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Abstract. Models of unobserved heterogeneity, or frailty as it is commonly known in survival

analysis, can often be formulated as semiparametric mixture models and estimated by maxi-

mum likelihood as proposed by Robbins (1950) and elaborated by Kiefer and Wolfowitz (1956).
Recent developments in convex optimization, as noted by Koenker and Mizera (2014b), have

led to dramatic improvements in computational methods for such models. In this vignette we

describe an implementation contained in the R package REBayes with applications to a wide
variety of mixture settings: Gaussian location and scale, Poisson and binomial mixtures for

discrete data, Weibull and Gompertz models for survival data, and several Gaussian models in-

tended for longitudinal data. While the dimension of the nonparametric heterogeneity of these
models is inherently limited by our present gridding strategy, we describe how additional fixed

parameters can be relatively easily accommodated via profile likelihood. We also describe some
nonparametric maximum likelihood methods for shape and norm constrained density estimation

that employ related computational methods.

1. Introduction

Empirical Bayes methods as conceived by Robbins (1956) are enjoying a robust revival stim-
ulated by more bountiful data sources and new theoretical developments exemplified by Efron
(2010). Mixture models have played a central role in this revival, and this has sparked renewed in-
terest in the Kiefer and Wolfowitz (1956) nonparametric maximum likelihood estimator (NPMLE)
for mixtures. Relatively recent developments in convex optimization have dramatically improved
computational methods for the Kiefer-Wolfowitz NPMLE, as described in Koenker and Mizera
(2014b). To make these methods accessible to the research community we have developed an R
package REBayes that incorporates a wide variety of nonparametric mixture models and provides
Kiefer-Wolfowitz procedures for each of them.

The simplest univariate mixture model takes the form,

g(x) =

∫
ϕ(x, θ)dF (θ),

where ϕ is a known density, that we will refer to as the base density, and F is an unknown
distribution function that we would like to estimate, given an iid sample from the mixture density
g. The most familiar example would be the Gaussian location model with ϕ standard Gaussian,
so,

g(x) =

∫
ϕ(x− µ)dF (µ).

This is the standard Gaussian sequence model and has been studied in many simulation exper-
iments, including Johnstone and Silverman (2004), Martin and Walker (2013) and Castillo and
van der Vaart (2012), and employed in many – typically genomic – applications. The objective of
such analyses is a compound decision problem: Given an exchangeable sample, X1, ...Xn estimate
the corresponding µ1, ...µn subject to quadratic loss. As noted by Robbins (1956) this yields the
optimal Bayes rule,

(1) E(µ|x) = x+ g′(x)/g(x).

Efron (2011) calls this Tweedie’s formula since Robbins attributes it to M.C.K. Tweedie, however
it appears earlier in Dyson (1926) who credits it to the English astronomer Arthur Eddington.
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To turn this into a practical shrinkage formula we obviously need to choose an estimator for
the mixture density g. Much of the earlier literature on this problem may be viewed as offering
parametric empirical Bayes proposals in which F is specified up to a finite dimensional vector of
hyperparameters.

More recently interest has focused on nonparametric estimation of the mixing distribution as
in Efron (2011), Brown and Greenshtein (2009) and Jiang and Zhang (2009). The latter authors
proposed using the Kiefer-Wolfowitz NPMLE to estimate F , and thereby g, and then to use
the Tweedie formula. The main drawback of this proposal was the painfully slow convergence
of the fixed point iteration of the EM algorithm used to compute the NPMLE. Koenker and
Mizera (2014b), observing that the discretization suggested by Jiang and Zhang (2009) produced
a convenient, finite dimensional convex optimization problem showed that the NPMLE could be
implemented much more efficiently by standard interior point methods. In the next section we will
briefly describe this implementation, and then turn to descriptions of various applications. Other
recent applications of the REBayes package may be found in Dicker and Zhao (2014) and Jiang
and Zhang (2015).

2. Computation of the Kiefer-Wolfowitz NPMLE

It is easy to see that the primal problem

(2) min
F∈F
{−

n∑
i=1

log g(xi) | g(xi) =

∫
ϕ(xi, θ)dF (θ), i = 1, ..., n},

where F denotes the set of all mixing distributions, is a convex program. We seek to minimize
a strictly convex objective function subject to linear equality constraints over the convex set, F .
The dual formulation of the problem is also illuminating.

Theorem 1. (Koenker and Mizera (2014b)) The solution, F̂ , of (2) exists, and is an atomic

probability measure, with not more than n atoms. The locations, µ̂j, and the masses, f̂j, at these
locations can be found via the following dual characterization: the solution, ν̂, of

(3) max{
n∑
i=1

log νi |
n∑
i=1

νiϕ(Yi, µ) ≤ n for all µ}

satisfies the extremal equations (n equations in less than n variables)

(4)
∑
j

ϕ(Yi, µ̂j)f̂j =
1

ν̂i
,

and µ̂j are exactly those µ where the dual constraint is active—that is, the constraint function in
(3) is equal to n.

The dual formulation reduces the objective function to a simple finite dimensional sum, albeit
now with an infinite dimensional constraint. The upper bound of n on the number of atoms,
established under slightly stronger conditions by Lindsay (1983), encourages us in the quest for
a discrete formulation. We should hasten to add that we have no assurances about where these
atoms occur, in particular it is clear already from an example in Laird (1978) that they need not
occur at the observed xi. Laird (1978) proposed using the EM algorithm to solve a discretization
of the primal problem (2) and subsequent authors, notably Heckman and Singer (1984) and Jiang
and Zhang (2009), have followed her lead. However, as has been frequently observed, EM can
be quite lethargic in its pursuit of the optimum. Koenker and Mizera (2014b) describe some
comparisons of a fixed point EM algorithm with the interior point method implemented in Mosek.
For a relatively small Gaussian location mixture problem with n = 200 and a grid of 300 points
for the mixing distribution for µ, the interior point method produced a very precise solution in
about 1 second and 15 iterations, while after 10 minutes and 100,000 iterations the EM algorithm
was still struggling to obtain the same accuracy as the interior point solution.

In our discrete formulation we consider a fixed grid, {u1, ..., um}, of potential support points
for the mixing distribution, F . Typically, m is a few hundred, and the grid is equally spaced, but
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this can be easily adapted to particular applications. We denote by A an n by m matrix, with the
elements ϕ(Yi, uj) in the i-th row and j-th column. The discrete version of the primal problem is
then,

min
f∈Rm

{−
n∑
i=1

log(gi) | Af = g, f ∈ S},

where S denotes the unit simplex in Rm, i.e. S = {s ∈ Rm|1>s = 1, s ≥ 0}. So fj denotes the

estimated mixing density estimate f̂ evaluated at the grid point uj , and gi denotes the estimated
mixture density estimate, ĝ, evaluated at Yi. In our experience it is somewhat more efficient to
solve the corresponding dual problem,

max
ν∈Rn
{
n∑
i=1

log νi | A>ν ≤ n1m, ν ≥ 0},

and subsequently recover the primal solution. In the REBayes package we have implemented this
dual solution method for a wide variety of mixture problems that we will describe in subsequent
sections. It is frequently convenient to consider weighted MLE formulations so REBayes fitting
functions make some provision for weights. The implementation relies heavily on the Mosek
optimization software of Andersen (2010) and its R interface package Rmosek, Friberg (2012).

3. Gaussian Mixture Models

Gaussian mixture models are a natural point of departure for application of the foregoing
methods. We will begin by describing usage in the simplest Gaussian sequence models. Some
connections to multiple testing are described in the following subsection. Gaussian scale mixtures
are then considered, followed by some brief remarks on Gaussian longitudinal models where het-
erogeneity in both location and scale comes into play. The section concludes with a cautionary
parable concerning Gaussian location-scale mixtures in non-longitudinal settings.

3.1. Needles in Haystacks. To illustrate our methods in the simplest possible setting, consider
the simulation framework of Johnstone and Silverman (2004): we have Xi ∼ N (µi, 1), i = 1, ..., n,
with s of the µi = µ0 6= 0 and the remainder, µi = 0. When s is reasonably large relative to n and
µ0 is well separated from zero, then it should be easy to distinguish the two mass points of the
mixture. Suppose we take n = 1000 and s = 100 with µ0 = 2 then the mixture density looks like
that illustrated in in the left panel of Figure 1. In the middle panel of the figure we plot the NPMLE
estimate of the mixing ”density,” which puts most of the mass near zero, and the remainder at
a value slightly greater than two. The reader is encouraged to repeat this exercise to gauge the
reliability of the NPMLE procedure with the R code reproduced below. Finally, in the right panel
we illustrate the Bayes rule for predicting µi given observations at various values between -5 and
+6. It may be noted that not only are observations below zero shrunken aggressively toward zero,
but observations above two are also shrunken toward the estimated prior mass point near two.
Observations between zero and two are, given the estimated mixing distribution, more ambiguous
and the Bayes rule must account for both mass points in computing its conditional expectation.

par(mfrow = c(1,3))

x <- seq(-5, 6, by = 0.05)

plot(x, 0.9 * dnorm(x,0) + 0.1 * dnorm(x,2), type = "l",

xlab = "x", ylab = expression(g(x)), main = "")

y <- rep(c(0,2), times = c(900,100)) + rnorm(1000)

z <- GLmix(y)

plot(z, xlab = expression(mu), ylab = expression(f(mu)), main = "")

plot(x, predict(z,x), type = "l", ylab = expression(delta(x)))

The Tweedie shrinkage strategy depicted in Figure 1 is effective not only in shrinking the
observations with µi = 0 toward zero, but also in shrinking the non-null µi = 2 observations toward
two. This helps to explain the good performance of the NPMLE described in Koenker (2014)
relative to the thresholding and parametric empirical Bayes procedures of Johnstone and Silverman
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Figure 1. Kiefer Wolfowitz Estimation of a Gaussian Location Mixture: The
left panel is the (unknown) two component mixture density, the middle panel is
the estimated NPMLE mixing density and the right panel is the estimated Bayes
rule for predicting µ̂ = δ(x) based on seeing an observation x.

(2004), Martin and Walker (2013) and Castillo and van der Vaart (2012). These competitors are
quite good at shrinking the null observations toward zero, unlike the NPMLE they know that there
is mass at zero, but they tend to leave the non-null observations alone and this tends to inflate
their mean squared error. This observation raises the natural question how would the NPMLE do
when the non-null observations came from a more diffuse distribution?

In Figure 2 we illustrate similar performance for a Gaussian location mixture in which 200 of
the 1000 observations have µi’s drawn from a N (2, 1) distribution. The true mixture density looks
quite similar to the prior example, but the NPMLE now identifies three distinct mass points, one
large one near zero, a smaller one near two and a very small mass point at about 4.5. The Bayes
rule is still quite sure that negative xi should be pulled toward zero, and observations near two
are nudged toward two. But despite its small mass the upper mass point of the estimated mixing
distribution exerts a substantial effect. Only when we see extremely large observations bigger
than 4.5 are they pulled back toward this largest mass point. This example is considerably more
challenging than the previous one, but nevertheless the empirical Tweedie formula produced by
the NPMLE provides a reasonable approach.

par(mfrow = c(1,3))

x <- seq(-5, 7, by = 0.05)

plot(x, 0.8 * dnorm(x,0) + 0.2 * dnorm(x,2,sqrt(2)), type = "l",

xlab = "x", ylab = "g(x)", main = "")

y <- c(rep(0,800), rnorm(200, 2)) + rnorm(1000)

z <- GLmix(y)

plot(z, xlab = expression(mu), ylab = expression(f(mu)), main = "")

plot(x, predict(z,x), type = "l", ylab = expression(delta(x)))

3.2. Gaussian Mixtures and Multiple Testing. Robbins (1951) introduced compound deci-
sion making with the following (deceptively) simple problem. Suppose we observe,

(5) Yi = θi + ui, i = 1, · · · , n,

with {ui} iid standard Gaussian, and we know that the θi take values ±1. The objective is to
estimate the n-vector, θ ∈ {−1, 1}n subject to `1 loss,

L(θ̂, θ) = n−1
n∑
i=1

|θ̂i − θi|.
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Figure 2. Kiefer Wolfowitz Estimation of a Gaussian Location Mixture: The left
panel is the (unknown) mixture density, the middle panel is the estimated NPMLE
mixing density and the right panel is the estimated Bayes rule for predicting
µ̂ = δ(x) based on seeing an observation x.

He observes that when n = 1 the least favorable version of the problem occurs when we assume
that the θi’s are drawn as independent Bernoulli’s with probability p = 1/2 that θi = ±1, and
then he proceeds to show that this remains true for the general “compound decision” problem with
n ≥ 1. The minimax decision rule is thus,

δ1/2(y) = sgn(y)

and yields constant risk,

R(δ1/2, θ) = EL(δ1/2(Y ), θ) = Φ(−1) ≈ 0.1586,

irrespective of p. And yet, something feels wrong with this procedure. If we saw mostly positive
Yi’s wouldn’t we begin to think that p 6= 1/2? Why are we so attached to the worst case scenario?
Exploiting the common structure of the n problems, Robbins suggests estimating p by p̂ = (ȳ+1)/2.
Given this method of moments estimate of p, he suggests plugging it into the decision rule,

δp(y) = sgn(y − 1/2 log((1− p)/p)),

a procedure that follows immediately from the requirement that,

P (θ = 1|x, p) =
pϕ(x− 1)

pϕ(x− 1) + (1− p)ϕ(x+ 1)
,

exceeds one half, that is, that the posterior median of θ be 1. This prototype empirical Bayes
procedure sacrifices a little in performance when p is really near 1/2, but achieves substantial gains
in performance when p differs substantially from 1/2. Of course, when n is large, p̂ → p, so we
have a form of asymptotic optimality.

The link to the multiple testing literature for the Robbins problem is immediately clear since
estimation of θ ∈ {−1, 1}n is essentially a testing problem in which we have weighed false discovery
and false non-discovery equally. If we treat θ = −1 as the null hypothesis and θ = 1 as the
alternative, a p-value procedure based on Ti = 1−Φ(Xi + 1) with cutoff Φ(−1) the decision rule,

δp(T ) = sgn(Φ(−1)− T )

is equivalent to the minimax rule, δ(x) = sgn(x). If, instead, we would like to fix the marginal false
discovery rate (mFDR) at some level and optimize marginal false nondiscovery rate (mFNR) a
modified p-value cutoff can be constructed, and this would be equivalent to replacing our symmetric
`1 loss for the estimation/classification problem by an asymmetric linear loss.



6 ROGER KOENKER AND JIAYING GU

A p-value testing procedure that is equivalent to the empirical Bayes rule estimator described
earlier for the Robbins problem can also be constructed. Under the null that Xi ∼ N (−1, 1),
Ti = 1− Φ(Xi + 1) ∼ U [0, 1], while if Xi ∼ N (1, 1),

P(Ti < u) = P(Xi + 1 > Φ−1(1− u)) = 1− Φ(Φ−1(1− u)− 2).

Thus, under the null, the density of T is f0(t) ≡ 1, and under the alternative,

f1(t) = ϕ(Φ−1(1− t)− 2)/ϕ(Φ−1(1− t)),

and the posterior probability of θi = 1 given ti and assuming for the moment that the unconditional
probability, p = P(θi = 1) is known, is given by,

P(θ = 1|t, p) =
pf1(t)

pf1(t) + (1− p)f0(t)
.

Under symmetric loss we were led to the posterior median so θ̂i = 1 if P(θi = 1|Ti, p) > 1/2, which
is equivalent to the p-value rule,

Ti < 1− Φ(1 + 0.5 log((1− p)/p)).

Again, we are led back to the problem of estimating p. In these two point mixture problems `1
loss is equivalent to 0− 1 loss since the median and the mode are identical.

In Gu and Koenker (2015b) we explore some extensions of this simple setting to several other
multiple testing problems. We first consider a grouped setting in which we have,

Yij = θij + uij , i = 1, · · · , n, j = 1, · · · ,m,

with {uij} iid standard Gaussian as before, and θij = 1 with probability pi and θij = −1 with
probability 1− pi, and independent over j = 1, · · · ,m. In this framework we can consider “group
specific” pi that vary within the full sample yielding a nonparametric mixture problem. In the
multiple testing context this grouped model has been considered by Efron (2008) and Sun and Cai
(2007) among others. This formulation leads us back to the Kiefer and Wolfowitz NPMLE. We also
consider abandoning the rather implausible assumption that we know the support points of the θ’s.
This allows us to consider multiple testing rules for more realistic settings with both composite null
and alternatives. Comparing performance of these rules with the empirical characteristic function
procedures of Sun and McLain (2012) shows very favorable performance.

3.3. Gaussian Scale Mixtures. Gaussian scale mixtures can be estimated in much the same
way that we have described for location mixtures. Suppose we now observe an unbalanced panel,

yit =
√
θiuit, t = 1, · · · ,mi, i = 1, · · · , n

with uit ∼ N (0, 1). Sufficiency reduces the sample to n observations on Si = m−1i
∑mi

t=1 y
2
it, and

thus Si has a gamma distribution with shape parameter, ri = mi/2, and scale parameter θi/ri,
i.e.

γ(Si|ri, θi/ri) =
1

Γ(ri)(θi/ri)ri
Sri−1i exp{−Siri/θi},

and the marginal density of Si when the θi are iid from F is

g(Si) =

∫
γ(Si|ri, θ/ri)dF (θ).

Estimation of F proceeds as in the location mixture setting except that now the matrix A has
typical element γ(Si|θj) with θj ’s constituting a fine grid covering the support of the sample Si’s.
This can be implemented in REBayes with the function GVmix, which may be seen as a general
procedure for scale mixtures of χ2. A yet more general procedure for scale mixtures of gamma
random variables is provided by the function gammamix.

An application of the Gaussian scale mixture procedure is described in Koenker (2013) where
a simple bivariate linear regression model,

Yi = β0 + xiβ1 + Ui
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is considered. The ui are assumed to be generated iidly from a scale mixture of Gaussians, so U2
i

have mixture density,

g(v) =

∫ ∞
0

γ(v|θ)dF (θ)

where θ = σ2, and γ is the χ2(1) density with free scale parameter θ,

γ(v|θ) =
1

Γ(1/2)
√

2θ
v−1/2 exp(−v/(2θ))

Given a preliminary estimate of the β parameters we can estimate the mixing distribution F based
on the sample of û2i ’s, and this in turn can be used to estimate the score function,

ψ̂(u) = (− log ĝ(u))′ =

∫
uϕ(u/σ)/σ3dF̂ (σ)∫
ϕ(u/σ)/σdF̂ (σ)

,

used to reestimate β. Iterating this procedure may be seen as our first encounter with Kiefer-
Wolfowitz profile likelihood and can be shown to achieve an asymptotically fully efficient regression
estimator for the class linear models with iid scale mixture of Gaussian errors.

3.4. Longitudinal Gaussian Models. Longitudinal data allow us to explore heterogeneity in
both location and scale for Gaussian Models. Let’s begin by considering the model,

yit = αi +
√
θiuit, t = 1, · · · ,mi, i = 1, · · · , n

with uit ∼ N (0, 1). We will provisionally assume that αi ∼ Fα and θi ∼ Fθ are independent.
Again, we have sufficient statistics:

ȳi|αi, θi ∼ N (αi, θi/mi)

and

Si|ri, θi ∼ γ(Si|ri, θi/ri),
where ri = (mi − 1)/2, Si = (mi − 1)−1

∑mi

t=1(yit − ȳi)2, and the log likelihood becomes,

`(Fα, Fθ|y) = K(y) +

n∑
i=1

log

∫ ∫
γ(Si|ri, θ/ri)

√
miφ(

√
mi(ȳi − αi)/

√
θ)/
√
θdFα(α)dFθ(θ).

Since the scale component of the log likelihood is additively separable from the location com-
ponent, we can solve for F̂θ in a preliminary step, as in the previous subsection, and then solve
for the F̂α distribution. In fact, under the independent prior assumption, we can re-express the
Gaussian component of the likelihood as Student-t and thereby eliminate the dependence on θ in
the Kiefer-Wolfowitz problem for estimating Fα. An implementation is available in the function
WTLVmix of REBayes. Gu and Koenker (2015a) describe an application to predicting baseball
batting averages in which following Brown (2008) averages are transformed to normality, and the
θ’s reflect either under or over dispersion relative to the standard binomial model. Again, pro-
file likelihood is used to explore covariate effects embedded in this model of heterogeneity. In
particular we estimate an age profile for batting prowess as a quadratic effect that peaks at age
27. Comparing predictive performance for this model we find that the independent prior NPMLE
performs considerably better than its more naive competitors.

It is also possible to relax the independence assumption on the location and scale effects. In
Gu and Koenker (2015c) we use longitudinal data from the Panel Study on Income Dynamics
(PSID) to study models of income dynamics with an arbitrary joint distribution of location and
scale heterogeneity. In these models we estimate an AR(1) effect by profile likelihood. The imple-
mentation for these models uses the function WGLVmix and requires a bivariate gridding strategy
for the mixing distribution. We find that there is a distinct negative dependence between the α
(location) and θ scale effects indicating that low “ability” individuals also tend to be high income
variability people. Accounting for heterogeneity in scale has an acute effect on the estimation of
the AR(1) effect reducing what is often regarded as a unit root effect to a rather mild ρ ≈ 0.5
effect. The Bayesian formulation of these models offers the significant additional advantage that
it affords a convenient environment for forecasting future income trajectories.
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3.5. The Parable of the Crabs: A Cautionary Tale. The first formal estimation of a mixture
model in statistics seems to have been Karl Pearson’s 1894 analysis of the ratio of ”forehead
breadth” to body length of 1000 crabs sampled from the Bay of Naples by the prominent biologist
W.F.R. Weldon. Pearson estimated a two component normal mixture model by the method of
moments, a truly heroic computational effort given the technology of the time. He allowed his
two normal components to have distinct means and variances so together with the relative weight
of the two components he had five parameters. Modern (EM) methods are capable of producing
similar results, although they are quite sensitive to the choice of initial values. It is thus tempting
to ask: Can the Kiefer-Wolfowitz NPMLE offer any further insight into such problems.

The short answer, unfortunately, is no. The immediate difficulty one encounters is that in
contrast to our baseball application, or the income dynamics model, there is no longitudinal
dimension to the data. All we have is a single sample, a basket of crabs. If we were to assume that
we had simply a location mixture, or simply a scale mixture, it would be easy to estimate the mixing
distribution with the NPMLE. But if we try to emulate Pearson and estimate a nonparametric
location and scale mixture we are headed for a Dirac catastrophe. For each observation, we are
entitled to assign a distinct mixing value µi = xi, corresponding to these µi we are also entitled
to assign a σi = 0, and to each of these points (µi, σi) = (xi, 0) i = 1, ..., n we can assign mass
1/n. The likelihood explodes and our mixing distribution has collapsed to the familiar empirical
distribution.

The moral of this fable is this: Sorting a basket of crabs is tougher than it might seem. Kiefer
and Wolfowitz knew a thing or two about this; the final paragraph of their 1956 paper points the
fundamental difficulty of the location-scale Gaussian mixture model, and earlier they had already
pointed out that the empirical distribution function was, itself, an MLE, of a sort. Teicher (1967)
provides a more formal discussion.

4. Mixture Models for Counts

The Kiefer-Wolfowitz NPMLE can also be useful in analyzing discrete random variables such
as count data where unobserved heterogeneity also arises naturally. Many applications involve
count data as an object of interest: the number of patents across firms or industries, the number
of hospital visits among patients, or the number of claims in insurance applications. The typical
model for analyzing such data is Poisson regression. Often, however, even after accounting for
observed covariates, there remains some over or under-dispersion in the data, indicating a need to
introduce additional unobserved heterogeneity into the Poisson model. When handling this unob-
served heterogeneity, a parametric model is typically imposed on the heterogeneity distribution in
the literature. We illustrate below how the NPMLE provides a more flexible nonparametric ap-
proach for handling unobserved heterogeneity in Poisson models based on a model for the number
of claims for a group life insurance policy. We also point out some advantages of NPMLE over the
linear credibility estimators that are widely used for experience rating of insurance contracts. For
a detailed discussion of credibility theory in actuarial science see Bühlmann and Gisler (2005).

Our data, first analyzed in Norberg (1989), consists of a portfolio of Norwegian workmen’s group
life insurance policies. The original 1125 contracts are aggregated into 72 occupational categories
and consists of the total number of deaths Xi (number of claims) and the total number of years
exposed to risk Ei for i = 1, . . . , 72 for each occupational group. This data is available from
REBayes as data(Norberg). Data on the 1125 individual contracts is only partially documented
in Norberg (1989), so we resort to the 72 occupation group data that is documented in Haastrup
(2000) and is provided in the dataset Norberg in the REBayes package. Figure 3 illustrates the
histogram of the ratio of Xi and Ei.

Following Norberg (1989), we assume a Poisson model for Xi, so conditional on iid θi ∼ G,

Xi ∼ Poisson(θiEi)

Here Ei is renormalized by a factor of 344 as in Haastrup (2000), and can be interpreted as
the à priori expected number of claims in the period of contract. The multiplicative unobserved
(occupational) specific factor θi then accounts for the fact that various occupations have different
risk profiles that are not observed, but can be indirectly inferred by the observed number of claims.
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Figure 3. Histogram of Claims per Exposure for 72 occupation groups.

In classical credibility theory this leads to insurance premiums tailored to individual risk profiles
based on the observed claims and exposures that have occurred. Rather than assuming that
the distribution G belongs to a particular parametric class as in Norberg (1989) and Haastrup
(2000), we adapt the Kiefer-Wolfowitz NPMLE to this task. Haastrup (2000) also conducts a
nonparametric Bayesian analysis with a Dirichlet Process prior using Gamma distribution as a
base, our methods serve as a nonparametric empirical Bayes contrast to his results.

data(Norberg)

E <- Norberg$Exposure/344

X <- Norberg$Death

hist(X/E, 90, freq = TRUE, xlab = "X/E", main = "", ylab = "Frequency")

f = Pmix(X, v = 1000, exposure = E, rtol = 1e-10)

par(mfrow=c(1,2))

plot(f$x,f$y/sum(f$y), type="l", xlab = expression(theta),

ylab = expression(f(theta)), ylim = c(0,1))

lines(f$x, dgamma(f$x, shape = z[1], rate = z[2]), col = 2)

plot(f$x,(f$y/sum(f$y))^(1/3), type="l", xlab = expression(theta),

ylab = expression(f(theta)^{1/3}), ylim = c(0,1))

Figure 4 contrasts the NPMLE estimator with the corresponding parametric empirical Bayes
estimates assuming that G follows a Gamma distribution. The main reason for adopting the
Gamma mixing distribution is analytical convenience. With θi ∼ Gamma(α, β), the marginal
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Figure 4. Estimated mixing distribution G for θ for the group insurance data.
The left panel depicts to the Kiefer-Wolfowitz NPMLE estimator for G with 1000
grid points. The right panel depicts the cube root of the mass associated with
support points around 8. The smooth red curve superimposed in the left panel
corresponds to the empirical parametric Bayesian estimates assuming G follows
a Gamma distribution. The Gamma shape and rate parameters are estimated by
maximum likelihood.

distribution of Xi follows a negative binomial distribution

g(Xi|Ei) =

∫
(θEi)

Xi exp(−θEi)
Xi!

βα

Γ(α)
θα−1 exp(−βθ)dθ

=

(
Xi + α− 1

Xi

)(
β

Ei + β

)α(
Ei

Ei + β

)Xi

The maximum likelihood estimates are α = 6.02 and β = 5.25. The credibility estimator of the
risk per exposure leads to

θ̂i = δiXi/Ei + (1− δi)E(θ)

with E(θ) =
∫
θdG(θ) and δi = V(θ)

V(θ)+E(θ)/Ei
. Under the parametric assumption that G is

Gamma(α, β), it is easy to see that E(θ) = α/β and V (θ) = α/β2, hence θ̂i = Xi+α
Ei+β

, which

is nothing but E(θ|Xi, Ei) from the Poisson-Gamma mixture model. The Gamma assumption on
G leads to a convenient analytical form for the credibility estimator, but since it may produce a
rather unrealistic estimator of the underlying mixing distribution the premium calculation of the
parametric credibility estimator may be questionable.

In Figure 4 we see that although the majority of the support points seem to situated under the
“umbrella” of the Gamma density, the Gamma distribution fails to detect the two outliers (Group
13 and Group 53, with X/E ratios equal to 8.89 and 7.98 respectively) that account for the remote
mass point around 8. In the right panel of Figure 4, we plot the cube root of the estimated mixing
distribution and magnify the very small yet important mass point around 8. One may argue that
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Figure 5. Comparison of the Parametric and the Nonparametric Empirical
Bayes estimator of θi for 72 occupation groups. As indicated by the 45 degree line
there is good agreement between the parametric and nonparametric Bayes rules
except for the two groups appearing in the upper right corner of the plot.

these two occupational groups could be viewed as outliers and hence should not be allowed to
influence our views about the distribution of the unobserved risk factor θ. However, an insurance
company would ignore them at its peril.

For our general mixing distribution NPMLE estimator Ĝ, the credibility estimator then be-
comes,

µ̂ = E(θ|Xi, Ei) =

∫
θ (θEi)

Xi exp(−θEi)
Xi!

dĜ(θ)∫ (θEi)Xi exp(−θEi)
Xi!

dĜ(θ)

Figure 5 contrasts the θ̂i based on the parametric Poisson-Gamma empirical Bayes estimator
and those based on the nonparametric Poisson mixture model. We can see that for most of the
occupational groups, the two estimators agree closely except for the two most extreme case (Group
13 and 53), that have the largest X/E ratio. The nonparametric empirical Bayes procedure,
relying on the mass point associated with a much larger support point, produces substantially
larger credibility estimator for these “riskier” groups, thereby justifying a higher premium. The
Pmix function produces the Bayes rule automatically with an output denoted as dy, as illustrated
in the code below.

PBrule <- (X + z[1])/(E + z[2])

NPBrule <- f$dy

plot(PBrule, NPBrule, cex = 0.5, xlab = "P-EBayes", ylab = "NP-EBayes")

abline(c(0,1))
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5. Fraility Models in Survival Analysis

The notion of frailty to describe unobserved heterogeneity of population risks has become a
familiar feature of demographic analysis since its introduction in Vaupel et al. (1979), and has
gradually spread to other statistical domains. It is tempting to begin a survival analysis by speci-
fying a simple parametric model for the survival distribution, say the Weibull, and then on further
reflection decide that a more flexible approach is necessary. One way to introduce such flexibility
is to consider mixtures of the original simple model, for example by letting the scale parameter
of the Weibull be random. This sort of thinking leads to deeper concerns about the nature of
randomness touched upon by Aalen et al. (2008). Do we really believe that individual subjects are
assigned a scale parameter and then fated to draw a survival date from the corresponding Weibull?
Or should we instead just regard the population survival distribution as adequately approximated
by the scale mixture? In the absence of further information to distinguish subpopulations it is dif-
ficult to see how to untangle these two interpretations, and we will not try to pursue this. Instead,
we will illustrate what can be done with our Kiefer-Wolfowitz apparatus in a reanalysis of the
influential Carey et al. (1992) experiments on medfly mortality. The primary objective of these
experiments was to characterize the upper tail of the medfly mortality distribution, an endeavor
that revealed several surprising biological features.

• Mortality rates declined at advanced ages, contrary to conventional biological wisdom that
ageing was an inexorable process of physical decline,

• The survival distribution had an extremely heavy tail, contrary to the common view that
each species had an explicit upper bound on survival propects,

• Gender cross-over in mortality rates gave males an advantage at early ages and females
an advantage at advanced ages, reversing expectations from other species.

In the largest of the three experiments reported in Carey et al. (1992), 1.2 million Mediterranean
fruit flies (Ceratitis Capitata) were raised in a large facility in Mexico,

“...Pupae were sorted into one of five size classes using a pupal sorter. This enabled
size dimorphism to be eliminated as a potential source of sex-specific mortality
differences. Approximately, 7,200 medflies (both sexes) of a given size class were
maintained in each of 167 mesh covered, 15 cm by 60 cm by 90 cm aluminum
cages. Adults were given a diet of sugar and water, ad libitum, and each day dead
flies were removed, counted and their sex determined ...”

Data from this experiment is available from the REBayes with further details documented there.
All three of the principle conclusions of the study are illustrated in Figure 6. As specified in

the code fragment below we compute daily death counts by age and gender, allowing us to plot
raw mortality rates by gender. We then estimate the Weibull mixture model using gender specific
Weibull shape parameters as described in Koenker and Gu (2013). As illustrated in the displayed
code, given the estimated mixing distribution it is easy to compute the hazard functions of the
corresponding mixture distributions.

data(flies)

attach(flies)

hweibull <- function(s,alpha,lambda, f){

Lambda<-outer((lambda*s)^(alpha),exp(f$x))

Surv <- exp(-Lambda) %*% f$y/sum(f$y)

A <- matrix(0, length(s), length(f$x))

for (i in 1:length(s)){

for (j in 1:length(f$x))

A[i,j] <- dweibull(s[i],shape=alpha,

scale = lambda^(-1) * (exp(f$x[j]))^(-1/alpha))

}

g <- A %*% f$y

g/(sum(g)*Surv)

}
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Figure 6. Raw and estimated mortality rates for Carey medflies by gender

ahat <- c(2.793, 2.909) # Estimated Weibull shape parameters by gender

counts <- tapply(num,list(age,female),"sum")

cols <- c("black","grey")

for(g in 1:2){

gc <- counts[!is.na(counts[,g]),g]

freq <- gc/sum(gc)

day <- as.numeric(names(gc))

atrisk <- rev(cumsum(rev(gc)))

h <- rev(diff(rev(c(atrisk,0))))/atrisk

fW <- Weibullmix(day, m = 5000, alpha = ahat[g], weight = freq)

hW <- hweibull(day, alpha = ahat[g], lambda = 1, fW)

if(g == 1){

plot(day[1:100],hW[1:100],type="l", xlim = c(0,110),

ylim = c(0,.20), xlab = "Day", ylab = "Hazard")

points(day[1:100], h[1:100], cex = 0.7)

}

else{

lines(day[1:120],hW[1:120],col = cols[2])

points(day[1:100], h[1:100], cex = 0.7, col = cols[2])

}

legend("topleft",c("Male","Female"),lty = rep(1,2), lwd = 1.5, col=cols)

}

A controversial aspect of the Carey experiment was the effect of cage density. Critics claimed
that flies raised in more crowded cages would be more likely to die earlier. To investigate whether
differences in initial cage density had a significant impact on mortality we can consider a model in
which density enters as a linear multiplicative scale shift in the Weibull model, that is the baseline
Weibull scale becomes θ0 exp(diβ) where di denotes initial cage density. To estimate the density
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effect parameter, β, we simply evaluate the profiled likelihood on a grid of values on the interval

[−1, 1], yielding Figure 7. This exercise yields a point estimate of about β̂ = −0.5 that is quite
precise, at least if we are to believe the confidence bounds implied by the classical Wilks, 2 log λ 
χ2
1, theory. Leaving the reliability of such intervals to future investigation, we conclude simply

that the negative estimated coefficient implies that higher density shifts the survival distribution to
the right, thus prolonging lifetimes, and directly contradicting the conjecture of the Carey critics.
This finding is confirmed by other methods, see for example Koenker and Geling (2001) where
similar results are reported for both the Cox model and several quantile regression models. Profile
likelihood is not always so successful in models of this type, for a cautionary lesson involving
estimation of the Weibull shape parameter see Koenker and Gu (2013).

counts <- tapply(num,list(age, begin),"sum")

freq <- c(counts)

day <- as.numeric(dimnames(counts)[[1]])

den <- as.numeric(dimnames(counts)[[2]])

day <- rep(day, 165)

den <- rep(den, each = 136)

s <- !is.na(freq)

day <- day[s]

den <- den[s]

freq <- freq[s]/sum(freq[s])

beta <- -10:10/10

logL <- beta

# Profile Log Likelihood for Density effect

for(i in 1:length(beta)){

f <- Weibullmix(day, m = 500, alpha = 2.95,

lambda = exp(beta[i]*den), weight = freq)

logL[i] <- f$logLik

}

plot(beta, logL/1000, cex = 0.5, xlab = expression(beta),

ylab = "Profile Likelihood")

lines(beta, logL/1000)

fsp <- splinefun(beta, max(logL) - logL - qchisq(.95,1)/2)

blo <- uniroot(fsp,c(-1,-.5))$root

bhi <- uniroot(fsp,c(-.5, 0))$root

polygon(c(blo,bhi,bhi,blo), c(-40,-40,-30,-30), col = "lightblue")

5.1. MedLife: Fly-by-Night Insurance for Mediterrean Fruit Flies. Imagine that you
have been engaged by MedLifeTM to design life insurance contracts for medflies of various ages.
To keep things relatively simple, suppose that we are not allowed to discriminate on the basis of
gender or other observable characteristics, like pupal size or initial cage density. How should we
compute an actuarially fair premium for a medfly of age T for a policy that pays 1, if the fly dies
between T and T + k. We will resist speculating on who the beneficiaries of these policies might
be or how double indemnity might be adjudicated. Instead, we will compare our nonparametric
Weibull mixture approach with a more conventional parametric method that assumes gamma
frailty for the Weibull model.

Let’s begin by comparing hazard function estimates for the parametric and nonparametric
specifications. When the frailty distribution is gamma, so,

h(z) =
νη

Γ(η)
zη−1e−νz,

it is convenient to restrict the mean frailty to be one, so ν = η and denote δ = 1/η. Then
for the Weibull base model with hazard function, a(t) = (α/β)(t/β)α−1 and cumulative hazard,
A(t) = (t/β)α, we can write the unconditional hazard and survival functions for the population
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Figure 7. Initial Cage Density Effect in the Weibull Mixture Model: Profile Log
Likelihood (in 1000’s) for the cage density effect with 0.95 (Wilks) confidence
interval in blue.

as,
λ(t) = a(t)/(1 + δA(t))

and
S(t) = (1 + δA(t))−1/δ.

This yields the loglikelihood,

`(α, β, δ|t) =

n∑
i=1

log a(ti)− (1 + 1/δ) log(1 + δA(ti)).

GammaFrailty <- function(pars, age, num, hazard = FALSE){

alpha <- pars[1]

beta <- pars[2]

delta <- pars[3]

a <- (alpha/beta) * (age/beta)^(alpha - 1) # Weibull hazard

A <- (age/beta)^alpha # Weibull cumulative hazard

if(hazard)

z <- a/(1 + delta * A)

else

z <- -sum(num * (log(a) - (1 + 1/delta)* log(1 + delta * A)))

z

}

pars <- c(5, 20, 1) # Initial values

z <- optim(pars, GammaFrailty, age = age, num = num)

fitG <- z$par

fitW <- Weibullmix(day, m = 5000, alpha = 2.95, weights = freq)
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Figure 8. Parametric versus Nonparametric Estimates of Medfly Mortality Rates

s <- 1:110

day <- day[s]

hazard <- hazard[s]

plot(day, hazard, cex = 0.5)

lines(day, GammaFrailty(z$par,day,num, hazard = TRUE), lty = 2)

hW <- hweibull(day, alpha = 2.95, lambda = 1, fitW)

lines(day, hW, col = 2)

legend("topright", legend = c("NPMLE", "Gamma"), col = 2:1, lty = 1:2)

Estimating the parametric gamma fraility model by maximum likelihood is straightforward as

indicated in the code above, giving (α̂, β̂, δ̂) = (3.08, 21.12, 0.41), and yielding the hazard function
shown in Figure 8. We superimpose the raw mortality rates and the hazard function based on our
Kiefer-Wolfowitz NPMLE based on the full sample without distinguishing medfly gender. While
the parametric gamma model is capable of capturing the declining portion of the hazard, it is not
sufficiently flexible to adapt to the finer features of the observed mortality rates.

Conditional on a draw of θ from the frailty distribution, the premium for a fly of age T = t is,

p(t|θ) =
F (t+ 1|θ)− F (t|θ)

S(t|θ)
,

and integrating with respect to θ we have the unconditional premium,

p(t) =

∫
F (t+ 1|θ)− F (t|θ)

S(t|θ)
h(θ|t)dθ,

where h(θ) is the unconditional frailty density, and

h(θ|t) ≡ h(θ|T > t) =
S(t|θ)h(θ)

S(t)
=

exp(−θA(t))h(θ)∫
exp(−θA(t))h(θ)dθ

.
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is the corresponding conditional frailty density. The need to condition the frailty distribution on
t may seem odd, but a moment’s reflection reveals that mass associated with high frailty values
that would imply that subjects would die very quickly, must surely be downweighted once subjects
attain an age at which having these values is highly improbable. This is illustrated in Figure 9
where we depict the estimated, conditional frailty based on our NPMLE at four different ages.
To exaggerate the magnitude of the smaller mass points of the NPMLE we have plotted the cube
root of the density. It is clear that the relatively small mass point at log(θ) = −3.4 at age 1.5, by
age 20 is no longer visible; flies with such a large frailty would almost surely be dead by age 20.

Gfrailt <- function(age, fit){

alpha <- fit[1]

beta <- fit[2]

delta <- fit[3]

A <- (age/beta)^alpha # Weibull cumulative hazard

(1 + delta * A)^(-1/delta)

}

frailt <- function(v, t, alpha, fit){

fv = fit$y/sum(fit$y)

g = sum(exp(-v * (t^alpha))* fv)

exp(-v * (t^alpha)) * fv/g

}

par(mfrow = c(2,2))

v <- exp(fitW$x)

for(t in c(1.5, 20, 60, 100)){

plot(log(v), frailt(v, t, alpha = 2.95, fitW)^(1/3), type="l",

main = paste("age =", t),

xlab = expression(log(theta)),

ylab = expression(h( theta , t)^{1/3}))

}

In Figure 10 we plot the ten-day term life insurance premium for medflies at various ages for
both the parametric gamma model and the nonparametric model. By varying the parameter k in
the premium function one can control the term of the life insurance policy. In the figure k = 10
and the premia profile is somewhat smoother than the instantaneous hazard depicted in Figure 8.
Again we see that the gamma model captures the basic shape of the nonparametric rate structure,
but misses some of the nuances.

premium <- function(v, t, k = 1, alpha, fit){

if("Weibullmix" %in% class(fit)) {

R <- t

for(i in 1:length(t)){

D <- exp(-v * t[i]^alpha) - exp(-v * (t[i] + k)^alpha)

D <- D/exp(-v * t[i]^alpha)

D[is.nan(D)] <- 1 # Kludge for vampire medflies

R[i] <- sum(D * frailt(v, t[i], alpha, fit))

}

}

else

R <- (Gfrailt(t,fit) - Gfrailt(t+k, fit))/Gfrailt(t, fit)

R

}

v <- exp(fitW$x)

R <- premium(v, day, k = 10, alpha = 2.95, fitW)

plot(day, R, type = "l", col = 2, ylab = "Premium")

R <- premium(v, day, k = 10, alpha = 2.95, fitG)
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Figure 9. Conditional Frailty at Various Ages: Note that the cube root of the
frailties have been plotted to accentuate the smaller mass points

lines(day, R, lty = 2)

legend("topright", legend = c("NPMLE", "Gamma"), col = 2:1, lty = 1:2)

6. Conclusion

We have described a new approach to computing the nonparametric maximum likelihood es-
timator of Kiefer and Wolfowitz for a general class of mixture models as implemented in the
R package REBayes, and illustrated its application in a variety mixture model settings. The
approach exploits recent developments in convex optimization as implemented in the Mosek en-
vironment of Andersen (2010). Koenker and Mizera (2014a) surveys a broader range of such
developments. In addition to the capabilities intended for mixture models the REBayes package
contains the function medde for norm and shape constrained density estimation. Further details on
medde methods may be found in Koenker and Mizera (2010) and the REBayes documentation.
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Figure 10. Ten-Day Term Life Insurance Premia for Medflies of Various Ages
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