation are fixed, but the bounds of truncation, themselves, are taken from a
distribution (in this case, a truncated Normal distribution).

lows <- rtn(rep(0, 1000),

rep(3, 1000),

rep(-10, 1000),

rep(3, 1000)

)

highs <- rtn(rep(0, 1000),

rep(3, 1000),

rep(3, 1000),

rep(4, 1000)

)

all(lows < highs)

6

Using RcppTN in R and C++

[1] TRUE

outputD <- rtn(.mean = rep(0, 1000),

.sd = rep(3, 1000),

.low = lows,

.high = highs

)

ggplot() +

geom_histogram(aes(x = outputD))

0

25

50

75

100

−5.0 −2.5 0.0 2.5

outputD

co
un

t

This sampling distribution is non-standard and the easiest way to characterize it would be
through a simulation like the above.

2.2 Other Functions

In additional to random number generation, functions are provided for calculating other quantities
of interest.

To calculate the expectation of a given truncated Normal distribution, use etn():

etn(.mean = 0,

.sd = 1,

.low = 0,

.high = 10

)

7

Using RcppTN in R and C++

[1] 0.7978846

etn(0, 1, 3.5, 3.7)

[1] 3.588118

The variance can be found in a similar way using vtn():

vtn(.mean = 0,

.sd = 1,

.low = 0,

.high = 10

)

[1] 0.3633802

vtn(0, 1, 3.5, 3.7)

[1] 0.003244555

The density at a specific value for a given Truncated normal distribution is found with dtn():

dtn(.x = 4,

.mean = 0,

.sd = 1,

.low = 0,

.high = 10

)

[1] 0.0002676605

dtn(3.6, 0, 1, 3.5, 3.7)

[1] 4.901908

Finally, the entropy of a given truncation Normal distribution is found with enttn():

enttn(.mean = rep(0, 2),

.sd = c(.01, 100),

.low = rep(-1, 2),

.high = rep(1, 2)

)

[1] -3.1862317 0.6931472

3 C++-level Usage

This section documents how to use the C++-level functionality in subsequent C++ development.
Specifically, using the RcppTN C++ API via sourceCpp() and an Rcpp-based R package are
shown. Presently, the following functions are exposed at the C++ level.

8

Using RcppTN in R and C++

rtn1

double rtn1(double mean, double sd, double low, double high) ;

etn1

double etn1(double mean, double sd, double low, double high) ;

vtn1

double vtn1(double mean, double sd, double low, double high) ;

dtn1

double dtn1(double x, double mean, double sd, double low, double high) ;

enttn1

double enttn1(double mean, double sd, double low, double high) ;

Caveats. The R-level function ultimately calls these C++-level functions. So, all of the features
of the R-level function apply here (e.g., respecting R’ RNG state). However, as is true in Rcpp,
this is left to the user to enforce. No checking or error handling is provided with these functions.
These functions live in the RcppTN namespace.

3.1 Examples

Via sourceCpp(). In non-package R code, use is very straightforward due to the mechanisms
provided by Rcpp. Include the appropriate header file as you would for Rcpp. In addition, use
the depends pseudo-attribute with “// [[Rcpp::depends(RcppTN)]]” to ensure that linker finds
the symbols. From there, use is as you would expect.

library("Rcpp")

sourceCpp(code = "

#include <Rcpp.h>

#include <RcppTN.h>

// [[Rcpp::depends(RcppTN)]]

using namespace Rcpp ;

// [[Rcpp::export]]

List rcpp_hello_world() {

double a = RcppTN::rtn1(0.0, 1.0, 3.5, 3.7) ;

double b = RcppTN::etn1(0.0, 1.0, 3.5, 3.7) ;

double c = RcppTN::vtn1(0.0, 1.0, 3.5, 3.7) ;

double d = RcppTN::dtn1(3.6, 0.0, 1.0, 3.5, 3.7) ;

double e = RcppTN::enttn1(0.0, 1.0, 3.5, 3.7) ;

9

Using RcppTN in R and C++

NumericVector y = NumericVector::create(a, b, c, d, e) ;

List z = List::create(y) ;

return(z) ;

}

"

)

rcpp_hello_world()

[[1]]

[1] 3.584004273 3.588118022 0.003244555 4.901907699 -1.630706708

Via an Rcpp-based package. In R, use Rcpp.package.skeleton() from Rcpp to create an
empty, but functional, R package.

library("Rcpp")

Rcpp.package.skeleton(path="~/Desktop")

Navigate inside the newly created anRpackage directory and edit the DESCRIPTION file. Add
RcppTN to the Depends: and LinkingTo: lines of the file as in

Depends: RcppTN

LinkingTo: Rcpp, RcppTN

Now, edit the C++ function rcpp_hello_world() in anRpackage/src/rcpp_hello_world.cpp

to read

#include <Rcpp.h>

#include <RcppTN.h>

using namespace Rcpp;

// [[Rcpp::export]]

List rcpp_hello_world() {

double a = RcppTN::rtn1(0.0, 1.0, 3.5, 3.7) ;

double b = RcppTN::etn1(0.0, 1.0, 3.5, 3.7) ;

double c = RcppTN::vtn1(0.0, 1.0, 3.5, 3.7) ;

double d = RcppTN::dtn1(3.6, 0.0, 1.0, 3.5, 3.7) ;

double e = RcppTN::enttn1(0.0, 1.0, 3.5, 3.7) ;

NumericVector y = NumericVector::create(a, b, c, d, e) ;

List z = List::create(y) ;

return(z) ;

}

To see the effect of this, install the “anRpackage” package and the load it in R. From there,
make subsequent calls to the rcpp_hello_world() function. With a similar approach, the rtn1()

function can be called in a more useful way within other C++-level codes without the need for
re-coding the wheel. The only difference between this approach and the sourceCpp() approach is
that the depends pseudo-attribute is no longer needed and is replaced by the modification to the
LinkingTo: field of the DESCRIPTION file.

10

	Installation
	R-level Usage
	RNG
	Multiple Draws from a Single Distribution
	Multiple Draws from Different Distributions

	Other Functions

	C++-level Usage
	Examples

