This vignette summarizes the functions in the PPQplan
package, and provides some examples to illustrates how to use the package.
First of all, you need to install the R package.
install.packages("PPQplan")
then attach it
library(PPQplan)
Note: in order to better perform the dynamic plots, it is recommended to run the following code in RStudio.
This package provides several S3 functions listed as follows:
rl.pp
: calculates probability of pass the specification test.Example: Consider some sterile concentration assay as a CQA, the lower and upper specification limits are 95% and 105%, if the hypothetical mean and standard devaiton are 98% and 1%, then the probability of passing the specification test will be caluclated as follow.
rl.pp(Llim=95, Ulim=105, mu=98, sigma=1)
## [1] 0.9986501
PPQ.pp
PPQ.occurve
PPQ.ctplot
PPQ.ggplot
For the above example, assume the PPQ study reports a sample of 10 assay results per batch, test only one batch. Then a general multiplier for constructing 95% two-sided prediction interval can be calculated as \(k=2.373\).
PPQ.pp
: calcualtes the probability of passing some critical quality attributes (CQA) PPQ test using a general constant multiplier k
.PPQ.pp(Llim=95, Ulim=105, mu=98, sigma=1, n=10, n.batch = 1, k = 2.373)
## [1] 0.8604419
Comparing different senarios for hypothetical mean and standard deviation:
sigma <- seq(0.1, 4, 0.1)
pp1 <- sapply(X=sigma, FUN = PPQ.pp, mu=97, n=10, Llim=95, Ulim=105, k=2.373)
pp2 <- sapply(X=sigma, FUN = PPQ.pp, mu=98, n=10, Llim=95, Ulim=105, k=2.373)
pp3 <- sapply(X=sigma, FUN = PPQ.pp, mu=99, n=10, Llim=95, Ulim=105, k=2.373)
pp4 <- sapply(X=sigma, FUN = PPQ.pp, mu=100, n=10, Llim=95, Ulim=105, k=2.373)
plot(sigma, pp1, xlab="Standard Deviation", main="LSL=95, USL=105, k=2.373, n=10",
ylab="Probability of Passing", type="o", pch=1, col=1, lwd=1, ylim=c(0,1))
lines(sigma, pp2, type="o", pch=2, col=2)
lines(sigma, pp3, type="o", pch=3, col=3)
lines(sigma, pp4, type="o", pch=4, col=4)
legend("topright", legend=paste0(rep("mu=",4),c(97,98,99,100)), bg="white",
col=c(1,2,3,4), pch=c(1,2,3,4), lty=1, cex=0.8)
mu <- seq(95, 105, 0.1)
pp5 <- sapply(X=mu, FUN = PPQ.pp, sigma=0.5, n=10, Llim=95, Ulim=105, k=2.373)
pp6 <- sapply(X=mu, FUN = PPQ.pp, sigma=1, n=10, Llim=95, Ulim=105, k=2.373)
pp7 <- sapply(X=mu, FUN = PPQ.pp, sigma=1.5, n=10, Llim=95, Ulim=105, k=2.373)
pp8 <- sapply(X=mu, FUN = PPQ.pp, sigma=2, n=10, Llim=95, Ulim=105, k=2.373)
pp9 <- sapply(X=mu, FUN = PPQ.pp, sigma=2.5, n=10, Llim=95, Ulim=105, k=2.373)
plot(mu, pp5, xlab="Mean Value", main="LSL=95, USL=105, k=2.373, n=10",
ylab="Probability of Passing", type="o", pch=1, col=1, lwd=1, ylim=c(0,1))
lines(mu, pp6, type="o", pch=2, col=2)
lines(mu, pp7, type="o", pch=3, col=3)
lines(mu, pp8, type="o", pch=4, col=4)
lines(mu, pp9, type="o", pch=5, col=5)
legend("topright", legend=paste0(rep("sigma=",5),seq(0.5,2.5,0.5)), bg="white",
col=c(1,2,3,4,5), pch=c(1,2,3,4,5), lty=1, cex=0.8)
PPQ.occurve
: plots OC curves for specification test and PPQ plan, with the options of customizing CQA name, unit, number of batch, optimizing the plans, etc.PPQ.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC", Llim=95, Ulim=105, mu=98, sigma=seq(0.1, 10, 0.1), n=10, k=2.373)
The function can also optimize the baseline and high performance sampling plan1 by using add.reference
option.
PPQ.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC", Llim=95, Ulim=105, mu=98, sigma=seq(0.1, 10, 0.1), n=10, k=2.373, add.reference=TRUE)
PPQ.ctplot
: Heatmap (or Contour Plot) for PPQ assessment with parameter space.mu <- seq(95,105,0.05)
sigma <- seq(0.1,1.75,0.05)
PPQ.ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%LC", Llim=95, Ulim=105, mu = mu, sigma = sigma, k=2.373)
test <- data.frame(mu=c(97,98.3,102.5), sd=c(0.55, 1.5, 1.2))
PPQ.ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%LC", Llim=95, Ulim=105, mu = mu, sigma = sigma, k=2.373, test.point=test)
PPQ.ggplot
: Dynamic Heatmap (or Contour Plot) for PPQ assessment with parameter space. mu <- seq(95, 105, 0.05)
sigma <- seq(0.1,1.75,0.05)
PPQ.ggplot(attr.name = "Sterile Concentration Assay", attr.unit = "%LC", Llim=95, Ulim=105, mu = mu, sigma = sigma, k=2.373, dynamic = FALSE)
PPQ.ggplot(attr.name = "Sterile Concentration Assay", attr.unit = "%LC", Llim=95, Ulim=105, mu = mu, sigma = sigma, k=2.373, test.point = test, dynamic = FALSE)
Plot a dynamic heat map. User can hover on the plot to interactively evaluate the plan with dynamic = TRUE
option.
PPQ.ggplot(attr.name = "Sterile Concentration Assay", attr.unit = "%LC", Llim=95, Ulim=105, mu = mu, sigma = sigma, k=2.373, test.point = test, dynamic = TRUE)
## We recommend that you use the dev version of ggplot2 with `ggplotly()`
## Install it with: `devtools::install_github('hadley/ggplot2')`
pi.pp
pi.occurve
pi.ctplot
pi.pp
: calcualtes the probability of passing the PPQ test using prediction interval with confidence level \(100 \times 1-\alpha\).Use the same example with alpha=0.05
option.
pi.pp(Llim=95, Ulim=105, mu=98, sigma=1, n=10, n.batch = 1, alpha=0.05)
## [1] 0.8606111
pi.occurve
: plots OC curves for specification test and PPQ plan, with the options of customizing CQA name, unit, number of batch, optimizing the plans, etc. pi.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC",
mu=97, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
pi.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC",
mu=100, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
pi.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC",
mu=seq(95,105,0.1), sigma=1, Llim=95, Ulim=105, n=10, add.reference=TRUE)
pi.ctplot
: Heatmap (or Contour Plot) for PPQ assessment with parameter space.mu <- seq(95, 105, 0.05)
sigma <- seq(0.1,1.75,0.05)
pi.ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%LC", Llim=95, Ulim=105, mu = mu, sigma = sigma)
ti.pp
ti.occurve
ti.ctplot
ti.pp
: calcualtes the probability of passing the PPQ test using one-sided or two-sided tolerance interval with confidence level \(100 \times 1-\alpha\).Use the same example with alpha=0.05
option.
ti.pp(Llim=95, Ulim=105, mu=98, sigma=1, n=10, n.batch = 1, alpha=0.05, side=2)
## [1] 0.9942658
ti.pp(Llim = 100, Ulim = Inf, mu=102.5, sigma=2, alpha = 0.05, coverprob = 0.675, side=1)
## [1] 0.6185582
ti.occurve
: plots OC curves for specification test and PPQ plan, with the options of customizing CQA name, unit, number of batch, optimizing the plans, etc. ti.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=97, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
ti.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=100, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
ti.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=seq(95,105,0.1), sigma=1, Llim=95, Ulim=105, n=10, add.reference=TRUE)
Another example is test Extractable Volume using one-sided lower tolerance interval2.
ti.occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=1mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.675, side=1, NV=1)
ti.occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=1mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.78, side=1, NV=1)
ti.occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.97, side=1, NV=3)
ti.occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.992, side=1, NV=3)
ti.occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=6mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.95, side=1, NV=6)
ti.occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=6mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.987, side=1, NV=6)
ti.ctplot
: Heatmap (or Contour Plot) for PPQ assessment with parameter space.mu <- seq(95, 105, 0.05)
sigma <- seq(0.1,2.5,0.05)
ti.ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%LC", Llim=95, Ulim=105, mu = mu, sigma = sigma)
Also test the Extractable Volume using one-sided tolerance interval, for example, NV = 1mL with 95% / 67.5% one-sided lower tolerance interval.
ti.ctplot(attr.name = "Extractable Volume", attr.unit = "% of NV=1mL", Llim = 100, Ulim = Inf, mu=seq(100, 110, 0.5), sigma=seq(0.2, 15 ,0.5), n=40, alpha = 0.05, coverprob = 0.675, side=1)
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry.↩
USP <1> https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q08_pf_31_1_2005.pdf.↩