Large Scale Learning to Rank

D. Sculley
Google, Inc.
dsculley@google.com

Abstract

Pairwise learning to rank methods such as RankSVM give good performance,
but suffer from the computational burden of optimizing an objective defined over
O(n?) possible pairs for data sets with n examples. In this paper, we remove this
super-linear dependence on training set size by sampling pairs from an implicit
pairwise expansion and applying efficient stochastic gradient descent learners for
approximate SVMs. Results show orders-of-magnitude reduction in training time
with no observable loss in ranking performance. Source code is freely available
at: http://code.google.com/p/sofia-ml

1 Introduction: The Problem with Pairs

In this paper, we are concerned with learning to rank methods that can learn on large scale data sets.
One standard method for learning to rank involves optimizing over the set of pairwise preferences
implicit in the training data. However, in the worst case there are (’;) candidate pairs, creating the
potential for a quadratic dependency on the size of the data set. This problem can be reduced by
sharding the data (e.g. by query) and restricting pairwise preferences to be valid only within a given
shard, but this still results in super-linear dependencies on n. Even with efficient data structures for
special cases this leads to O(n logn) computation cost for training [8]. Applying such methods to
internet-scale data is problematic.

Bottou ef al. have observed that in large-scale settings the use of stochastic gradient descent methods
provide extremely efficient training with strong generalization performance — despite the fact that
stochastic gradient descent is a relatively poor optimization strategy [2, 1]. Thus, the main approach
of this paper is to adapt the pairwise learning to rank problem into the stochastic gradient descent
framework, resulting in a scalable methodology that we refer to as Stochastic Pairwise Descent
(SPD). Our results show that best performing SPD methods provide state of the art results using
only a fraction of a second of CPU time for training.

2 Problem Statement: Pairwise Learning to Rank

The data sets D studied in this paper are composed of labeled examples (x, y, ¢) with each x € R”
showing the location of this example in n-dimensional space, each y € N denoting its rank, and
each ¢ € Z identifying the particular query/shard to which this example belongs. We define the set
P of candidate pairs implied by D as the set of all tuple-pairs ((a, Ya, ¢a), (b, Ys, g»)) With y, # s
and g, = q. When y, > 1y, we say that a is preferred over b or ranked better than b. Note that in
the worse case | P| grows quadratically with | D).

For this paper, we restrict ourselves to solving the classic RankSVM optimization problem, first
posed by Joachims [7].! In our notation, we seek to minimize:

A 1
min §||WH2 + ﬁ Z HingeLoss((a — b), sign(ye, — ¥p), W)
((a,Ya+94),(b,yp,q))EP

That is, we seek a weight vector w € R" that gives low hinge-loss over the set candidate pairs P
and also has low complexity. Here, \ is a regularization parameter and the function sign(p) returns
+1 for p > 0, -1 for p < 0. Hinge loss is computed as max (0,1 — (w, sign(y, — y»)(a — b))).

Given w, prediction scores are made for unseen x by f(x) = (w,x), and predicted rankings are
inferred by sorted score.

Observe that in the special case of binary rank values of relevant and not-relevant in a
single query shard, this optimization problem is equivalent to the problem of optimizing area under
the ROC curve for binary-class data.

3 A Stochastic Pairwise Strategy

Bottou er al. point out that the generalization ability of stochastic gradient descent relies only on
the number of stochastic steps taken, not the size of the data set [1]. Thus, our main idea is to
sample candidate pairs from P for stochastic steps, without constructing P explicitly. This avoids
dependence on |P|.

Algorithm 1 gives the generic framework, reducing learning to rank to learning a binary classifier
via stochastic gradient descent. This reduction preserves the convergence properties of stochastic
gradient descent.

Care is needed to ensure that we are sampling from P and not some other pairwise expansion of
the data. We propose two implementations of Get RandomPair, below, including a method that
samples efficiently from P using and index of D. Methods for StochasticGradientStep
appear in Section 3.2.

Algorithm 1 Stochastic Pairwise Descent (SPD). This generic framework reduces the pairwise
learning to rank problem to the learning a binary classifier via stochastic gradient descent. The
CreateIndex and GetRandomPair functions, instantiated below, enable efficient sampling from P.

Dingesr < CreateIndex(D)
Wo «— ©
: fori=1totdo
((av Yas Q)7 (b7 Yo, q)) — GetRandomPair(Dindew)
x—(a—b
Y — sign(¥a — Yb)
w; < StochasticGradientStep(w;_1, X, y, %)
end for
return w;

—

WReRAdnbHwL

3.1 Sampling Methods

Here, we instantiate the Get RandomPair method from the SPD algorithm, above.

Samping Without an Index It is important to be able to sample from P without explicitly index-
ing D when D does not fit in main memory or is unbounded, as with streaming data. This may be
done by repeatedly selecting two examples (a, ¥4, ¢,) and (b, yp, ¢») from the data stream until a
pair is found such that (y, # v) and (g, = q»). The expected number of rejected pairs per call is

o(Lh).

!'Using approximate SVM solvers such as ROMMA and the Passive-Aggressive Perceptron results in opti-
mizing slight variants of this problem.

Indexed Sampling In our preliminary tests, we found that the rejection sampling method above
was surprisingly efficient. However, we found that indexing gave faster sampling when D fit in
memory. This index is constructed as follows. Let) be the set of unique values ¢ appearing
in D, and Y[q] map from values of ¢ € @ to the set of unique y values appearing in examples
(x,9,q") € D with ¢ = ¢'. Finally, let P[¢][y'] map from values ¢ € @ and y € Y[q] to the set of
examples (x,y’,q’) € D for which ¢ = ¢’ and y = ¢/. This index can be constructed in linear time
using nested hash tables.

To sample from P in constant time using this index:

select ¢ uniformly at random from @

select y, uniformly at random from Y'[¢]

select y;, uniformly at random from Y [q] — y,.
select (a, Y4, ¢) uniformly at random from Pq|[y]
select (b, yp, ¢) uniformly at random from Pq|[ys]

return ((a,yq,q), (b, y,q))

Note that this method samples uniformly from P only when the query shards are of equal size,
and the number of examples per unique y value are constant per shard. When these conditions are
not met, sampling from P requires O(log|Q| + log |Y [¢]max|) computation in the general case.
This more general algorithm is omitted for lack of space, and because the constant time algorithm
gives excellent results in practice. The quality of these results are due in part to the fact that the
benchmark data sets have query shards that tend to be consistent in size. Furthermore, Cao et al.
argue that this form of query-shard normalization is actually beneficial [4], because it ensures that
very large query-shards do not dominate the optimization problem.

3.2 Stochastic Gradient Descent Methods

Because we are interested in the RankSVM optimization problem in this paper, the stochastic gradi-
ent descent methods we examine are all based on hinge-loss (also sometimes called SVM-loss) and
are more properly referred to as stochastic sub-gradient descent methods. We review these variants
briefly by noting how they perform updates of the weight vector w on each step.

SGD SVM The simple stochastic sub-gradient descent SVM solver updates only when the hinge-
loss for an example (x,y) is non-zero [14], using the rule: w «— w + nyx — nAw. We set the
learning rate 7 for using the Pegasos schedule 7; «— % on step ¢ [13]. (We also experimented with
a more traditional update rule n < % finding no improvements.)

Pegasos (SVM) Pegasos is an SVM solver that adds a hard constraint: ||w|| < % Pegasos takes
1

the same sub-gradient step as SGD SVM, but then projects w back into the L2-ball of radius 5

which gives theoretical guarnatees for fast convergence [13].

Passive-Aggressive Perceptron The PA-I algorithm [5] takes variable-size steps to minimize

hinge loss and uses a regularization parameter C' to control complexity, similar to SVM in several

respects. The update rule is w «— w + 7yx where 7 < min(C, W).

ROMMA The ROMMA algorithm attempts to maintain a maximum-margin hypothesis; we apply
the aggressive variant that updates on any example with positive hinge loss [11]. The update rule is

L3¢l wl |~y ((x,w)) wl[* (y—(x,w))

W «— cw + dx, where ¢ «— M2 [W P = (x, w) 2 and d « =W = (x,w)2 "

3.3 Related Methods

Joachims gave the first RankSVM optimization problem, solved with SVM-light [7], and later gave
a faster solver using a plane-cutting algorithm [9] referred to here as SVM-struct-rank. Burgess et al.
used gradient descent for ranking for non-linear neural networks and applied a probabilistic pairwise
cost function [3]. Elsas et al. adapted voted Perceptron for ranking, but their method maintained a
quadratic dependence on | D| [6].

Figure 1: Mean Average Precision (MAP) for LETOR Benchmarks. SPD Pegasos, SPD Passive-
Aggressive and SPD SGD-SVM all give results statistically equivalent to RankSVM with far less
cost.

0.8

M SPD Pass-Agar.
M 5PD 5GD-5VM
. SPD Pegasos
M SPD ROMMA
_ I ‘ I I M Ranksvi
0.0 I

MQ2007 MQ2008 OHSUMED 2003_hp 2004_hp 2003_np 2004_np 2003_td 2004_td

]
o

=
ra

Mean Average Precision (MAP)
o
.

3.4 Things That Did Not Help

Neither Perceptron nor Perceptron with Margins were competitive methods. Expanding feature
vectors x € R™ into cross-product feature-vectors x’ € R™*™ gave no improvement in preliminary
trials. Our efforts to include pairs with ties (where y, = yp) yielded no additional benefit, agreeing
with a similar finding in [3].

4 LETOR Experiments

Experimental Setup We first wished to compare the ranking performance of the SPD methods
with RankSVM. To do so, we applied each SPD method on the LETOR 3.0 and LETOR 4.0 bench-
mark data sets for supervised learning to rank [12], using the standard LETOR procedures for tuning,
training, and testing. We used 100,000 iterations for each SPD method; this number of iterations
was picked during initial tests and held constant for all methods. The RankSVM comparison results
are previously published benchmark results on these tasks [12].

Ranking Performance The Mean Average Precision (MAP) results for each LETOR task are
given in Figure 1. To our surprise, we found not only that SPD Pegasos was statistically indistin-
guishable from RankSVM, but also that SPD SGD-SVM and SPD Passive-Aggressive were equiva-
lent to RankSVM as well. These results are extremely encouraging; a range of simple SPD methods
perform as well as RankSVM on these standard benchmarks. SPD ROMMA was not competitive.

Training Speed All experiments were run on a dual-core 2.8GHz laptop with 2G RAM with
negligible additional load. The SPD methods each averaged between 0.2 and 0.3 CPU seconds per
task for training time, which includes the construction of the sampling index and 100,000 stochastic
steps. This was up to 100 times faster than the SVM-light implementation [7] of RankSVM, and up
to 5 times faster than the SVM-struct-rank implementation [9]. However, this small scale setting of
at most 70,000 examples was not large enough to fully highlight the scalability of the SPD methods.

Table 1: Large-Scale Experimental Results. Results for ROC area and CPUs for training time are
given for the E311 task in the RCV1 data set.

LEARNER ROC AREA CPUS TRAINING
SVM-struct-rank 0.9992 30,716.33s
SVM-perf-roc 0.9992 31.92s
SPD Pass-Aggr 0.9990 22s
SPD SGD-SVM 0.9992 .20s
SPD Pegasos 0.9992 .20s

S Large Scale Experiments

Experimental Setup To assess the ability of the SPD to perform at scale, we needed a larger
ranking task than the LETOR benchmark data sets provided. Thus, we ran experiments on the much
larger RCV1 data set for text categorization [10], treating the goal of optimizing ROC area (ROCA)
as a large-scale ranking problem. (Recall that optimizing ROCA is equivalent to solving a ranking
problem with binary ranks and a single query shard.)

The training set we used had 781,265 examples, with 23,149 examples in the test set. For space,
we report results only the E311 topic, a minority class topic with a 0.2% positive class distribution.
(Results on 20 other RCV1 minority-class topics from this data set are similar; omitted for space.)
Parameters were tuned by cross-validation on the training set alone.

Scalability Results The results in Table 1 show that SPD methods were not affected by this in-
crease in scale, using no more CPU time on this task than on the smaller LETOR tasks. SPD meth-
ods were more than 150 times faster than the SVM-perf-roc implementation of RankSVM tuned to
ROCA optimization [8], and were many orders of magnitude faster than SVM-struct-rank (which
not is optimized for large query shards). The ROCA performance of all ranking methods exceeded
that of a binary-class SVM with tuned class-specific regularization parameters.

These results highlight the ability of simple SPD methods to give good ranking performance on large
scale data sets with low computation cost for learning.

Figure 2: Convergence Results. These graphs show the value of the RankSVM objective function
for each SPD method on the training data (left) and on the test data (right) for the hp_2003 task
from LETOR.

100

Obiective Value on Training Data (hp2003 Fold 1) Objective Value on Test Data (hp2003 Fold 1)
100

T T T T
SPD ROMMA —+— SPD ROMMA —+—
SPD Passive-Aggressive ---X--- SPD Passive- Aggressive ——
SPD SGD-SVM -+ SPD SGD-SVM -+
SPD Pegasos -

SPD Pegasos &

01 e 9

........

RankSVM Objective Function Value (lower is better)

,,,,,,
.....

1 1 1 1 1 1 1 1 1
100 1000 10000 100000 1e+06 1e+07 1e+08 100 1000 10000 100000 1e+06 1e+07 1e+08
Training Iterations Training Iterations

6 Convergence Trials

After these results were digested, we went back to examine how quickly each SPD learner con-
verged to a stable value of the RankSVM objective function. Because each of the SPD methods was
intended to solve or approximate the RankSVM objective function given in Section 2, we used the
value of this objective function as our test for convergence for all learners. (However, we keep in
mind that SPD ROMMA and SPD Passive-Aggressive are not intended to solve this exact RankSVM
problem.) Objective function values were observed at increasing intervals from 102 iterations (a
small fraction of a second in CPUs for training) to 102 iterations (up to 500 CPUs for training). We
performed these tests on the hp_2003 task of the LETOR data set, using the train/test split given
in Fold 1 of the cross-validation folds, using the value for A in the objective function determined as
optimal for RankSVM using the validation set for this fold.

The results, given in Figure 2, show several interesting trends. Both SPD SGD-SVM and SPD Pega-
sos converge to stable, apparently optimal values on training data within 10° iterations. Continued
training does not materially degrade performance on the test objective values. In contrast, both SPD
Passive-Aggressive and SPD ROMMA give much better objective values than the other methods at
small numbers of iterations (less than 10°). However, their performance does degrade with addi-
tional training, with SPD ROMMA degrading especially rapidly. We attribute this to the fact that

unlike SPD Pegasos and SPD SGD-SVM these methods do not optimize the RankSVM objective
function directly, and to the fact that these methods can take large update steps on noisy examples
regardless of the number of past iterations.

These results suggest that it may be fruitful to combine the best elements of both approaches, perhaps
by using SPD Passive-Aggressive in early iterations and SPD Pegasos or SPD SGD-SVM in later
iterations. We leave this investigation to future work.

References

[1] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, vol-
ume 20, pages 161-168. NIPS Foundation (http://books.nips.cc), 2008.

[2] L. Bottou and Y. LeCun. On-line learning for very large datasets. Applied Stochastic Models
in Business and Industry, 21(2):137-151, 2005.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender.
Learning to rank using gradient descent. In ICML ’05: Proceedings of the 22nd international
conference on Machine learning, 2005.

[4] Y. Cao,J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting ranking SVM to document
retrieval. In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, 2006.

[5] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive
algorithms. J. Mach. Learn. Res., 7, 2006.

[6] J. L. Elsas, V. R. Carvalho, and J. G. Carbonell. Fast learning of document ranking functions
with the committee perceptron. In WSDM °08: Proceedings of the international conference on
Web search and web data mining, 2008.

[7] T.Joachims. Optimizing search engines using clickthrough data. In KDD ’02: Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and data mining,
2002.

[8] T. Joachims. A support vector method for multivariate performance measures. In ICML ’05:
Proceedings of the 22nd international conference on Machine learning, 2005.

[9] T. Joachims. Training linear svms in linear time. In KDD ’06: Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, 2006.

[10] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcvl: A new benchmark collection for text
categorization research. J. Mach. Learn. Res., 5:361-397, 2004.

[11] Y. Liand P. M. Long. The relaxed online maximum margin algorithm. Mach. Learn., 46(1-3),
2002.

[12] T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li. LETOR: Benchmark dataset for research on
learning to rank for information retrieval. In LR4IR 2007: Workshop on Learning to Rank for
Information Retrieval, in conjunction with SIGIR 2007, 2007.

[13] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver
for svm. In ICML °07: Proceedings of the 24th international conference on Machine learning,
2007.

[14] T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In ICML °04: Proceedings of the twenty-first international conference on Machine
learning, 2004.

