
PCRedux Package - An Overview
Stefan Rödiger

2018-06-13

Contents
0.1 Analysis of Simgmoid Shaped Curves for Data Mining and Machine Learning Applications:

An Introduction . 2
0.1.1 Why is there is need for this software? . 2
0.1.2 Technologies for Working with Amplification Curve Data 3
0.1.3 Relevance of Amplification Curve Data Analysis 4
0.1.4 Software for the Analysis of Amplification Curve Data 5
0.1.5 Principles of Amplification Curve Data Analysis 7

0.2 Development, Implementation and Installation . 13
0.2.1 Version Control and Continuous Integration . 13
0.2.2 Naming Convention and Literate Programming 13
0.2.3 Installation of the PCRedux Package . 14
0.2.4 Unit Testing of the PCRedux Package . 14

0.3 Technologies for Amplification Curve Classification and Classified Amplification Curves . 16
0.3.1 Classified Amplification Curves . 16
0.3.2 Graphical User Interfaces for Amplification Curve Classification 17

0.4 Functions of the PCRedux Package . 22
0.4.1 Helper Functions of the PCRedux Package . 22

0.4.1.1 decision_modus() - A Function to Get a Decision (Modus) from a Vector
of Classes . 22

0.4.1.2 visdat_pcrfit() - A Function to Visualize the Content of Data From
an Analysis with the pcrfit_single() Function 23

0.4.1.3 performeR() - Performance Analysis for Binary Classification 25
0.4.1.4 qPCR2fdata() - A Helper Function to Convert Amplification Curve Data

to the fdata Format . 25
0.4.2 Amplification Curve Analysis Functions of the PCRedux package 33

0.4.2.1 pcrfit_single() - A Function to Calculate Features from an Amplifica-
tion Curve . 34

0.4.2.2 Model Selection . 38
0.4.2.3 Quantification Points, Ratios and Slopes 38
0.4.2.4 autocorrelation_test() - A Function to Detect Positive Amplification

Curves . 50
0.4.2.5 earlyreg() - A Function to Calculate the Slope and Intercept in the

Ground Phase of an Amplification Curve 55
0.4.2.6 head2tailratio() - A Function to Calculate the Ratio of the Head and

the Tail of a Quantitative PCR Amplification Curve 56
0.4.2.7 hookreg() and hookregNL() - Functions to Detect Hook Effekt-like Cur-

vatures . 58
0.4.2.8 mblrr() - A Function Perform the Quantile-filter Based Local Robust

Regression . 60
0.4.2.9 Change point analysis . 66
0.4.2.10 Test of an amplification reaction . 66
0.4.2.11 Parallel Programming . 73

1 Summary and Conclusions 75

References 75

1

PCRedux

0.1 Analysis of Simgmoid Shaped Curves for Data Mining and Machine
Learning Applications: An Introduction

PCRedux is an open source software package for the analysis and numerical description of sigmoid curves.
The descriptors (features) (subsection 0.4) can be used for applications such as data mining, automatic
classification (e. g., positive, negative). This is in useful for applications in machine learning.

In the following chapters information are provided, which can be used for the analysis and numerical
description of quantitative real-time PCR amplification curves. The determination of quantification points
such as the Cq value is dealt with only marginally (e. g., subsubsection 0.1.3 ff.), since specific software
packages and analysis procedures have already been described in other studies (subsubsection 0.1.4).

Instead, characteristics of amplification curves and sigmoid functions that can be used for the statistical
and analytical description are discussed (subsubsection 0.4.2). The examples described in the following
focus on the binary classification as positive of negative. Further, chapters describe the implementation
of the hypotheses in the PCRedux package. This includes technologies used for quality control of the
PCRedux package.

The availability of classified amplification curve datasets and technologies for the classification of amplifi-
cation curves is of high importance to train and validate models. This is dealt with in subsection 0.3 and
subsubsection 0.3.2, respectively.

0.1.1 Why is there is need for this software?

A classification as negative or positive amplification curve is feasible using bioanalytical methods such as
melting curve analysis or an electrokinetic separation. However, this is not always possible or desirable.
For example,

• Melting curves cannot be obtained with certain detection chemistries. For example, Taqman probes
get hydrolyzed. An electrokinetic separation often requires too much effort for experiments with
high sample throughput. A classification must also be carried out for both melting curve analysis
and electrokinetic separation.

• There are algorithms such as linreg (J M Ruijter et al. 2009) that require information on whether
an amplification curve is negative or positive for subsequent calculation.

• The mere classification into positive or negative is not necessarily the only aim of the PCRedux
package. Instead, it is aimed that users and developers have tools to classify amplification curves
automatically by any category conceivable. This can be for example a description of the amplification
curve quality.

2

0.1.2 Technologies for Working with Amplification Curve Data

Data mining algorithms and machine learning can be used for descriptive and predictive tasks during the
analysis of complex datasets. Data mining uses specific methods from statistical interference, software
engineering and domain knowledge to

• obtain a better understanding of the data and
• to extract hidden knowledge

from the pre-processed data (Herrera et al. 2016). All this implies that a human being interacts with
the data at the different stages of the whole process. The human being is therefore always a part of the
workflow in data mining. Parts of the data mining process are

• the pre-processing of the data subsection 0.3,
• the description of the data,
• the exploration of the data and
• the search for connections and causes.

In contrast, machine learning uses instructions and data in software modules to create models that can be
used to make predictions on novel data. In machine learning, the human being is much less necessary in
the entire process. During machine learning, processes (algorithms) are used to create models with tunable
parameters. These models automatically adapt their performance to the information (features) from the
data. Well-known examples of machine learning technologies are Decision Trees (DT), Boosting, Random
Forests (RF), Support Vector Machines (SVM), generalized linear models (GLM), logistic regression (LR)
and deep neural networks (DNN) (Lee 2010). Recently, Reinforcement Learning has become more and
more the focus of interest. The three following classes of machine learning are classically described in the
literature:

• Supervised learning: These algorithms (e. g., logistic regression, SVM, DT, RF) learn from a training
dataset of labeled and annotated data (e. g., “positive” and “negative”). It is used for building a
generalized model of all data. These algorithms use error or reward signals to evaluate the quality
of a solution found (Bischl et al. 2010, Greene et al. (2014), Igual and Seguí (2017)).

• Unsupervised learning: Algorithms, such as k-means clustering, kernel density estimation, LDA or
PCA learn from training datasets of unlabeled or non-annotated data to find hidden structures
according to geometric or statistical criteria (Bischl et al. 2010, Greene et al. (2014), Igual and
Seguí (2017)).

• Reinforcement Learning: The algorithms learn by reinforcement from criticism. The criticisms
inform the algorithm about the quality of the solution found. But the criticism says nothing about
how to improve. These algorithms iteratively search the improved solution in the entire solution
space (Bischl et al. 2010, Igual and Seguí (2017)).

Decision trees are a classic approach to machine learning (Quinlan 1986). Here relatively simple algorithms
and simple tree structures are used to create a model. R offers several packages like party (Hothorn,
Hornik, and Zeileis 2006) and rpart (Therneau, Atkinson, and Ripley 2017) for creating decision trees.
Graphical user interface like Rattle (Williams 2009) offer convenient user interfaces for data mining with
R. Applications of decision trees are shown in later chapters.

Binomial logistic regression1 is used in data science and machine learning to gain knowledge about a
binary relationship. In specific, Binomial logistic regression can be used to fit a regression model, y = f(x)
if y is a categorical variable with two states (e. g., negative, positive). Thus, binary variables have exactly
two values (negative → 0, positive → 1). Typically, this model is used for predicting y with n predictors
xi1, . . . , xk1, (i = 1, . . . , n). The predictors can be a mixture of continuous and categorical. The logit
model is a robust and versatile classification method that can be used to explain a dependent binary
variable. Their codomain of real numbers is limited to [0,1]. Probabilities can therefore be utilized.
Logistical distribution function F (η), also known as the response function, is strictly monotone increasing
and limited to this range.

ηi establishes the link between the probability of the occurrence and the independent variables. For this
reason, ηi is referred to as a link function. The distribution function of the normal distribution is an

1Logistical regression can also be used to predict a dependent variable that can assume more than two states. In this
case, it is called a multinomial logistic regression. An example would be the classification y of amplification curves as
slightly noisy,*medium noisy* or *heavily noisy*.

3

alternative to the logistical distribution function. By using the normal distribution, the Probit model
is obtained. However, since this is more difficult to interpret, it is less widely used in practice. Since
probabilities are used, it is possible to make a prediction about the probability of occurrence of an event.
When analyzing amplification curves, a diagnosis can be made whether a reaction was unsuccessful (0)
or successful (1). For the prediction independent metric variables are used. The metric variables have
interpretable distances with a defined order. Their codomain is [-∞,∞]. The logistic distribution function
on the independent variables can be used to determine the probability for Yi = 0 or Yi = 1. A logistic
regression model can be formulated as follows:

F (η) = 1
1+exp(−η)

The logistic regression analysis is based on the maximum-likelihood estimation (MLE). In contrast to
linear regression, the probability for Y = 1 is not modeled from explanatory variables. Rather, the
logarithmic chance (logit) is used for the occurrence of Y = 1. The term chance refers to the ratio of the
probability of occurrence of an event (e. g., amplification curve is positive) and the counter-probability
(e. g., amplification curve is negative) of an event.

In the ideal case, this should achieve a high degree of objectivity and reproducibility. It is not always
possible to justify this ideal, because the algorithms can be biased as the human. One reason is that
humans design the algorithms and curate the dataset used for the learning. In particular, datasets can be
biased if the human expert excludes seemingly problematic data.

The model should then be able to bring new unknown data into a meaningful context. The selected
features have a significant influence on the accuracy of the model. In machine learning, variables are
features that are used to train a model (Saeys, Inza, and Larranaga 2007). Therefore, it is important to
identify or generate new features potential features and to test them intensively. Regarding amplification
curves, only a few features have been described in the literature so far. They are described in the
following sections. Dedicated applications and descriptions of features in the peer-reviewed literature is
not described.

Since machine learning algorithm for the analysis of amplification curve data were not available in the
literature, it was necessary to speculate, which characteristics should be extracted by the processing
algorithm and broken down into characteristic vectors. The number of proposed features that can be
created with the algorithms of the PCRedux package was presumably the most extensive collection at the
time of first release in summer 2017. Previously, only a few characteristics of amplification curves were
described in the literature. Thus, it would be too few to use them extensively for machine learning with
qPCR data. An application of those for machine learning could also not be found.

The algorithms of machine learning consist of several steps including careful data pre-processing and
quality management. In a first step, relatively large datasets of known characteristic vectors have to be
collected, measured and calculated as raw data. In a second step, these characteristics are used to classify
unknown feature vectors using the machine learning algorithm. For example, the amplification curves
would have to be divided into training data and test data from the entire dataset at random.

0.1.3 Relevance of Amplification Curve Data Analysis

PCRedux is an R package for the analysis of sigmoid curves. Data with sigmoid curves are common in
many biological experiments. A widely used bioanalytical method is the quantitative real-time PCR
(qPCR). qPCRs are applied in human diagnostics, life sciences and forensics (Martins et al. 2015, Sauer,
Reinke, and Courts (2016)).

qPCRs are performed in thermo-cyclers, which are equipped with a real-time monitoring technology.
There are numerous manufactures, which produce thermo-cyclers as commercial products or as part of
scientific projects. An example for a thermo-cycler that originated in scientific project is the VideoScan
technology (Rödiger et al. 2013).

Predefined temperatures can be set in thermo-cyclers to amplify DNA segments using the polymerase
chain reaction (PCR). Most of the thermo-cyclers have a thermal block with wells at certain positions.
Reaction vessels containing the PCR mix are inserted into these wells. There are also thermo-cyclers that
use capillary tubes (e. g., Roche Light Cycler 1.5). The capillaries are heated and cooled by air. The
thermo cycler raises and lowers the temperature in the reaction vessels in discrete, pre-programmed steps

4

so that the PCR reaction can take place. The instruments with a real-time monitoring function sensors
to measure changes of the fluorescence intensity in the reaction vessel. All thermo-cycler systems have
software that processes and outputs the measured data. Plots of the fluorescence observations versus cycle
number obtained from two different qPCR systems is shown in Figure 1A and B. The thermo-cyclers
produce different amplification curve shapes even with the same sample material and PCR mastermix
because of their technical design, sensors and software. These factors need to be considered during the
development of analysis algorithms.

Sigmoid functions are non-linear, real-valued, have a S-shaped curvature (Figure 1) and are are differ-
entiable (e. g., first derivative maximum, with one local minimum and one local maximum). For this
purpose, a sigmoid function can fitted to the dataset. With the model obtained, predictions can be made.
For example, the position of the second derivative maximum can be calculated from this (Figure 3). In
the context of amplification curves, the second derivative maximum is commonly used to describe the
relationship between the cycle number and the PCR product formation (Equation 2).

The analysis of sigmoid data (e. g., quantitative PCR) it is a manageable task if the data volume is low, or
dedicated analysis software is available. An example such a scenario (low number of amplification curves)
is shown in Figure 1A. All 65 curves exhibit a sigmoid curve shape. In contrast, the vast number of
amplification curves in Figure 1B is barely manageable with a reasonable effort by simple visual inspection.
These data originate from a high-throughput experiment that encompasses in total 8858 amplification
curves. Moreover, a manual analysis of the data is time-consuming and prone to errors.

During the setup of a qPCR assay, a manual analysis is a justified and reasonable approach to get
acquainted with the characteristics and challenges of the qPCR data. At least hypothetically, it can
hardly be denied that the trained human expert can best interpret the dataset. In particular, artifacts
and outliers in a series of measurements can usually be readily identified by humans. When large amounts
of data need to be processed, however, manual analysis is unfavorable. In addition, the objectivity of an
expert can be questioned. It is an open secret that data from quantitative real-time PCRs are occasionally
subject to problematic post-processing. In particular, the reproducible and objective analysis of the
amplification curve data exposes challenges to inexperienced users. Even among peers is not uncommon
that they judge (classify) results differently. An example on this problem is given in Figure 1.

0.1.4 Software for the Analysis of Amplification Curve Data

There are several open source and closed source software tools, which can be used for the analysis of
qPCR data (Pabinger et al. 2014). A large proportion of the algorithms is implemented in the R statistical
computing language. However, more dedicated literature is available from peer-reviewed publications and
textbooks. The software packages deal for example with

• missing values and non-detects (McCall et al. 2014),
• noise and artifact removal (Rödiger, Burdukiewicz, and Schierack 2015, Rödiger et al. (2015), Spiess

et al. (2015), Spiess et al. (2016)),
• inter run calibration (Jan M. Ruijter et al. 2015),
• normalization (Rödiger, Burdukiewicz, and Schierack 2015, Jan M. Ruijter et al. (2013), Feuer et

al. (2015), Matz, Wright, and Scott (2013)),
• quantification cycle estimation (Ritz and Spiess 2008, Jan M. Ruijter et al. (2013)),
• amplification efficiency estimation (Ritz and Spiess 2008, Jan M. Ruijter et al. (2013)),
• data exchange (Lefever et al. 2009, Perkins et al. (2012), Rödiger et al. (2017)),
• relative gene expression analysis (Dvinge and Bertone 2009, Pabinger et al. (2009), Neve et al.

(2014)) and
• data analysis pipelines (Pabinger et al. 2009, Ronde et al. (2017), Mallona, Weiss, and Egea-Cortines

(2011), Mallona et al. (2017)).

All softwares assume that the amplification resemble a sigmoid curve shape (ideal positive amplification
reaction), or a flat low line (ideal negative amplification reaction). For example, Ritz and Spiess (2008)
published the qpcR R package that contains functions to fit several multi-parameter models. This includes
the five-parameter Richardson function (Richards 1959), which is often used for the analysis of qPCR
data.

Researchers have found many solutions to challenges that were daunting the users of the qPCR methodology

5

0 10 20 30 40

0
2

4
6

8

C127EGHP dataset

Cycle

R
F

U

A

0 5 10 15 20 25 30 35

0.
0

0.
5

1.
0

1.
5

htPCR dataset

Cycle

R
F

U

B

−10 −5 0 5 10

0.
0

0.
5

1.
0

1.
5

x

f(
x)

y =
1

(1 + e−x)

C

−10 −5 0 5 10

0.
0

0.
5

1.
0

1.
5

x

f(
x)

y =
1

(1 + e−x)
+ n

D

−10 −5 0 5 10

0.
0

0.
5

1.
0

1.
5

x

f(
x)

y =
1

(1 + e−x)
+ mx2 + n

E

−10 −5 0 5 10

0.
0

0.
5

1.
0

1.
5

x

f(
x)

y =
1

(1 + e−x)
+ mx2 + n + ε

ε ~ N(0, σ)

F

Figure 1: Amplification curve data from an iQ5 (Bio-Rad) thermo-cycler and a high throughput experiment in
the Biomark HD (Fluidigm). A) The C127EGHP dataset (chipPCR package, (Rödiger, Burdukiewicz, and Schierack
2015)) with 64 amplification curves was produced in conventional thermo-cycler with a 8 x 12 PCR grid. B) The
htPCR dataset (qpcR package, (Ritz and Spiess 2008)), which contains 8858 amplification curves, was produced in
a 95 x 96 PCR grid. Only 200 amplification curves are shown. In contrast to A) have all amplification curves in
B) an off-set (intercept) of circa 0.25 RFU. C) Model function of a one-parameter sigmoid function. D) Model
function of a sigmoid function with an intercept n = 0.2 RFU. E) Model function of a sigmoid function with an
intercept (n ~ 0.25 RFU) and a square portion m ∗ x2. F) Model function of a sigmoid function with an intercept
(n) and a square portion of m ∗ x2 and additional noise ε (normally distributed).

6

in the past. For example selected qPCR systems have a periodicity in the amplification curve data (Spiess
et al. 2016). Presence a periodicity exposes the risk of introducing artificially shifts in the Cq values.
Another commonly employed pre-processing step of qPCR is smoothing and filtering. Both approaches
cause alterations to the raw data that affects both the estimation of the Cq value and the amplification
efficiency. The particular the cycle threshold method (Ct method) (Figure 3) is affected by these factors
(Spiess et al. 2015, Spiess et al. (2016)). Provided that such challenges are addressed, many algorithms
for the processing of the positive amplification curves are available.

Most software packages do not make a classification if an amplification curve. For example, a classification
could be if the amplification curve is negative or positive. An other classification could indicate whether
the quality of the amplification curve is poor (much noise) or good (low noise). Specialized software that
can distinguish the amplification curves automatically is needed. A classification of amplification curves
is needed for later data processing steps. For example, the linreg method by J M Ruijter et al. (2009)
requires a decision, if an amplification curve is positive or negative. The qpcR package (Ritz and Spiess
2008) contains an amplification curve test via the modlist() function. The parameter check="uni2"
offers an analytical approach, as part of a method for the kinetic outlier detection. It checks for a sigmoid
structure of the amplification curve. Then it tests for the location of the first derivative maximum and the
second derivative maximum. However, multi-parameter functions fit “successful” in most cases including
noise and give false positive results. This will be shown on later sections.

Sometimes it is difficult even for a human expert to classify the amplification curves unambiguously and
reproducible. To illustrate this an example for the analysis and classification of the htPCR dataset is
given in Figure 5.

A bottleneck of qPCR data analysis is the lack of features that can be used to build classifiers for
amplification curve data. A classifier herein refer to a vector of features that can be used to distinguish
the amplification curves by their shape only.

One reason for this is the lack of features that are known for amplification curve data. Only few features
for amplification curves are described in the literature. An example example is the amptester() function,
which is part of the chipPCR package (Rödiger, Burdukiewicz, and Schierack 2015). This function uses
static thresholds and frequentist inference to identify amplification curves that exceed the threshold. These
are then classified as positive. However, it can also lead to false-positive classifications as exemplified in
Figure 6.

0.1.5 Principles of Amplification Curve Data Analysis

The shape of a positive amplification curve follows in most cases a sigmoid shape. The curvature of the
amplification curve can be used as a quality measure. For example, fragmentation, inhibitors and sample
material handling errors during the extraction can be identified. The kinetic of fluoresce emission is
proportional to the quantity of the synthesized DNA. Typical amplification curves have three phases.

1. Ground phase: This phase occurs during the first cycles of the PCR. The fluorescence emission
is in most cases flat. During the ground phase, only a weak fluorescence signal is generated that
cannot be detected by the sensor system. This is often referred to as baseline or background signal.
Fragmentation, inhibitors and sample handling errors would result in a prolonged ground phase.
Apparently, there is only a phase shift or no signal at all. This is primarily due to the limited
sensitivity of the instrument. Even in a perfect PCR reaction (double amplification per cycle),
qPCR instruments cannot detect the fluorescence signal from the amplification. In these early cycles,
the fluorescence signals only produce a fluorescence background signal. The PCR product signal is
an insignificantly small component of the total signal. Nevertheless, this phase may indicate some
typical properties. For example, the increase and signal variation can be characteristic of the qPCR
system or probe system. In many instruments, this phase is used to determine the Ct threshold
(a statistically relevant increase outside the noise range). A signal that is far enough above this
threshold is considered as coming from the amplicon. It is assumed that this early cycle phase is
flat in the amplification curve. In some qPCR systems a flat amplification curve is expected in this
phase. Slight deviations from this trend are presumed to be due to changes (e. g., disintegration of
probes) in the fluorophores. Background correction algorithms are often used here to ensure that
flat amplification curves without slope are generated. This can lead to errors and inevitably leads
to a loss of information via the waveform of the raw data (Nolan, Hands, and Bustin 2006).

7

2. Exponential phase: This phase follows the ground phase and is also called log phase. This phase is
characterized by a strong increase of the emitted fluorescence. In this phase, the amount doubles in
each cycle under ideal conditions. The amount of the synthesized fluorescent labeled PCR product
is high enough to be detected by the sensor system. This phase is used for the calculation of
the quantification point (Cq) and for the calculation of the curve specific amplification efficiency.
Fragmentation, inhibitors and sample handling errors would decrease the slop of the amplification
curve (Spiess, Feig, and Ritz 2008, Ritz and Spiess (2008)).

3. Plateau phase: This phase follows the exponential phase. The cause for this lies in the exploitation
of the limited resources (incl. primers, nucleotides, enzyme activity) in the reaction vessel. This
limits the amplification reaction, so that the theoretical maximum amplification efficiency (doubling
per cycle) no longer prevails. This turning point and the progressive limitation of resources finally
leads to a plateau. In the plateau phase, there is sometime a signal decrease called hook effect (Isaac
2009).

If the amplification curve has only a slight positive slope and no perceptible exponential phase, it can be
assumed that the amplification reaction did not occur. Causes may include poor specificity of the PCR
primers, degraded sample material, degraded probes or detector problems. Such a curve can also occur if
non-specific PCR products are created at different points in time. In this case, the superimposed signals
can generate such a signal progression. If there is a lot of start DNA (detectable amplification in the first
cycles) and the instrument software makes a background correction, amplification curves with a strongly
negative trend can be erroneously generated.

Such phases can be roughly considered as regions of interest (ROI). As an example, the ground phase is
in the head area, while the plateau phase is in the tail area. The exponential phase is located between
these two ROIs.

Numerous qPCR systems do not display the raw data of the amplification curves on the screen. Instead,
the raw data is usually processed by the instrument software to remove fluorophore-specific effects and
background noise. The ordinate often does not display absolute fluorescence, but rather the change in
fluorescence per cycle. Smoothing algorithms may also have been used (Spiess et al. 2015). When using the
PCRedux package, it is therefore advisable to clarify beforehand, which processing steps the amplification
curves have been subjected to until data export. Failure to do so may result in misinterpretations and
incorrect models (Nolan, Hands, and Bustin 2006, Rödiger et al. (2015), Rödiger, Burdukiewicz, and
Schierack (2015), Spiess et al. (2015)).

The most important measurement from qPCRs is the cycle of quantification (Cq), which signifies at
which PCR cycle the fluorescence exceeds a threshold value. There is an ongoing debate as to what a
significant and robust threshold value is since there are several mathematical methods to calculate the
Cq. The classical threshold value (cycle threshold, Ct) is a straight horizontal line, which intersects with
the quasi-linear phase in the exponential amplification phase of the PCR. Another Cq method uses the
maximum of second derivative (SDM) (Rödiger et al. 2015). Figure 3 illustrates the calculation of Cq
values and Ct values. The threshold based method is claimed to be a simple yet effective approach. This
method requires that amplification curves are properly base-lined prior to the analysis. This is not always
desirable. An overview and performance comparison is given in Jan M. Ruijter et al. (2013).

In all cases the Cq value can be used to calculate the concentration of target sequence in a sample (low
Cq →high target concentration). In contrast, negative or ambiguous amplification curves loosely resemble
noise. This noise may appear linear or exhibit a curvature (Figure 6). Many factors, such as the sample
quality, qPCR chemistry, and technical problems (e. g., sensor errors) contribute to various curve shapes.
A common phenomenon of amplification curve shapes is the ‘hook effect’ (Barratt and Mackay 2002, Jan
M. Ruijter et al. (2014)). This however, may result in faulty interpretation of the amplification curves.

This means that the amplification curve shape, the amplification efficiency and the Cq value are prereq-
uisites to judge the outcome of a qPCR reaction. In all phases of PCR the curves should be smooth.
Possible peaks in the curves may be due to unstable light sources from the instrument or problems during
sample preparation, such as the presence of bubbles in the reaction vessel.

An important step in the qPCR workflow is data analysis. Progress has been made in qPCR data analysis,
primarily due to the availability of sophisticated data analysis pipelines and software packages (e. g.,
Jan M. Ruijter et al. (2013), Jan M. Ruijter et al. (2015), Rödiger et al. (2015), Spiess et al. (2015),
Spiess et al. (2016)). At this stage amplification curve (Rödiger, Burdukiewicz, and Schierack 2015) and
melting curve pre-processing (Rödiger, Böhm, and Schimke 2013) needs to be performed to continue

8

0 5 10 15 20 25 30 35

0
5

10
15

Cycle

R
F

U

Head Tail

Ground phase

Plateau phase

Exponential
region

top

tdp

Background

Plateau

Slope: 1.18
Background (mean): 1.1
sd_bg: 0.0588
Plateau: 12.3
top: 10
tdp: 23

A Positive

0 5 10 15 20 25 30 35

0.
0

0.
5

1.
0

1.
5

2.
0

Cycle

R
F

U

B Negative

0 10 20 30 40

0.
5

1.
0

1.
5

2.
0

Cycle

R
F

U

C boggy dataset

Figure 2: Regions of interest in amplification curves. A) In general, the fluorescence emitted (RFU, relative fluoresce
units) by the reporter dye (e.g, SYBR Green, EvaGreen) is plotted against cycle number. The amplification curve
data was taken from the testdat dataset (qpcR package). More generally, amplification curves can be divided
into three regions of interest. These are the ground phase, exponential phase and plateau phase. top, takeoff
point. tdp, takdown point. sd_bg is the standard deviation within the ground phase. The exponential region
(red dots) can be used to determine the Cq values and estimates of amplification efficiency. The straight red line
is the regression line of a linear model. In principle, after further processing steps (e.g., logarithmetic), slopes
in this range can be determined. B) PCRs without amplification reaction are usually characterized by a flat
(non-sigmoid) signal. C) The exponential phase of PCR reactions may vary considerably. Ideally, the slopes are
the same for all reactions. This would be synonymous with the same amplification efficiency in all reactions.
However, in practice, amplification curves with different increases are usually found. In particular, amplification
curves that become detectable in later cycles often have lower increases.

9

0 10 20 30 40 50

0
2

4
6

8
10

Cycles

R
aw

 fl
uo

re
sc

en
ce

Threshold: 2.356

A Ct = 15.71

0 10 20 30 40 50

−
4

−
3

−
2

−
1

0
1

2
Cycles

lo
g(

R
aw

 fl
uo

re
sc

en
ce

)

B Ct = 15.71

0 10 20 30 40 50

0

2

4

6

8

10

Cycles

R
aw

 fl
uo

re
sc

en
ce

2.356

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

E
ffi

ci
en

cy

cpD2: 15.68cpD1: 17.59
Eff: 1.795

resVar: 0.00604 AICc: −103.19
Model: l5

0 10 20 30 40 50

0

2

4

6

8

10

Cycles

R
aw

 fl
uo

re
sc

en
ce

C cpDdiff: 1.91

Figure 3: Commonly used methods for the analysis of quantification points. A) Linear plot of an amplification
curve with a typical sigmoid shape. The Grey horizontal line is the threshold as determined by the 68-95-99.7
rule from the fluoresce emission of cycle 1 to 10. The black horizontal line is the user defined threshold in the
log-linear range of the amplification curve. The Ct is calculated from the intersection of the horizontal line and a
quadratic polynomial fitted in to the amplification curve (see Rödiger, Burdukiewicz, and Schierack (2015) for
details). B) The Amplification curve plot with a logarithmic ordinate visualizes the linear phase. C) Analysis
of the amplification curve by fitting with a five parameter model (black line) (Equation 2). The red line is the
first derivative of the amplification curve, with the maximum at 17.59 cycles. The maximum is used in selected
system as Cq value and referred to as first derivative maximum (cpD1). The green line is the derivative of the
amplification curve, with the maximum at 15.68 cycles a minimum approximately at 19.5 cycles. The maximum
is used in selected system as Cq value and referred to as second derivative maximum (cpD2). The blue line is
the amplification efficiency that is estimated from the trajactory of the exponential region. The Eff value 1.795
means that the amplification efficiency is approximately 89%. cpDdiff is the difference between the Cq values
calculated from the first and the second derivative maximum (cpDdiff = |cpD1− cpD2|) from the fitted model.

10

0 10 20 30 40

25
00

35
00

Cycle

R
F

U

A Negative

0 10 20 30 40
25

00
35

00

Cycle

R
F

U

B Positive

2300 2500 2700 2900

0.
00

0
0.

00
2

0.
00

4

N = 756 Bandwidth = 25

D
en

si
ty

C Negative

2300 2500 2700 2900

0.
00

0
0.

00
3

0.
00

6

N = 588 Bandwidth = 25

D
en

si
ty

D Positive

Figure 4: Amplification curves of the RAS002 dataset. All amplification curves of the RAS002 dataset were manually
classified (negative,positive). A) The negative amplification curves have no sigmoid curve progression. Two
groups with different signal levels form the amplification curves. B) All positive amplification curves have a
sigmoid curve shape and a similar ground signal. C) The density function of the RFU values from the first 15
PCR cycles shows a bimodal distribution. Based on these data, it is easy to divide them into two groups. Both
groups’ density functions appear to be symmetrical. D) The density function from the RFU values of the first 15
PCR cycles shows a monomodal distribution. It seems that the density function of the RFU values is left-skewed.

11

next with the feature extraction from the curvatures. Several studies have been done, which discuss the
pre-processing and post-processing of qPCR data (Rödiger, Burdukiewicz, and Schierack 2015, Spiess et
al. (2015), Spiess et al. (2016)). In this work the focus is on amplification curve data. Amplification
curves can be difficult to interpret and analyze if the curvature deviates from the ideal sigmoid shape, or
the volume of curve data is to large for an economic manual analysis. Moreover, amplification curves may
look acceptable for an inexperienced use but unacceptable for an expert. Therefore, there is a need for
method of statistical interrogation and objective interpretation of results.

The quantification of nucleic acids by curve parameters like the quantification point (Cq) and the
amplification efficiency (AE) is only meaningful if the kinetic of the amplification curve follows a sigmoid
structure according to the model the qPCR (Jan M. Ruijter et al. 2013, Jan M. Ruijter et al. (2014), Ritz
and Spiess (2008)). In qPCRs is sigmoid shape is characterized by a baseline region, an exponential region
and a (maximum) plateau phase. The magnitude of the raw fluorescence and the shape of the amplification
curve vary naturally between detection probe systems and devices. Therefore, it is challenging identifying
negative curves which appear to be positive but just an artifact of scaling.

Most assays have an intrinsic property, which can be used to decide if an amplification reaction is positive,
negative or ambiguous. Melting curve analysis belongs to the commonly used approaches (Rödiger, Böhm,
and Schimke 2013). For example qPCRs monitored with unspecific dyes (e. g., EvaGreen) use melting
curve analysis is a post-processing method to identify PCR reactions which contain DNA (positive). Some
detection probe systems like hydrolysis probes do not permit such methods.

A typical situation is that results samples may positive, negative or ambiguous. The later are most
problematic because both outcomes (positive and negative) might be true. However, in most cases the
user is interested in an automatic distinction between positive and negative samples. This is import in
screening applications.

Provided that the rules are strict and transparent, such a routine can be used for quality management.
This is also in conformance with the philosophy that software in research and diagnostics should be a
foundation for reproducible research (Rödiger et al. 2015).

The Ct method appears to be the most widely used method despite the fact that this method was shown
to be unreliable (Jan M. Ruijter et al. 2013, Spiess et al. (2015), Spiess et al. (2016)). Presumably this
due to the familiarity of users with this approach since it is also known from chemical analysis procedures
or basic calculus. Another reason might be that the Ct method is easy to implement and to understand.

This kind of calculation strongly dependents on the user, who has to adjust the threshold level manually.
Thus, the Ct method is not stable in predictions if several users are given the same dataset to be analyzed.
Moreover, the Ct method makes the assumption that the amplification efficiency (~ slope in the log-linear
phase) is equal across all amplification curves compared (Jan M. Ruijter et al. 2013). Evidently, this is
not always case as exemplified in Figure 2C.

Another approach is to use non-linear model to fit the amplification curve. For example, five-parameter
Richardson functions (Equation 2, Richards (1959)) are often used (Spiess et al. 2015).

A comment on noise in sigmoid amplification curves: Noise in amplification curves
can have very different causes. Among them are incorrectly assigned dye detectors, errors
during the calibration of dyes for the instrument, errors during the preparation of the PCR
master mix, sample degradation, lack of a sample in the PCR, too much sample material in
the PCR mix or a low detection probe concentration.

12

0.2 Development, Implementation and Installation

PCRedux is an open source software package for the statistical computing language R. This software is
published under the terms of the MIT license2. PCRedux contains function for the calculation of features
from amplification curves and classified datasets for machine learning applications.

Reproducibility is a foundation of research. All technical and experimental aspects should be performed
under principles that follow good practices of reproducible research. Numerous authors addressed the
matter for experimental design and data report. Examples are the Minimum Information for Publication
of Quantitative PCR Experiments guidelines (MIQE) and the Real-time PCR Data Markup Language
(RDML). MIQE is a recommended standard of the minimum information for publication of quantitative
real-time PCR experiments guidelines and RDML is a data exchange format (S. A. Bustin 2014, S. Bustin
(2017), Rödiger et al. (2015), Rödiger et al. (2017), Wilson et al. (2017)). Both MIQE and RDML, are
widely used to preform quantitative real-time PCRs (Pabinger et al. 2014).

The development of scientific software is a complex process. In particular, if the development is carried
out by teams who work in different time zones and where no face-to-face meetings a possible. End users
need releases with stable software that delivers reproducible results. Developers need well documented
software the adopt the software according to their needs.

Under the umbrella Agile Software Development and Extreme Programming, several principles were
proposed to deliver high quality software, which meet the needs of end users and developers. This includes
version control, collaborative editing, unit testing and continuous integration(Lanubile et al. 2010, Myers
et al. (2004), Rödiger et al. (2015)). The following paragraphs describe methods implemented in the
PCRedux package to ensure high software quality.

0.2.1 Version Control and Continuous Integration

The development of the PCRedux package started 2017 with the submission of a functional, yet immature
source code, to GitHub (GitHub, Inc.). GitHub is a web-based version control repository hosting service.
Both distributed version control and source code management are based on Git. (Lanubile et al. 2010).
Additional functionality of GitHub includes the administration of access management, bug tracking,
moderation of feature requests, task management, some metrics for the software development, and wikis.
The source code of PCRedux is available at:

https://github.com/devSJR/PCRedux/

In continuous integration development team members commit and integrate their contributions several
times a day. Team members may include coders, artists and translators. An automated build and test
system verifies each integration and gives the development team members a timely feedback about the
effect of their commit. In contrast to deferred integration leads this to a reduced number of integration
problems and less workload because most erros are solved shortly after they were integrated (Myers et al.
2004).

TrivsCI was chosen as continues integration service for PCRedux. The TravisCI server communicates with
the GitHub version control system and manages the PCRedux package building process. Currently the
continuous interaction is available for the R releases oldrel, release and devel. The history of the build
tests are available at

https://travis-ci.org/devSJR/PCRedux

0.2.2 Naming Convention and Literate Programming

The PCRedux software is provided as an R (≥ v. 3.3.3) package. PCRedux is written as S3 object system.
S3 has characteristics of object orientated programming but eases the development due to the use of the
naming conventions (Brito 2008). In most places function and parameter names are written as underscore
separated (underscore_sep), which is a widely used style in R packages (Bååth 2012). This convention
had to be violated in coding sections where functionality from other packages was used.

2https://opensource.org/licenses/MIT

13

https://opensource.org/licenses/MIT
https://github.com/devSJR/PCRedux/
https://travis-ci.org/devSJR/PCRedux
https://opensource.org/licenses/MIT

Literate programming, as proposed by Knuth (1984), is a concept where the logic of the source code and
documentation is integrated in a single file. Markup conventions (e. g., ‘#’) tell in literate programming
how to typeset the documentation. This produces outputs in a typesetting language such as the lightweight
markup language Markdown, or the document preparation system LATEX.

The roxygen2, rmarkdown and knitr packages were used to write the documentation in-line with code
for the PCRedux package.

0.2.3 Installation of the PCRedux Package

The development version of the package can be installed using the The developer version of the package
can be installed using the devtools package.
Install devtools, if not already installed.
install.packages("devtools")

library(devtools)
install_github("devSJR/PCRedux")

PCRedux is available as stable version from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=PCRedux. Package published at CRAN undergo intensive checking
procedures. In addition, CRAN tests whether the package can be built for common operating systems
and whether all version dependencies are solved. To install PCRedux first install R (≥ v. 3.3.3). Then
start R and type in the prompt:
Select your local mirror
install.packages("PCRedux")

The PCRedux package should just install. If this fails make sure you that write access is permitted to the
destination directory.
The following command points to the help for download and install of packages
from CRAN-like repositories or from local files.
?install.packages()

If this fails try to follow the instructions given by De Vries and Meys (2012).

R CMD check

Results from CRAN check can be found at

http://cran.us.r-project.org/web/checks/check_results_PCRedux.html.

0.2.4 Unit Testing of the PCRedux Package

Modules testing, better known as unit testing, is an approach to simplify the refactoring of source code
during software development. The goal is to minimize errors and regressions. It is also intended to ensure
that the numerical results from the calculations are reproducible and of high quality. An unintended
behavior of the software should be detected at the latest during the package building process. Please
note that Unit Testing is not a guarantee for error-free software (Myers et al. 2004).

The basic concept is to use checkpoints to check whether the software performs calculations and data
transformations correctly for all builds. For this, numerous (logical) queries have to be defined by the
developer in advance. They are refereed to expectations. It should be ensured that as many errors as
possible are covered. A logical query can be, for example, whether the calculation has a numeric or
Boolean value as output. If the data type is incorrect during output, this is a sufficient termination
criterion. Or it can be checked whether the length of the result vector is correct after the calculation.
There are different approaches for unit tests in R. This also includes testing of units from the packages
RUnit, covr, svUnit and testthat. (Wickham (2011)).

The package testthat was used in PCRedux because it could be well implemented and its maintenance is
relatively simple. The logic is that an expectation defines how the result, class or error in the corresponding

14

https://CRAN.R-project.org/package=PCRedux
https://CRAN.R-project.org/package=PCRedux
http://cran.us.r-project.org/web/checks/check_results_PCRedux.html

unit (e. g., function) should behave. Unit tests can be found in the /test/testthat subdirectory of
the PCRedux package. The unit tests always run automatically during the creation of the package. The
following is an example of the function qPCR2fdata(). The details of how qPCR2fdata() works are
detailed in the paragraph 0.4.1.4 section. The function test_that(), from the testthat package, is
given several expectations. The qPCR2fdata() function when processing the amplification curves check
whether:

• an object of the class fdata is created (see Febrero-Bande and Oviedo de la Fuente (2012) for details
of the class fdata),

• the parameter rangeval has a length of two,
• is the second value of parameter rangeval 49 (last cycle number) and *whether the object structure

of the function qPCR2fdata() does not change if the parameter preprocess=TRUE is set.
library(PCRedux)

context("qPCR2fdata")

test_that("qPCR2fdata gives the correct dimensions and properties", {
library(qpcR)
res_fdata <- qPCR2fdata(testdat)
res_fdata_preprocess <- qPCR2fdata(testdat, preprocess = TRUE)

expect_that(res_fdata, is_a("fdata"))
expect_that(length(res_fdata$rangeval) == 2 &&

res_fdata$rangeval[2] == 49, is_true())

expect_that(res_fdata_preprocess, is_a("fdata"))
expect_that(length(res_fdata_preprocess$rangeval) == 2 &&

res_fdata_preprocess$rangeval[2] == 49, is_true())
})

Similar unit tests were implemented for all functions of the PCRedux package. The coverage by PCRedux
package can be calculated by the package_coverage() function from the covr package or visual analyzed
at

https://codecov.io/gh/devSJR/PCRedux/list/master/.

15

https://codecov.io/gh/devSJR/PCRedux/list/master/

0.3 Technologies for Amplification Curve Classification and Classified Am-
plification Curves

An extensive literature research showed that in the field of qPCR there are no openly accessible datasets.
Open Data is meant in the sense that data are freely available, free of charge, free to use and that data
can be republished, without restrictions from copyright, patents or other mechanisms of control (Kitchin
2014). Furthermore, only a few attributes of amplification curves are discussed among peers. These
include:

• the signal height and the slope in the baseline region (gradient and intersection),
• the starting point of amplification,
• the Cq value and amplification efficiency, and
• the signal level including the slope of the plateau phase (slope, intercept).

However, these alone are presumably not enough to describe amplification curves sufficiently. Furthermore,
there are no references to further algorithms that can be used to calculate additional features from
amplification curves. All these facts make further studies on machine learning and modeling difficult. A
feature can be described as an entity that characterizes an object. The number of features should be
large enough to describe the object accurately and small enough not to interfere with the learning process
with redundant or information.

Bellman coined the so-called Curse of Dimensionality in 1961, when he dealt with adaptive control
processes. It vague describes the practical difficulties encountered in high-dimensional analysis and
estimation. It states that for a given sample size, there is a maximum number of features from which
the performance of an algorithm degrades rather than improves. As a consequence, many data mining
algorithms fail when the dimensionality is high, because the data points are sparsely populated and far
apart (Herrera et al. 2016).

Therefore, a large number of records with amplification curves and their classification (negative, ambiguous,
positive) were included in the PCRedux package. Another objective was the development of new algorithms
and the transfer of algorithms from other domains (e. g., from digital image processing) to qPCR datasets.
A central goal was therefore to develop attributes to enable the classification of amplification curves in
categories such as positive, negative and ambiguous.

0.3.1 Classified Amplification Curves

It is worth noting that the classifications of amplification curves in Table 1 were made on the basis of
empirical values. For the amplification curves, only an assessment was made to see if the curves are
approximately sigmoid or resemble a negative amplification reaction with a flat curve shape. Consequently,
this does not answer the question of if a specific amplification product has been synthesized, if a
contamination has been amplified or if only primer-dimers have been amplified. To answer this question,
other methods such as melting curve analysis should be used.

Amplification curves from different sources had to be classified manually. Amplification curves from
the qpcR, chipPCR, PCRedux and RDML packages were classified with the humanrater(), as described in
Rödiger, Burdukiewicz, and Schierack (2015) and with the tReem() function from the PCRedux package.
The subsubsection 0.3.2 describes approaches that can be used to classify amplification curves.

Data preparation is an important step, that includes data cleansing, data transformation and data
integration (Herrera et al. 2016). The xray package (Seibelt 2017) can used to analyze the distribution
form and variables in records for anomalies such as missing values, zeros, infinite values and their categories.
The anomalies() function from the xray package can be used to search for anomalies (including missing
values (NA), zero values (Zero), blank strings (Blank) and infinite numbers (Inf)). Users of the PCRedux
package should use such tools before continuing to work with the records. Although most records in the
PCRedux package have the same data structure, some records contain missing values or have different
dimensions (compare data from Figure 1). For example, the dataset C127EGHP spans a matrix of 40 x 66
(35 cycles x observations (65 amplification curves)), while the htPCR dataset comprises a matrix of 35 x
8859.

Raw data were exported as comma separated values from the thermo-cyclers. Some records have been
exported from the devices using the RDML package and transformed into RDML format. A detailed

16

description can be found in Rödiger et al. (2017). The Real-time PCR Data Markup Language (RDML)
is data exchange format for quantitative Real-Time PCR Experiments. RDML is a human readable file
format and is based on XML (eXtensible Markup Language) and was created to enable the exchange of
data across different information systems (Lefever et al. 2009). The following code section describes the
import of an RDML file from the PCRedux package. The RDML file contains amplification curve data of
a duplex qPCR (HPV 16 & HPV 18) performed in the CFX96 (Bio-Rad).
library(RDML)
Load the RDML package and use its functions to import the amplification curve
data
library(RDML)
filename <- system.file("RAS002.rdml", package = "PCRedux")
raw_data <- RDML$new(filename = filename)

The further processing of the amplification data took place as described in Rödiger, Burdukiewicz, and
Schierack (2015), Rödiger et al. (2015), Spiess et al. (2015) and Spiess et al. (2016). An introduction to
the use of R for the analysis of melting curves (MBmca package, (Rödiger, Böhm, and Schimke 2013)) and
the calculation of Cq values (chipPCR package, (Rödiger, Burdukiewicz, and Schierack 2015)) is shown in
detail in Rödiger et al. (2015). Unless otherwise stated, the Cq values were determined using the second
maximum derivative method.

The following example shows the export of the RAS002.rdml file from the RDML format to the csv
format.
Export the RDML data from the PCRedux package as the objects RAS002 and RAS003.
library(RDML)
library(PCRedux)
library(magrittr)
suppressMessages(library(data.table))

RAS002 <- data.frame(RDML$new(paste0(
path.package("PCRedux"),

"/", "RAS002.rdml"
))$GetFData())

The obbject RAS002 can be stored in the working directory as CSV file with
the name RAS002_amp.csv.
write.csv(RAS002, "RAS002_amp.csv", row.names = FALSE)

Selected amplification cure datasets were stored in the RDML format as described in (Rödiger et al. 2015,
Rödiger et al. (2017)).

RDML data file Device Target gene Detection chemistry
RAS002.rdml CFX96 HPV16, HPV18, HPRT1 Taqman
RAS003.rdml CFX96 HPV16, HPV18, HPRT1 Taqman
hookreg.rdml Bio-Rad various Taqman, DNA binding dyes

32HCU: VideoScan (Attomol GmbH), CFX96: Bio-Rad.

Table_human_rated.xlsx

0.3.2 Graphical User Interfaces for Amplification Curve Classification

For machine learning and method validation it was important to classify the amplification curves
individually. However, the availability of comprehensively annotated datasets of amplification curves
was a bottleneck so far. In Rödiger, Burdukiewicz, and Schierack (2015) the humanrater() function
was introduced. This function was developed to assist the human expert during the classification of
amplification curves and melting curves. The human expert has to define classes (e. g., negative (“n”),
ambiguous (“a”), positive (“p”)) which get assigned to an amplification curve after expert has entered

17

Table 1: Classified amplification curve datasets.

Decision Datasets in PCRedux qPCR Dataset Package
decision_res_RAS002.csv RAS002.rdml PCRedux
decision_res_RAS003.csv RAS003.rdml PCRedux
decision_res_batsch1.csv batsch1 qpcR
decision_res_batsch2.csv batsch2 qpcR
decision_res_batsch3.csv batsch3 qpcR
decision_res_batsch4.csv batsch4 qpcR
decision_res_batsch5.csv batsch5 qpcR
decision_res_lc96_bACTXY.csv lc96_bACTXY.rdml RDML
decision_res_boggy.csv boggy qpcR
decision_res_C126EG595.csv C126EG595 chipPCR
decision_res_C127EGHP.csv C127EGHP chipPCR
decision_res_C316.amp.csv C316.amp chipPCR
decision_res_C317.amp.csv C317.amp chipPCR
decision_res_C60.amp.csv C60.amp chipPCR
decision_res_CD74.csv CD74 chipPCR
decision_res_competimer.csv competimer qpcR
decision_res_dil4reps94.csv dil4reps94 qpcR
decision_res_guescini1.csv guescini1 qpcR
decision_res_guescini2.csv guescini2 qpcR
decision_res_htPCR.csv htPCR qpcR
decision_HCU32_aggR.csv HCU32_aggR.csv PCRedux
decision_res_karlen1.csv karlen1 qpcR
decision_res_karlen2.csv karlen2 qpcR
decision_res_karlen3.csv karlen3 qpcR
decision_res_lievens1.csv lievens1 qpcR
decision_res_lievens2.csv lievens2 qpcR
decision_res_lievens3.csv lievens3 qpcR
decision_res_reps.csv reps qpcR
decision_res_reps2.csv reps2 qpcR
decision_res_reps3.csv reps3 qpcR
decision_res_reps384.csv reps384 qpcR
decision_res_rutledge.csv rutledge qpcR
decision_res_stepone_std.csv stepone_std RDML
decision_res_testdat.csv testdat qpcR
decision_res_vermeulen1.csv vermeulen1 qpcR
decision_res_vermeulen2.csv vermeulen2 qpcR
decision_res_VIMCFX96_60.csv VIMCFX96_60 chipPCR

18

the class in input mask. All amplification curve datasets listed in Table 1 were classified in interactive,
semi-blinded sessions. humanrater() was set to randomly select individual amplification curves. All
classifications were done in at least three repeats. The classification of the htPCR dataset (Figure 1B) was
done in total eight times (see Figure 5) because most of the amplification curves are neither unequivocal
classifiable as positive or negative.
Suppress messages and load the packages for reading the data of the classified
amplification curves.
options(warn = -1)
suppressMessages(library(data.table))
library(PCRedux)

Load the decision_res_htPCR.csv dataset from a csv file.
filename <- system.file("decision_res_htPCR.csv", package = "PCRedux")
decision_htPCR <- fread(filename, data.table = FALSE)

#
par(mfrow = c(2, 4))
for (i in 2L:9) {

data_tmp <- table(as.factor(decision_htPCR[, i]))

barplot(data_tmp, col = adjustcolor("grey", alpha.f = 0.5),
xlab = "Class", ylab = "Counts")

text(c(0.7, 1.9, 3.1), rep(quantile(data_tmp, 0.25), 3), data_tmp, srt = 90)
mtext(LETTERS[i - 1], cex = 1.2, side = 3, adj = 0, font = 2)

}

The humanrater() function(Rödiger, Burdukiewicz, and Schierack 2015) was developed with the aim
that amplification curves are taken individually (randomly) from the datasets and presented by a human
expert for classification. On the basis of his or her knowledge, the human expert is then able to undertake
a classification. This approach is well suited and has been applied to classify a variety of amplification
curves during the development of the PCRedux package. This methodological approach can, however, be
very time-consuming, depending on the size of the dataset. In addition, this approach can also be tiring
for large datasets, especially when the amplification curves are very similar. A high similarity between
amplification curves exists, for example, in replicates and negative controls.

In theory, the similarity between the amplification curves can be used to form groups with very similar
curves. The amplification curves in the groups can then be classified together in one run. In this way, a
higher throughput can be achieved for classification. This approach has not yet been described for the
analysis of qPCR data in the literature.

The tReem() function was developed to perform a curve-shape based classification. Two algorithms have
been integrated in the tReem() function to quantify the similarity between amplification curves. The
interface of the tReem() function is similar to that of the humanrater() function. The function tReem()
needs a data structure where the first column contains the qPCR cycles and all other columns contain
the amplification curves. After a chain of processing steps, the tReem() function presents the human
expert with a series of plots with a single amplification curve (no similarity to other curves) or groups of
amplification curves (within a group there is a high similarity). The corresponding classes can then be
assigned to the groups of amplification curves by the human expert using an input mask.

In the first method (standard), the correlation coefficients (r) are determined in pairs according to Pearson
for all combinations of amplification curves. The correlation calculation is used to describe the strength of
the correlation between the two variables in a statistical measure. Consequently, the correlation coefficient
r can be regarded as a distance between the amplification curves. r is a dimensionless value and only
takes values between -1 and 1. If r = -1, there is a maximum reciprocal relationship. If r = 0 there is no
correlation between the two variables. If r = 1, there is a maximum rectified correlation.

In the second method, the Hausdorff distance is used to determine the similarity between amplification
curves. The Hausdorff distance is the “the maximum of the distances from a point in any of the sets
to the nearest point in the other set” (Rote 1991, Herrera et al. (2016)). The amplification curves are
converted within the tReem() function using the qPCR2data() function.

19

a n y

Class

C
ou

nt
s

0
20

00
40

00
60

00

23
86

46
2

60
10

A

a n y

Class

C
ou

nt
s

0
20

00
40

00

29
42

37
0

55
46

B

a n y

Class

C
ou

nt
s

0
20

00
40

00

31
27

35
8

53
73

C

a n y

Class

C
ou

nt
s

0
20

00
50

00

22
07

60
57

59
4

D

a n y

Class

C
ou

nt
s

0
20

00
40

00

20
61

50
57

17
40

E

a n y

Class

C
ou

nt
s

0
20

00
40

00

20
01

47
92

20
65

F

a n y

Class

C
ou

nt
s

0
20

00
40

00

26
21

44
00

18
37

G

a n y

Class

C
ou

nt
s

0
20

00
40

00

22
21

47
65

18
72

H

Figure 5: Classification of amplification curves. The availability of classified amplification curves is an important
prerequisite for the development of methods based on monitored learning. Amplification curves (n = 8858) from
the htPCR dataset (qpcR package, (Ritz and Spiess 2008)) were classified in total eight time at different time
points by a human eight times with the classes ambiguous (a), positive (y) or negative (n). The classification is
subject to the subjectivity of the human expert, classified with the humanrater() function. Consequently, the
amplification curves were selected randomly so that systematic errors in classification should be minimized. With
this example, it becomes evident that even with the same dataset, different class assignments can occur. While
in the first three rounds (A-C) only a few amplification curves were classified as negative. Their proportion is
increased nearly tenfold (D-H) in subsequent classifications.

20

Both methods process the distances in the same steps. This involves the calculation of the distance
matrix using the Euclidean distances of all distance measures to determine the distance between the lines
of the data matrix. This is used to perform a hierarchical cluster analysis. In the last step, the cluster is
divided into groups based on a user-defined k value. For example, two groups are created for k = 2. If
the amplification curves are very different, a larger k should be used.

As a rule, the grouping of the amplification curves using the Pearson correlation coefficient as a distance
measure is faster than the Hausdorff distance. Nevertheless, it is up to the user to find the optimal
method for his task.

Ideally, only a few iterations are necessary to complete the classification of a dataset. However, a
prerequisite for this is that the amplification curves are similar.
Classify amplification curve data by correlation coefficients (r)
library(qpcR)
tReem(testdat[, 1:15], k = 3)

21

0.4 Functions of the PCRedux Package

The PCRedux package contains functions for analyzing amplification curves. In the following, these are
distinguished into helper functions (subsubsection 0.4.1) and analysis functions (subsubsection 0.4.2).

The helper functions can be used to manually classify amplification curves, convert them into other data
formats or to visualize data structures.

The analysis functions are used to calculate specific characteristic values (features) from the amplification
curves. For example, these are slopes, turning points and change points.

0.4.1 Helper Functions of the PCRedux Package

0.4.1.1 decision_modus() - A Function to Get a Decision (Modus) from a Vector of Classes

Many approaches to machine learning exist. The subject is very rich. One method is supervised machine
learning, where the goal is to derive a property from user-defined (classified) training data. Classified
training data can be created by one or more individuals. Categories such as negative, ambiguous or
positive are assigned depending on the form of the amplification curve, similar to what was described in
subsubsection 0.1.3 and subsubsection 0.1.5 and on the opinion of the individual(s).

For example, the amplification curves in (Figure 6) were taken from the htPCR dataset (see Figure 1B).
Assuming that the classification of the amplification curves is delegated to different users, it is likely
that the amplification curve (P06.W47, Figure 6) are considered ambiguous or even positive (positive ↔
ambivalent) by the users. A classification experiment was carried out for the complete htPCR dataset.
For this purpose, the amplification curves were classified at different time points as described in Rödiger,
Burdukiewicz, and Schierack (2015).

Table 3 shows from a total of 8858 amplification curves the first 25 lines classified as negative (confor-
mity=TRUE) and the first 25 lines classified as positive. In total, the curves were classified eight times
(test.result.1 . . . test.result.8), resulting in a whole of 70864 individually analyzed amplification
curves for this dataset. All the raw data is included in the CSV file.

This example shows that the amplification curves have been classified differently in 94.5% of the cases
(e. g., line 1 “P01. W01”). While for other amplification curves all classifications were the same (e. g.,
line 8856 “P95. W94”).

For the systematic statistical analysis of classification datasets, the decision_modus() function has been
developed. This allows the most common decision (mode) to be determined. This feature is useful if you
want to consolidate large collections of different decisions into a single decision.

Observed:“a”, “a”, “a”, “a”, “a”, “n”, “n”, “n” → frequencies 5 x “a”, 3 x “n” → mode:“a”

Since the class names are known, they only have to be interpreted by the user (e. g., “a”,“n”,“y” ->
“ambivalent”,“negative”,“positive”).

The decision_modus() function was applied to the record decision_res_htPCR.csv with all classifica-
tion rounds (columns 2 to 9) and the mode was determined for each amplitude curve.
Use decision_modus() to go through each row of all classification done by
a human.

dec <- lapply(1L:nrow(decision_res_htPCR), function(i) {
decision_modus(decision_res_htPCR[i, 2:9])

}) %>% unlist()

names(dec) <- decision_res_htPCR[, 1]

Show statistic of the decisions
summary(dec)

22

Table 3: Results of the ‘htPCR‘ data set classification. All amplification curves of the ‘htPCR‘ dataset were classified
as ‘negative‘, ‘ambiguous‘ and ‘positive‘ by individuals in eight analysis cycles (‘test.result.1‘ . . . ‘test.result.8‘).
If an amplification curve has always been classified with the same class, the last column (‘conformity‘) shows
‘TRUE‘. As an example, the table shows 25 amplification curves with consistent classes and 25 amplification
curves with differing classes (‘conformity = FALSE‘).

htPCR test.result.1 test.result.2 test.result.3 test.result.4 test.result.5 test.result.6 test.result.7 test.result.8 conformity
P01.W01 y a a n n n a n FALSE
P01.W02 a y a n n n n n FALSE
P01.W03 y a a n n n n n FALSE
P01.W04 y a a n n n n n FALSE
P01.W05 y a a n n n a n FALSE
P01.W06 a a a n n n n n FALSE
P01.W07 a a a n n n n n FALSE
P01.W08 y a a n n n n n FALSE
P01.W09 y a a n n n n n FALSE
P01.W10 n a a n n n n n FALSE
P01.W11 y y a y y y a y FALSE
P01.W12 a a a n n n n n FALSE
P01.W13 y a y n n n n n FALSE
P01.W14 y a y n n n n n FALSE
P01.W15 y a y n n n n n FALSE
P01.W16 y a a n n n n n FALSE
P01.W17 y a a n n n n n FALSE
P01.W18 a a a n n n n n FALSE
P01.W19 y a a n n n a n FALSE
P01.W20 y a a y a a y a FALSE
P01.W21 a a a n n n n n FALSE
P01.W22 y a a n n n n n FALSE
P01.W23 y a a n n n n n FALSE
P01.W24 y a a n n n a n FALSE
P01.W25 y a a n n n n n FALSE
P01.W58 n n n n n n n n TRUE
P02.W09 y y y y y y y y TRUE
P02.W19 y y y y y y y y TRUE
P02.W31 y y y y y y y y TRUE
P02.W41 y y y y y y y y TRUE
P02.W72 y y y y y y y y TRUE
P02.W81 y y y y y y y y TRUE
P02.W84 n n n n n n n n TRUE
P03.W09 y y y y y y y y TRUE
P03.W21 y y y y y y y y TRUE
P03.W22 y y y y y y y y TRUE
P03.W31 y y y y y y y y TRUE
P03.W32 y y y y y y y y TRUE
P03.W39 y y y y y y y y TRUE
P03.W56 y y y y y y y y TRUE
P03.W59 y y y y y y y y TRUE
P03.W68 y y y y y y y y TRUE
P03.W72 y y y y y y y y TRUE
P03.W73 y y y y y y y y TRUE
P04.W19 y y y y y y y y TRUE
P04.W31 y y y y y y y y TRUE
P04.W66 y y y y y y y y TRUE
P04.W81 y y y y y y y y TRUE
P04.W91 y y y y y y y y TRUE
P05.W20 y y y y y y y y TRUE

a n y
1847 4847 3343

Another usage mode decision_modus() function is to set the parameter max_freq=FALSE. That option
specifies the number of all classifications.
library(PCRedux)
Decisions for observation P01.W06
res_dec_P01.W06 <- decision_modus(decision_res_htPCR[

which(decision_res_htPCR[["htPCR"]] == "P01.W06"),
2L:9

], max_freq = FALSE)
print(res_dec_P01.W06)

variable freq
1 a 3
2 n 5

This amplification curve P01. W06 was classified as a=3 times and as n=5 times. Therefore, the decision
would turn into a negative decision.

0.4.1.2 visdat_pcrfit() - A Function to Visualize the Content of Data From an Analysis
with the pcrfit_single() Function

In all data science projects it is important to look at a new dataset to gain an insight into what is contained
therein and which potential problems might emerge during the further analysis. The pcrfit_single()
function uses various algorithms to calculate values that are returned as factors (e. g., adapted model)

23

0 5 10 15 20 25 30 35

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

htPCR dataset

Cycle

R
F

U

negative P06.W87
ambiguos P06.W47
positive P07.W55

A

a n y

Decision

F
re

qu
en

cy

0
10

00
20

00
30

00
40

00

B Classified by human

Figure 6: A) Comparison of amplification curves. Examples of a negative (black), ambiguous (red) and positive
(green) amplification curve were selected from the htPCR dataset (qpcR package, Ritz and Spiess (2008)). The
negative amplification curve is not sigmoid and shows a strong positive trend. The ambiguous amplification curve
approaches a sigmoid from, but shows a positive slope in the background (cycle 1 → 5). The positive amplification
curve is sigmoid. It begins in the background phase (cycle 1 → 5) with a flat baseline, and shortly thereafter the
exponential phase follows (cycle 5 → 25) followed by a plateau phase (cycle 26 → 35). B) Summary of frequencies
of all classes of the htPCR record. negative, black; ambiguous, red; positive, green.

or numbers (e. g., Cq value). Contrary to what the user expects, it is also possible that the algorithms
cannot calculate certain values and that missing values (NA) are output instead. This may occur if the
amplification curves have an unusual characteristic. In the analysis of large datasets, this can be a major
problem that could be detected in advance.

The visdat_pcrfit() function makes use of the vis_dat function from the visdat package by N.
Tierney (2017) to create heatmap-like visualizations. The Heatmapt displays each amplification curve line
by line and reads from top to bottom. The characteristics are presented column by column. In principle,
the structure of the output is the same as for the pcrfit_single() function.

The observations “A01”, “A02”, “A04” and “B04” from the C126EG685 of the chipPCR package were
analyzed with the encu() function. Finally, the data can be visualized with the visdat_pcrfit()
function. In this example the static plot is shown (Figure 7). It is also possible to run the function
interactively by setting the parameter interactive=TRUE. In this case starts an interactive, browser-based
charting library that uses ECMA Script. The interactive plot are rendered entirely locally, through a
HTML widgets framework
Calculate curve features of an amplification curve dataset.
Use the C126EG685 dataset from the chipPCR package and analyze the observations
A01, A02, A04 and B05.

library(chipPCR)

res <- encu(C126EG685[, c(1,2,3,5,17)])

Loading required package: bcp

Loading required package: grid

N:36, idsize:36, idval1:1, idval22:22
mm: 1, nn2: 36, N:36, cumksize.size: 36
N:36, idsize:36, idval1:1, idval22:22
mm: 1, nn2: 36, N:36, cumksize.size: 36

24

N:36, idsize:36, idval1:1, idval22:22
mm: 1, nn2: 36, N:36, cumksize.size: 36
N:36, idsize:36, idval1:1, idval22:22
mm: 1, nn2: 36, N:36, cumksize.size: 36
Show all results in a plot. Note that the interactive parameter is set to
FALSE.

visdat_pcrfit(res, type = "all", interactive = FALSE)

0.4.1.3 performeR() - Performance Analysis for Binary Classification

Statistical modeling and machine learning can be powerful but expose a risk to the user by introducing
an unexpected bias. This may lead to an overestimation of the performance. The assessment of the
performance by the sensitivity and specificity is fundamental to characterize the performance of a classifier
or screening test (G. James et al. 2013). Sensitivity is the percentage of true decisions that are identified
and specificity is the percentage of negative decision that are correctly identified.

An example for the application of the performeR() function is shown in paragraph 0.4.2.4.

Abbreviations: TP, true positive; FP, false positive; TN, true negative; FN, false negative

Measure Formula

Sensitivity - TPR, true positive rate TPR = TP
TP+FN

Specificity - SPC, true negative rate SPC = TN
TN+FP

Precision - PPV, positive predictive value PPV = TP
TP+FP

Negative predictive value - NPV NPV = TN
TN+FN

Fall-out, FPR, false positive rate FPR = FP
FP+TN = 1− SPC

False negative rate - FNR FNR = FN
TN+FN = 1− TPR

False discovery rate - FDR FDR = FP
TP+FP = 1− PPV

Accuracy - ACC ACC = (TP+TN)
(TP+FP+FN+TN)

F1 score - F1 F1 = 2TP
(2TP+FP+FN)

Matthews correlation coefficient - MCC MCC = (TP∗TN−FP∗FN)√
(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)

Likelihood ratio positive - LRp LRp = TPR
1−SPC

Cohen”s kappa (binary classification) κ = p0−pc

1−p0

0.4.1.4 qPCR2fdata() - A Helper Function to Convert Amplification Curve Data to the
fdata Format

qPCR2fdata() is a helper function to convert qPCR data to the functional fdata class as published by
Febrero-Bande and Oviedo de la Fuente (2012). This function prepares the data for further analysis,
which includes utilities for functional data analysis. For example, it this can be used to determine the
similarity measures between amplification curves shapes by the Hausdorff distance. Similarity herein
refers to the difference in spatial location of two objects (e. g., amplification curves). Objects with a close
distance are presumably more similar. For single objects (e. g., points) one can use a vector distance,
such as the Euclidean distance. The Hausdorff distance is an approximation of a shape metrics to define
similarity measures between shapes. (Charpiat, Faugeras, and Keriven 2003). Several variants of the
Hausdorff distance have been described (e. g., Minimal Hausdorff distance, Average Hausdorff distance,
k-th ranked Hausdorff distance) (Herrera et al. 2016).

The qPCR2fdata() function takes a dataset containing the amplification cycles (first column) and the
fluorescence amplitudes (subsequent columns) as input. Noise and missing values may affect the analysis
adversely. Therefore, an instance of the CPP() function (chipPCR package (Rödiger, Burdukiewicz, and
Schierack 2015)) was integrated in qPCR2fdata(). If preprocess=TRUE in qPCR2fdata(), then all curves
are smoothed (Savitzky-Golay smoother), missing values are imputated and outliers in the ground phase
get removed as described in Rödiger, Burdukiewicz, and Schierack (2015). The non-smoothed amplification
curves (Figure 8A) have slightly more noise than the smoothed amplification curves (Figure 8C).

25

ru
ns

qP
CRm

od
el

ch
an

ge
po

int
_e

.a
gg

lo

ch
an

ge
po

int
_b

cp

am
pt

es
te

r_
sh

ap
iro

am
pt

es
te

r_
lrt

am
pt

es
te

r_
rg

t

am
pt

es
te

r_
th

t

am
pt

es
te

r_
slt

ef
f
cp

D1
cp

D2
flu

o
ini

t2to
p
f.to

p
sli

win

cp
Ddif

f

slo
pe

_b
g

int
er

ce
pt

_b
g

po
lya

re
a

am
pt

es
te

r_
po

lyg
on

am
pt

es
te

r_
slo

pe
.ra

tio

m
inR

FU

m
ax

RFU

bg
.st

op

am
p.s

to
p

he
ad

2t
ail

_r
at

io

au
to

co
re

lla
tio

n

m
blr

r_
int

er
ce

pt
_b

g

m
blr

r_
slo

pe
_b

g

m
blr

r_
co

r_
bg

m
blr

r_
int

er
ce

pt
_p

t

m
blr

r_
slo

pe
_p

t

m
blr

r_
co

r_
pt

ho
ok

re
g_

ho
ok

pe
ak

s_
ra

tio

log
lin

_s
lop

e

cp
D2_

ra
ng

e

1

2

3

4

O
bs

er
va

tio
ns

Type

factor

integer

logical

numeric

NA

Figure 7: Application of visdat_pcrfit() for the visualization of the data structure after an analysis by
pcrfit_single(). The amplification curves (A01 = 1, A02 = 2, A04 = 3, B04 = 4) from the C126EG685 dataset
were analyzed with the pcrfit_single() function and then visualized with the visdat_pcrfit() function. For
each observation, the classes (factor, integer, logical, numeric, NA) are presented. For the observations 2 and 4
the parameter loglin_slope could not be calculated (returned NA).

26

The following example illustrates the usage for the testdat dataset. Hierarchical cluster analysis is widely
applied in data analysis. This method uses the elements of a proximity matrix to generate a dendrogram.
The dendrogram can can be used to further analyze the clusters. Although there are methods to determine
the number of clusters k in the present workflow the number of clusters was determined visually (Cook
and Swayne 2007).

Since the distance based on the Hausdorff metric was already done the next steps involved the cutree()
function from the stats package to split the dendrogram into smaller junks. A priori was defined that
two classes (positive & negative) are expected. Therefore, the group parameter was set to k=2 in the
cutree().
Calculate the Hausdorff distance of the amplification curves
cluster the curves.
Load additional packages for data and pipes.
options(warn = -1)
library(qpcR)
library(chipPCR)
suppressMessages(library(fda.usc))
library(magrittr)

Convert the qPCR dataset to the fdata format
Use unprocessed data from the testdat dataset
res_fdata <- qPCR2fdata(testdat)

Extract column names and create rainbow color to label the data
columnames <- testdat[-1] %>% colnames()
data_colors <- rainbow(length(columnames), alpha = 0.5)

Calculate the Hausdorff distance (fda.usc) package and plot the distances
as clustered data.

res_fdata_hclust <- metric.hausdorff(res_fdata)
res_hclust <- hclust(as.dist(res_fdata_hclust))

Cluster of the unprocessed amplification curves
res_cutree <- cutree(res_hclust, k = 2)
res_cutree <- factor(res_cutree)
levels(res_cutree) <- list(y = "1", n = "2")

The results of the cluster analysis led two large clusters. A deeper inspection shows that the observations
are correctly assigned to a cluster of positive or negative amplification curves. Moreover, the later increase
of the fluorescence is reflected in the positive cluster (Figure 8).
Plot the converted qPCR data
par(mfrow = c(1, 2))
res_fdata %>% plot(

., xlab = "Cycle", ylab = "RFU", main = "", type = "l",
lty = 1, lwd = 2, col = data_colors

)
legend(

"topleft", paste0(as.character(columnames), ": ", res_cutree),
pch = 19, col = data_colors, bty = "n", ncol = 2, cex = 0.7

)
mtext("A", cex = 1.2, side = 3, adj = 0, font = 2)

plot(res_hclust, main = "", xlab = "", sub="")
mtext("B", cex = 1.2, side = 3, adj = 0, font = 2)
rect(0.5, -3.5, 12.25, 0.5, border = "red")
text(7, 1, "negative", col = "red")
rect(12.5, -3.5, 24.5, 0.5, border = "green")

27

0 10 20 30 40 50

0
2

4
6

8
10

12

Cycle

R
F

U

F1.1: y
F1.2: y
F1.3: n
F1.4: n
F2.1: y
F2.2: y
F2.3: n
F2.4: n
F3.1: y
F3.2: y
F3.3: n
F3.4: n

F4.1: y
F4.2: y
F4.3: n
F4.4: n
F5.1: y
F5.2: y
F5.3: n
F5.4: n
F6.1: y
F6.2: y
F6.3: n
F6.4: n

A

F
3.

4
F

4.
3

F
5.

3
F

1.
3

F
2.

3
F

1.
4

F
6.

3
F

3.
3

F
4.

4
F

2.
4

F
5.

4
F

6.
4

F
1.

1
F

1.
2

F
3.

1
F

3.
2

F
2.

1
F

2.
2

F
6.

1
F

6.
2

F
5.

1
F

5.
2

F
4.

1
F

4.
2

0
2

4
6

8
12

H
ei

gh
t

B

negative positive

Figure 8: Shape based grouping of amplification curves. Grouping of amplification curves of the testdat
dataset via Hausdorff distance. A) The amplification curves were converted with the qPCR2fdata() function. B)
Subsequent they were processed by a cluster analysis using the Hausdorff distance. Faultless differentiation was
achieved between negative amplification curves (n) and positive amplification curves (y).

text(14, 1, "positive", col = "green", cex = 0.9)

Clusters of the amplification curves after an analysis using the Hausdorff distance. The amplification
curves of the testdat dataset remained as raw data or were pre-processed (smoothed). Subsequent,
the amplification curves were converted by the qPCR2fdata(). The converted data were subjected to a
cluster analysis (Hausdorff distance). All observations were correctly assigned to cluster 1 (positive) or
cluster 2 (negative).

This workflow can be used to cluster amplification curve data according to their shape into smaller groups
of similar amplification curves. Classification tasks can be preformed in batches of amplification curves.
It is worth to mention that the calculation of the distances is a computing expensive step dependent on
the number of amplification curves. Other distance metric than the Hausdorff distance should also be
considered. For example, Luo, Lin, and Chao (2010) showed how for image data how shape models using
local curve segments with multiple types of distance metrics can improve the shape classification and
detection results.

The following example illustrates the usage for the HCU32_aggR.csv dataset from the 32 channel VideoScan
heating and cooling unit. In this experiment the bacterial gene aggR from E. coli was amplified in 32
replicate qPCR reactions. Details of the experiment are described in the manual of the PCRedux package.
The ambition was to test if the 32 amplification curves of the qPCR reaction are identical. As before,
the data were processed with the qPCR2fdata() function and compared by the the Hausdorff distance.
Ideally, the amplification curves form only few clusters.
Calculate slope and intercept on positive amplification curve data from the
VideoScan 32 cavity real-time PCR device.
Load additional packages for data and pipes.
options(warn = -1)
library(data.table)
library(fda.usc)
library(magrittr)

Load the qPCR data from the HCU32_aggR.csv dataset
Convert the qPCR dataset to the fdata format

28

filename <- system.file("HCU32_aggR.csv", package = "PCRedux")
data_32HCU <- fread(filename, data.table = FALSE)

res_fdata <- qPCR2fdata(data_32HCU)
Extract column names and create rainbow color to label the data
columnames <- data_32HCU[-1] %>% colnames()
data_colors <- rainbow(length(columnames), alpha = 0.55)

In advance the the Cq values were calculated by the following code:
Load the qpcR package to calculate the Cq values by the second derivative
maximum method.
options(warn = -1)
library(qpcR)

res_Cq <- sapply(2L:ncol(data_32HCU), function(i) {
efficiency(pcrfit(data_32HCU, cyc = 1, fluo = i, model = l6))

})

data.frame(
obs = colnames(data_32HCU)[-1],

Cq = unlist(res_Cq["cpD2",]), eff = unlist(res_Cq["eff",])
)

Results
#
obs Cq eff
1 A1 14.89 1.092963
2 B1 15.68 1.110480
3 C1 15.63 1.111474
...
30 F4 15.71 1.109634
31 G4 15.70 1.110373
32 H4 15.73 1.117827

Next, the amplification curves (Figure 9A), the differences between baseline region and plateau region
(Figure 9B), the correlation between the Cq value and amplification efficiency (Figure 9C) and the clusters
based on the Hausdorff distance (Figure 9 were taken into account. In total, 32 real-time PCR reactions
for the bacterial gen aggR were measured in the VideoScan system.

Note: The raw data has not been modified to retain all characteristics of the amplification
curves.

Some amplification curves (Figure 9A) showed stronger fluctuations and therefore no ideal sigmoid curve
progression. In addition, it can be seen that the amplification curves in the baseline area have a negative
non-linear trend and a shift around the zero point. By contrast, the trend in the plateau region appears
to be positive. This is similar to the curve shown in Figure 1. The comparison of the baseline region
and the plateau region showed a difference between the 32 amplification curves. The observations E1,
F1 and H1 had the lowest differences between the baseline and plateau regions. The comparison of Cq
values and amplification efficiency showed that most amplification curves exhibit similar behavior. Since
there are 32 replicates, the similarity of the Cq values and amplification efficiencies was to be expected.
However, there are also amplification curves that show a greater deviation from the median of all Cq
values (Figure 9C). The analysis by clustering of the Hausdorff distance did not yield any specific pattern
(Figure 9D).
library(fda.usc)
library(magrittr)

To save computing time, the Cq values and amplification efficiencies were
calculated beforehand and transferred as a hard copy here.

29

calculated_Cqs <- c(
14.89, 15.68, 15.63, 15.5, 15.54, 15.37, 15.78, 15.24, 15.94,
15.88, 15.91, 15.77, 15.78, 15.74, 15.84, 15.78, 15.64, 15.61,
15.66, 15.63, 15.77, 15.71, 15.7, 15.79, 15.8, 15.72, 15.7, 15.82,
15.62, 15.71, 15.7, 15.73

)

calculated_effs <- c(
1.09296326515231, 1.11047987547324, 1.11147389307153, 1.10308929700635,
1.10012176315852, 1.09136717687619, 1.11871308210321, 1.08006168654712,
1.09500422011318, 1.1078777171126, 1.11269436700649, 1.10628580163733,
1.1082009954558, 1.11069683827291, 1.11074914659374, 1.10722949813473,
1.10754282514113, 1.10098387264025, 1.1107026749644, 1.11599641663658,
1.11388510347017, 1.11398547396991, 1.09410798249025, 1.12422338092929,
1.11977386646464, 1.11212436173214, 1.12145338871426, 1.12180879952503,
1.1080276005651, 1.10963449004393, 1.11037302758388, 1.11782689816295

)

Plot the converted qPCR data
layout(matrix(c(1, 2, 3, 4, 4, 4), 2, 3, byrow = TRUE))
res_fdata %>% plot(

., xlab = "Cycle", ylab = "RFU", main = "HCU32_aggR", type = "l",
lty = 1, lwd = 2, col = data_colors

)
legend(

"topleft", as.character(columnames), pch = 19,
col = data_colors, bty = "n", ncol = 4

)
mtext("A", cex = 1.2, side = 3, adj = 0, font = 2)

Plot the background and plateau phase.

boxplot(
data_32HCU[, -1] - apply(data_32HCU[, -1], 2, min),

col = data_colors, las = 2, main = "Signal to noise ratio",
xlab = "Sample", ylab = "RFU"

)
mtext("B", cex = 1.2, side = 3, adj = 0, font = 2)

Plot the Cqs and the amplification efficiencies.
Determine the median of the Cq values and label all Cqs, which a less 0.1 Cqs
of the median or more then 0.1 Cqs of the median Cq.

plot(
calculated_Cqs, calculated_effs, xlab = "Cq (SDM)",
ylab = "eff", main = "Cq vs. Amplification Efficiency",
type = "p", pch = 19, lty = 1, lwd = 2, col = data_colors

)

median_Cq <- median(calculated_Cqs)
abline(v = median_Cq)

text(median_Cq + 0.01, 1.085, expression(paste(tilde(x))))
labeled <- c(

which(calculated_Cqs < median_Cq - 0.1),
which(calculated_Cqs > median_Cq + 0.1)

)

30

text(
calculated_Cqs[labeled], calculated_effs[labeled],
as.character(columnames)[labeled]

)
mtext("C", cex = 1.2, side = 3, adj = 0, font = 2)

Calculate the Hausdorff distance using the fda.usc package and cluster the
the distances.

res_fdata_hclust <- metric.hausdorff(res_fdata)
cluster <- hclust(as.dist(res_fdata_hclust))

plot the distances as clustered data and label the leafs with the Cq values
and colored dots.

plot(cluster, main = "Clusters of the amplification\n
curves as calculated by the Hausdorff distance", xlab = "", sub="")
mtext("D", cex = 1.2, side = 3, adj = 0, font = 2)

The analysis gives an overview of the variation of the amplification curve data.

31

0 10 20 30 40

0.
5

1.
0

1.
5

2.
0

2.
5

HCU32_aggR

Cycle

R
F

U

A1
B1
C1
D1
E1
F1
G1
H1

A2
B2
C2
D2
E2
F2
G2
H2

A3
B3
C3
D3
E3
F3
G3
H3

A4
B4
C4
D4
E4
F4
G4
H4

A

A
1

B
1

C
1

D
1

E
1

F
1

G
1

H
1

A
2

B
2

C
2

D
2

E
2

F
2

G
2

H
2

A
3

B
3

C
3

D
3

E
3

F
3

G
3

H
3

A
4

B
4

C
4

D
4

E
4

F
4

G
4

H
4

0.0

0.5

1.0

1.5

2.0

Signal to noise ratio

Sample

R
F

U

B

15.0 15.2 15.4 15.6 15.8

1.
08

1.
09

1.
10

1.
11

1.
12

Cq vs. Amplification Efficiency

Cq (SDM)

ef
f

x~

A1

D1

E1

F1

H1

B3

A2

B2

C2
G2

D4

C

A
1

D
4

A
2

A
3

C
3

D
3 D

2

H
4

F
4

G
4

B
4

E
4 B
2

F
2 A
4

E
2

G
2

H
2 B

1

C
2

B
3 C

4

C
1

H
3

G
1

E
3 D

1

F
3 F

1

G
3

E
1

H
1

0.
0

0.
2

0.
4

0.
6

Clusters of the amplification

curves as calculated by the Hausdorff distance

H
ei

gh
t

D

Figure 9: Clustering of amplification curves. The amplification curves from the 32HCU were processed with
the qPCR2fdata() function and subsequent processed by a cluster analysis and Hausdorff distance analysis. A)
Amplification curves were plotted from the raw data. B) Overall, the signal to noise ratios of the amplification
curves were comparable between all cavities. C) The Cqs (Second Derivative Maximum) and the amplification
efficiency (eff) were calculated with the efficiency(pcrfit()) functions from the qpcR package. The median
Cq is indicated as vertical line. Cqs larger or less than 0.1 of the Cq x̃ are indicated with the labels of the
corresponding observation. D) The clusters according to the Hausdorff distance show no specific pattern regarding
the amplification curve signals. It appears that the observations D1, E1, F1, F3, G3 and H1 deviate most from
the other amplification curves.

32

0.4.2 Amplification Curve Analysis Functions of the PCRedux package

There are a number of ROIs (see Figure 2) in an amplification curve that are potentially useful for
calculating characteristics for the classification of amplification curves. Amplification curves can have
unique shapes and deviate from the ideal sigmoid models (compare Figure 1A and Figure 1B) of qPCRs.
For instance, some amplification curves are only flat or have a rise with positive or negative signs without
sigmoid curvature. In the case of sigmoid amplification curves, there are turning points which can be
characteristic for positive amplification curves. Such differences are interesting candidates to calculate
features for machine learning.

On the basis of this observation, various concepts were developed and implemented in algorithms to
describe amplification curves. The intent of Gunay, Goceri, and Balasubramaniyan (2016) was to improve
the determination of the Cq values. They postulated that they can achieve an improved prediction of Cq
values using a modified sigmoid function (three parameters). An assumption of their approach is, that
this model can be applied to any dataset. There are several reasons why such an assumption is not valid.
In the chapters paragraph 0.4.2.7, for example, the functions hookreg() and hookregNL() are briefly
displayed. These amplification curves deviate significantly from a three-parameter model. Figure 11
shows the distribution of models fitted to amplification curves. In most case models with six and seven
parameters were automatically selected. In addition, non-linear functions also tend to fit models to noise
(Figure 10). It becomes clear in Figure 12 that for a considerable proportion of manually negatively
classified amplification curves a Cq value could be calculated. A computer-assisted decision would be
helpful.
Load the qpcR package for the model fit.
suppressMessages(library(qpcR))
library(chipPCR)

Select one positive and one negative amplification curve from the PCRedux
package.

amp_data <- RAS002[, c("cyc", "A01_gDNA.._unkn_B.Globin", "B07_gDNA.._unkn_HPRT1")]

Arrange graphs in an matrix and set the plot parameters. An plot the positive
and negative amplification curve.

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE), respect = TRUE)

matplot(amp_data[,1], amp_data[, -1], pch = 19, lty = 1, type = "l",
xlab = "Cycle", ylab = "RFU", main = "")

mtext("A", cex = 1.2, side = 3, adj = 0, font = 2)

Apply the the amptester function from the chipPCR package to the amplification
curve data and write the results to the main of the plots.

for (i in 2:3) {
res.ampt <- suppressMessages(amptester(amp_data[, i]))

Make a logical connection by two tests (shap.noisy, lrt.test and
tht.dec) of amptester to decide if an amplification reaction is
positive or negative.
decision <- ifelse(!res.ampt@decisions[1] &&
res.ampt@decisions[2] &&
res.ampt@decisions[4],
"positive", "negative"
)
The amplification curves were fitted (l7 model) with pcrfit() function. The
Cq was determined with the efficiency() function.

fit <- pcrfit(data = amp_data, cyc = 1, fluo = i, model = l7)

33

res <- efficiency(fit, plot = FALSE)
plot(fit, pch = 19, lty = 1, type = "single", xlab = "Cycle", ylab = "RFU",

main = "", col = i - 1)
abline(h = res[["fluo"]], v = res[["cpD2"]], col = c("grey", "red"))
points(res[["cpD2"]], res[["fluo"]], pch = 19)

mtext(paste0(LETTERS[i], " Cq: ", res[["cpD2"]]), cex = 1.2, side = 3,
adj = 0, font = 2)

legend(
"topleft", paste0(colnames(amp_data)[i], "\nDecision: ", decision),

bty = "n", cex = 1, col = "red"
)

}

Therefore, several characteristics of an amplification curve should be recorded first and then checked for
their usefulness. There, it becomes clear that a three-parameter model adaptation can be adapted to
noise and thus provides unreliable predictions.

As shown in Figure 4 have positive amplification curves a typical sigmoid shape, while negative curves
resemble random noise.

Many properties (e. g., experiment condition (hydrolysis probe, DNA binding dye)) can be converted to
binary classifiers (no == 0, yes == 1). From the amplification curve one can calculate the signal range
before and after the amplification process.

Next follows a brief introduction of the feature engineering process of this work. For doing this a set
features which characterize amplification curves was needed. In total seven function were generated and
integrated in PCRedux package. These functions features have not been described before in the literature
for the classification of amplification curves.

The function described following are aimed for experimental studies. It is important to note that the
features proposed herein emerged during a critical reasoning process. The aim of the package is to propose
a set of features, functions and data for an independent research.

0.4.2.1 pcrfit_single() - A Function to Calculate Features from an Amplification Curve

The following chapter includes on exemplary applications of feature vectors from amplification curves,
which can be used for automatic classification by machine learning. The focus is mainly on, the concise
description of the algorithms of the pcrfit_single() function. The underlying hypotheses are formulated
and supported by exemplary analysis.

Some algorithms have been implemented as standalone functions (e. g., earlyreg()) to make them
available for other applications. The goal is not to examine the limits of their applicability, but
rather to prove their basic functionality. Based on considerations and experience the algorithms of the
pcrfit_single() function are restricted to ROIs (Figure 2) in order to calculate specific features. In
order to bring a systematic into the algorithms, the functions with similar approaches are summarized
in groups. Due to the number of algorithms, it is not possible to provide a detailed description with
examples in every place.

The following output shows all features and their data type (num, numeric; int, integer; Factor, factor;
logi, boolean) which are determined from the second amplification curve of the RAS002 dataset with the
pcrfit_single() function.
library(PCRedux)
str(pcrfit_single(RAS002[, 2]))

N:36, idsize:36, idval1:1, idval22:22
mm: 1, nn2: 36, N:36, cumksize.size: 36
'data.frame': 1 obs. of 48 variables:
$ cpD1 : num 28.1

34

0 10 20 30 40

25
00

30
00

35
00

40
00

Cycle

R
F

U

A

0 10 20 30 40

2400

2600

2800

3000

3200

3400

Cycles

R
aw

 fl
uo

re
sc

en
ce

B Cq: 25.95
A01_gDNA.._unkn_B.Globin
Decision: positive

0 10 20 30 40

4050

4100

4150

4200

4250

4300

Cycles

R
aw

 fl
uo

re
sc

en
ce

C Cq: 9.41
B07_gDNA.._unkn_HPRT1
Decision: negative

Figure 10: Positive and negative Amplification curves from the RAS002 dataset. A positive amplification curve
(black) and a negative amplification curve (red) were selected from the RAS002 dataset. The positive amplification
curve has a baseline signal of approximately 2500 RFU and shows an unambiguous sigmoidal shape. The negative
amplification curve has a baseline signal of approximately 4200 RFU, shows moderately positive slope and has no
sigmoidal shape. B) A logistical function with seven parameters (l7) was adapted to the positive amplification
curve. A Cq value of 25.95 was determined using the method of the maximum of the second derivative. The
calculated Cq value appears to be correct. C) The negative amplification curve was also fitted with a seven
parameter logistical function (l7). The second derivation method was used to determine the Cq value. Though a
Cq value of 9.41 was calculated, it is clear that the model adaptation is not appropriate to calculate a trustworthy
Cq value. If such a calculation would be done automatically, without human interaction, a false-positive result
could be interpreted.

35

$ cpD2 : num 25.9
$ eff : num 1.02
$ sliwin : num 1.04
$ cpDdiff : num 2.19
$ loglin_slope : num 0.0343
$ cpD2_range : num 4.48
$ top : num 25
$ f.top : num 0.748
$ tdp : num 35
$ f.tdp : num 1.65
$ bg.stop : num 15
$ amp.stop : num 40
$ b_slope : num -13.6
$ f_intercept : num 3.17
$ convInfo_iteratons : int 14
$ qPCRmodel : Factor w/ 1 level "l7": 1
$ qPCRmodelRF : Factor w/ 1 level "l7": 1
$ minRFU : num 0.682
$ maxRFU : num 1
$ init2 : num 0.419
$ fluo : num 0.765
$ slope_bg : num 0.00658
$ intercept_bg : num 0.675
$ sd_bg : num 0.0939
$ head2tail_ratio : num 0.704
$ mblrr_slope_pt : num 0.00586
$ mblrr_intercept_bg : num 0.693
$ mblrr_slope_bg : num 0.00202
$ mblrr_cor_bg : num 0.91
$ mblrr_intercept_pt : num 0.774
$ mblrr_cor_pt : num 0.942
$ polyarea : num 0.0409
$ peaks_ratio : num 0.0117
$ autocorellation : num 0.765
$ changepoint_e.agglo : int 2
$ changepoint_bcp : int 10
$ amptester_shapiro : logi FALSE
$ amptester_lrt : logi TRUE
$ amptester_rgt : logi TRUE
$ amptester_tht : logi TRUE
$ amptester_slt : logi TRUE
$ amptester_polygon : num 1.55
$ amptester_slope.ratio: num 0
$ hookreg_hook : num 0
$ hookreg_hook_slope : num 0
$ hookreg_hook_delta : num 0
$ number_of_cycles : int 40

To underscore the usability of the algorithms and their features, 3302 observations (471 negative ampli-
fication curves, 2831 positive amplification curves) from the batsch1, boggy, C126EG595, competimer,
dil4reps94, guescini1, karlen1, lievens1, reps384, rutledge, testdat, vermeulen1, VIMCFX96_60,
stepone_std, RAS002, RAS003, HCU32_aggR and lc96_bACTXY were analyzed with the encu() function
and the results (features) were combined in the file data_sample.rda. The algorithms are divided into
the following broad categories:

• algorithms that determine increases, signal levels,
• algorithms that determine turning points and
• algorithms that determine areas.

Users of this function should independently verify and validate the results of the methods for their applica-

36

tions. The encu() function is based on the pcrfit_single() function. Contrary to the pcrfit_single()
function, the encu() function can be used to process large records of amplification curve data arranged in
columns. The progress of processing is displayed in the form of a progress bar and the estimated run-time.
The encu() function is not discussed in more detail. Additionally, the encu() allows to specify which
monitoring chemistry (e. g., DNA binding dye, sequence specific probes) and which thermo-cycler was
used. Such information may well be relevant for data analysis (subsubsection 0.1.3). Jan M. Ruijter et
al. (2014) have shown, among other things, that monitoring chemistry of the type of input DNA (single
stranded, double stranded) can be important when analysing qPCR data.

Amplification Curve Pre-processing

The pcrfit_single() function and the encu() function perform two pre-processing steps before each
calculation. That includes checking whether an amplification curve contains missing values. Missing
values (NA) are measuring points in a dataset where no measured values are available or if they have
been removed arbitrarily. Causes of this can be found, for example, in case that no measurement has
been carried out (e. g., defective detector) or lengths of the vectors differ (number of cyles) between the
observation. Missing values are automatically imputed by spline interpolation as described in Rödiger,
Burdukiewicz, and Schierack (2015). The pcrfit_single() function and the encu() function will only
terminate with an error message in extreme cases. In the next step, all values of an amplification curve are
normalized to the 99% quantile. The normalization is necessary, because the amplitudes of amplification
curves depend on the used detection chemistry and thermo-cycler (sensor technology, software processing).
As a result considerable differences between the maximum values of raw data are the norm. Users of
the PCRedux package are advised to take a look at the datasets of amplification curves before starting
complex analyses. In order to compare amplification curves from different thermo-cyclers, the values
should always be scaled systematically using the same method. Although there are other normalization
methods (e. g., minimum-maximum normalization, see Rödiger, Burdukiewicz, and Schierack (2015)), the
normalization by means of the 99% quantile should ensure that the information about the height of the
background signal is not lost. That would be the case with a Min-Max-standardization. A normalization
to the maximum is not recommended, because outliers could have an unintentional influence on the
normalization. Consequently, the 99% quantile is a pragmatic compromise to take the aforementioned
aspects into account in the processing chain. For example, the data in Figure 17D show that the maxRFU
values after normalization are approximately 1. There is no statistical significant difference between
maxRFU values of positive and negative amplification curves. Inspired by maxRFU value, the minimum
of the amplification curve is determined by the 1% quantile to minimize the influence of outliers. It is
referred to as minRFU (Figure 17C). Selected algorithms of the pcrfit_single() function use the CPP()
function from the chipPCR package to pre-process (e. g., baselining, smoothing, imputation of missing
values) the amplification curves. Further details are given in Rödiger, Burdukiewicz, and Schierack (2015).

Handling of Missing Features

Missing values (NA) of features can occur in case that a calculation of a specified value is not possible. It
can occur, for example, if a logistical function is to be adapted to a measurement series, but the raw data
is too noisy to allow model adaptation. As a consequence, no parameters would be determined from this
model. The apparent lack of information is nevertheless still useful in the context of data analysis. For
the case described above, it could be deduced from the missing values that the data series does not show
a sigmoid curve progression. In this regard, NAs nonetheless provide an informational basis.

However, NAs pose a difficulty in many analyses. Before an analysis is carried out, it must be clarified
how to deal with the missing values. Under the term “imputation” there are a number of procedures
based on statistical methods (e. g., neighboring median, spline interpolation) or on user-defined rules.
Such a rule could, for example, consist of setting one of the slope parameters of a model to zero when
it cannot be determined (Williams 2009, Cook and Swayne (2007), Hothorn and Everitt (2014)). The
application of fixed rules brings the advantage that the user is relieved of the decision as to how to deal
with missing values. The disadvantage is that certain rules do not necessarily have to reflect a natural
process.

The NAs were left unchanged in the PCRedux package up to version 0.2.5-1. Since version 0.2.6, however,

37

the NAs have been replaced by numerical values (e. g., total number of cycles) or factors (e. g., lNA for
non-fitted model).

0.4.2.2 Model Selection

In subsubsection 0.1.3, it was postulated that a sigmoid curve can be fitted using logistic functions. There
are four3 functions used in the PCRedux package, that were previously descried by Spiess, Feig, and Ritz
(2008) and Ritz and Spiess (2008). This model is used as the starting point for to fit a model with four
(l4, Equation 1), five (l5, Equation 2) or six parameters (l6, Equation 3). The optimal model is selected
on the basis of the Akaike information criterion. This model is used for all further calculations. The
pcrfit_single() function returns qPCRmodel as a factor (l4, l5, l6, l7). The model found can also be
interpreted as the quality of an amplification curve, since a model with many parameters differs more
from an ideal sigmoid model. For instance, a four-parameter model, unlike the seven-parameter model,
does not have a square component. The four-parameter model would be suitable for amplification curves
with a very slight increase in the ground phase and plateau phase. This would correspond to a simple
sigmoid amplification curve. In case no model could be fitted, an lNA is returned.

• l4:

f(x) = c+ d− c
1 + exp(b(log(x)− log(e))) (1)

• l5:

f(x) = c+ d− c
(1 + exp(b(log(x)− log(e))))f (2)

• l6:

f(x) = c+ k · x+ d− c
(1 + exp(b(log(x)− log(e))))f (3)

• l7:

f(x) = c+ k1 · x+ k2 · x2 + d− c
(1 + exp(b(log(x)− log(e))))f (4)

The pcrfit_single() function starts by adjusting a seven-parameter model. As a matter of fact, models
with many parameters adapt adapt easier to an dataset. From that model, the pcrfit_single()
function outputs the variables b_slope and f_intercept, which describe the increase and the intercept.
The number of iterations required to adapt the model is also stored. That value is returned by the
pcrfit_single() function as convInfo_iteratons. The higher the convInfo_iteratons value, the
more iterations were necessary to converge from the start parameters (Figure 14D). Hence, a low
convInfo_iteratons value implies a sigmoid curve and a high number of iterations implies a noisy or
non-sigmoid curve.

0.4.2.3 Quantification Points, Ratios and Slopes

In the literature, statistical methods are described which can be used to describe quantitatively the
product formation in a qPCR (Rödiger, Burdukiewicz, and Schierack 2015, Jan M. Ruijter et al. (2013)).
As illustrated in Figure 3 are these the Ct value, the the first derivative maximum (cpD1) and the
second derivative maximum (cpD2). The pcrfit_single() function calculates the cpD1 and cpD2
(Figure 12). Both quantification points are not directly useful to distinguish between a positive and
negative amplification curve. However, low cpD1 and cpD2 values (< 5 cycles) indicate that the PCR
reaction was negative or that the amount of input DNA was to high. The Ct value is not calculate for the
reasons discussed in subsubsection 0.1.4. No further information shall be provided about these typical
procedures.

3Up to PCRedux package version 0.2.5-1 more models were calculated. But to increase the speed they were excluded in
newer package versions.

38

lNA l4 l5 l6 l7

Model

P
er

ce
nt

ag
e

0
20

40
60 Negative

Positive

A Normal

lNA l4 l5 l6 l7

Model
P

er
ce

nt
ag

e

0
20

40
60 Negative

Positive

B Rotated and Flipped

Figure 11: Distribution of models of amplification curves. The competimer, dil4reps94, guescini1, HCU32_aggR,
karlen1, lc96_bACTXY, lievens1, RAS002, RAS003, reps384, rutledge, stepone_std, testdat, vermeulen1,
VIMCFX96_60 datasets were analyzed with the encu() function. For each amplification curve, the optimal
model was selected on the basis of the Akaike information criterion. A) Model functions of the raw amplification
curve. B) Model functions of the rotated and flipped amplification curves. lNA, no model fitted. l4 . . . l7, model
with four to seven parameters.

Further features from the pcrfit_single() function are:

• eff is the optimized PCR efficiency found within a sliding window (Figure 3C). A linear model of
cycles versus log(Fluorescence) is fit within a sliding window (for details see sliwin() function from
the qpcR package). The comparison of positive and negative amplification curves in Figure 14A
demonstrates that the classes are significantly different from each other.

• sliwin is the PCR efficiency by the ‘window-of-linearity’ method (Spiess, Feig, and Ritz 2008).
• cpDdiff is the the difference between the Cq values calculated from the first and the second

derivative maximum (cpDdiff = |cpD1− cpD2|) from the fitted model (Figure 3C). Provided that
a model can be exactly fitted, the estimates of the difference are reliable. Higher cpDdiff values
indicate a negative amplification reaction or a very low amplification efficiency. The comparison
of positive and negative amplification curves in Figure 14C demonstrates that the classes are
significantly different from each other. In the event that the cpDdiff value cannot be determined
(NA), it is replaced by zero.

• cpD2_range is the absolute value of the difference between the minimum and the maximum of
the second derivative maximum (cpD2_range = |min cpD2 − max cpD2|) from the diffQ2()
function (no model fitted) (Figure 13). The cpD2_range value does not require an adjustment of
a multiparametric model. The approximate first and second derivatives are determined using a
five-point stencil (Rödiger, Burdukiewicz, and Schierack 2015). The comparison of positive and
negative amplification curves in Figure 14E shows that the classes differ significantly from each
other. In the event that the cpD2_range value cannot be determined (NA), it is replaced by zero.

• bg.stop (Figure 13) is the end of the ground phase estimated by the bg.max() function (Rödiger,
Burdukiewicz, and Schierack 2015).

• amp.stop (Figure 13) is the end of the exponential phase estimated by the bg.max() function
(Rödiger, Burdukiewicz, and Schierack 2015).

Another method is the takeoff point (top) according to Tichopad et al. (2003). The top is calculated
using externally studentized residuals, which tested to be an outlier in terms of the t-distribution. The top
signifies to first PCR cycle entering the exponential phase. The takedown point (tdp) is an implementation
in the pcrfit_single() function, which uses the rotated f(x) 7→ f1(f(x)) and flipped g(x) = −(x)

39

y n

0
10

20
30

40
50

cp
D

1

y n

0
10

20
30

40
50 P = 3.06344e−86

A cpD1

y n

0
10

20
30

40
50

cp
D

2

y n

0
10

20
30

40
50 P = 4.57604e−22

B cpD2

Figure 12: Distribution of Cq values of positive and negative amplification curves. All Cq values were calculated
from 3302 amplification curves after fitting the optimal multi-parametric models. The Cqs of positive amplification
curves heaped up in the range between 10 and 35 PCR cycles. This differs from the distribution of negative
amplification curves. The Cqs of negative amplification curves were calculate over the entire range. Note: The
Cqs of the negative amplification curves are false positive. A) The maximum of the first derivative cpD1. B) The
maximum of the second derivative (cpD2).

40

0 10 20 30 40

0.
0

0.
4

0.
8

Cycle

R
F

U cpD2
 26.1

cpD1
 28.25

cpD2m
 30.02

cpD2_range
 3.92

Amplification curve
First derivative
Second derivative

bg
.s

to
p

am
p.

st
op

Figure 13: Both the minimum (cpD2m) and the maximum (cpD2) of the second derivative were determined
numerically using the diffQ2() function. In addition, the function returns the maximum of the first derivative
(cpD1). The difference of cpD2 and cpD2m results in the cpD2_range. Large cpD2_range values indicate a low
amplification efficiency or negative amplification reaction. bg.start provides an estimate for the end of the
ground phase. The following formula is used for the calculation: bg.start = cpD1− f ∗ (cpD2m− cpD2). The
distance between cpD1 and cpD2 is multiplied by a factor. bg.stop provides an estimate for the end of the
exponential phase. The following formula is used for the calculation: bg.start = cpD1 + f ∗ (cpD2m− cpD2). f
is a factor (default 0.6) (see manual of bg.max() for details).

41

amplification curve for calculation Figure 2A describes the location of top and tdp exemplarily. The
position (f.top, f.tdp) on the ordinate is also determined from these points. If an amplification curve
is negative or neither top nor tdp can be calculated, then top & tdp will be assigned the number of
cycles and f.top & f.tdp the value 1. The distribution of top, tdp, f.top and f.tdp is shown in
Figure 14I-L. This figure shows that a top value and a tdp value enable a qualitative classification of the
amplification reaction. An interesting aspect is that the positive f.top values are markedly lower than
the negative f.top values (Figure 14J). The same applies inversely to the tdp values (Figure 14L). In
this way, amplification curves can be classified according to these values.

In Figure 2 it was postulated that an amplification curve can be divided into different regions. One
assumption is that the slope and intercept of positive amplification curves are markedly different in head
(ground phase) and tail (plateau phase). The intercept in the head should be lower than in the tail. In
a negative amplification curve, the intercept should be nearly identical. The slope in the tail should
also provide some indication to determine whether the amplification reaction is completed. In order to
quantify these values, a linear regression model can be used in these ROIs.

An example is given for the internal parameter loglin_slope which is calculated from the slope determined
by a linear model of the data points from the fluorescence at the minimum and maximum of the second
derivative (Figure 15). The coordinates of the minimum and the maximum were determined as described
in Rödiger, Böhm, and Schimke (2013). This feature uses the exponential phase as ROI. Provided that
the locations of the minimum of the second derivative and the maximum of the second derivative yield a
suitable interval. As a precaution, the algorithm checks, for example, whether the distance between the
minimum of the second derivative and the maximum of the second derivative is not more than nine PCR
cycles. Failing this, the loglin_slope value is set to zero (no slope). In the following example, the data
Figure 15.

All manufacturers of thermo-cyclers use different sensors and data processing algorithms in their systems.
Hence it can be assumed that the signal variation in the ground phase (Figure 1F) differs between the
different systems. Moreover, users make use of different detection chemistries (e. g., hydrolysis probes,
reporter dyes). However, the latter will not be discussed here. For the distinction between negative and
positive amplification curves, it should be checked whether a difference can be determined on the basis of
the standard deviation of the background fluorescence.

After analyzing all amplification curves with the pcrfit_single() function, the sd_bg feature was
analyzed. The feature sd_bg is the standard deviation from the first PCR cycle to the takeoff point
(Figure 2A). If no takeoff point can be determined from an amplification curve, the value for sd_bg is
calculated from the first to the eighth PCR cycle. The feature sd_bg in Figure 16 is broken down by
the thermo-cycler and the output of the amplification reaction (negative, positive). It can be seen that
the signal variation between the thermo-cyclers seems to be different. There is also a difference between
negative and positive amplification curves. This is also in accordance with the observations from Figure 4.

.

The aim was to predict, based on the polyarea feature, whether an amplification curve is positive or
negative. The computation of polyarea is based on the Gauss polygon area formula. The feature polyarea
has been selected to show that the area under an amplification curve can be used to distinguish positive and
negative amplification curves. The hypothesis is that positive amplification curves have a larger area than
negative amplification curves. As shown in Figure 28C, there is a statistically significant difference between
positive and negative amplification curves. Also shown are the values of another method to calculate the
area under an amplification curve. This method is called amptester_polygon. amptester_polygon4 is
part of the amptester() function from the chipPCR package (Rödiger, Burdukiewicz, and Schierack 2015).
In contrast to the implementation in the amptester() is the amptester_polygon value normalized to
the total number of cycles. It is expected that this method allows comparable predictions (Figure 28Ds).
However, this question is not to be dealt with in the following example.

The batsch1, HCU32_aggR, stepone_std, RAS002, RAS003, lc96_bACTXY datasets were used for the
calculation of the polyarea values for all amplification curves. A binomial logistic regression (aka logit
regression or logit model) was used to analyze the relationship between the polyarea value and the
decision (negative, positive). This dataset contains almost equal proportions of positive and negative

4This feature is determines from the the points in an amplification curve (like a polygon, in particular non-convex
polygons) are in a ‘clockwise‘ order. The sum over the edges result in a positive value if the amplification curve is ‘clockwise‘
and is negative if the curve is ‘counter-clockwise‘.

42

y n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

ef
f

y n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

P = 8.30416e−135

A eff

y n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

sl
iw

in

y n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

P = 5.23192e−134

B sliwin

y n

0
10

20
30

40
50

cp
D

di
ff

y n

0
10

20
30

40
50 P = 1.3754e−08

C cpDdiff

y n

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

lo
gl

in
_s

lo
pe

y n

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

P = 3.17211e−140

D loglin_slope

y n

0
20

40
60

80
10

0

cp
D

2_
ra

ng
e

y n

0
20

40
60

80
10

0

P = 1.37895e−78

E cpD2_range

y n

0
10

20
30

40

to
p

y n

0
10

20
30

40

P = 1.26367e−54

F top

y n

0.
2

0.
4

0.
6

0.
8

1.
0

f.t
op

y n

0.
2

0.
4

0.
6

0.
8

1.
0 P = 1.17883e−135

G f.top

y n

0
10

20
30

40
50

td
p

y n

0
10

20
30

40
50

P = 0.00292119

H tdp

y n

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

f.t
dp

y n

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

P = 4.66282e−106

I f.tdp

y n

5
10

15
20

25
30

bg
.s

to
p

y n

5
10

15
20

25
30

P = 9.62307e−68

J bg.stop

y n

20
30

40
50

am
p.

st
op

y n

20
30

40
50

P = 1.67113e−05

K amp.stop

y n

0
10

00
20

00
30

00
40

00
50

00

co
nv

In
fo

_i
te

ra
to

ns

y n

0
10

00
20

00
30

00
40

00
50

00 P = 2.91016e−111

L convInfo_iteratons

Figure 14: Analysis of location features. Amplification curves from the datasets stepone_std, RAS002, RAS003,
lc96_bACTXY, C126EG595 and dil4reps94 were analyzed with the encu() function. These datasets contain positive
and negative amplification curves. Furthermore, the meta dataset contains amplification curves that exhibit a hook
effect or non-sigmoid shapes, for instance. All amplification curves are manually classified. Altogether 626 positive
and 317 negative amplification curves were included in the analysis. A) eff, optimized PCR efficiency found
within a sliding window. B) sliwin, PCR efficiency by the ‘window-of-linearity’ method. C) cpDdiff, difference
between the Cq values calculated from the first and the second derivative maximum. D) loglin_slope, slope
from the cycle at the second derivative maximum to the second derivative minimum. E) cpD2_range, absolute
value of the difference between the minimum and the maximum of the second derivative maximum. F) top,
takeoff point. G) f.top, fluorescence intensity at takeoff point. H) tdp, takedown point. I) f.tdp, fluorescence
intensity at takedown point. J) bg.stop, estimated end of the ground phase. K) amp.stop, estimated end of the
exponential phase. L) convInfo_iteratons, number of iterations until convergence.

43

0 10 20 30 40

0.
70

0.
80

0.
90

1.
00

Cycle

no
rm

al
iz

ed
 R

F
U

A A01_gDNA.._unkn_B.Globin

Slope: 0.03591

0 10 20 30 40

0.
94

0.
96

0.
98

1.
00

Cycle

no
rm

al
iz

ed
 R

F
U

B H10_ntc_ntc_B.Globin

Slope: 0.000952

Figure 15: Concept of the loglin_slope feature. The algorithm determines the fluorescence values of the raw
data at the approximate positions of the maximum of the first derivative, the minimum of the second derivative
and the maximum of the second derivative, which are in the exponential phase of the amplification curve. A linear
model is created from these parameter sets and the slope is determined. A) Positive amplification curves have a
clearly positive slope. B) Negative amplification curves usually have a low, sometimes negative slope. The data
were taken from the RAS002 dataset.

44

y n

0.
0

0.
2

0.
4

Decision

S
ta

nd
ar

d
D

ev
ia

tio
n

y n

0.
0

0.
2

0.
4 P = 5.99301e−68

y (1394)
n (117)

A LC_480

y n

0.
00

0.
15

0.
30

Decision

S
ta

nd
ar

d
D

ev
ia

tio
n

y n

0.
00

0.
15

0.
30 P = 0.000800171

y (55)
n (25)

B ABI_Prism_7700

y n

0.
1

0.
3

0.
5

Decision

S
ta

nd
ar

d
D

ev
ia

tio
n

y n

0.
1

0.
3

0.
5

P = 2.65388e−05

y (27)
n (12)

C LC1.0

y n

0.
00

0.
05

0.
10

0.
15

Decision

S
ta

nd
ar

d
D

ev
ia

tio
n

y n

0.
00

0.
05

0.
10

0.
15 P = 0.0523715

y (21)
n (3)

D StepOne

y n

0.
00

0.
10

0.
20

Decision

S
ta

nd
ar

d
D

ev
ia

tio
n

y n

0.
00

0.
10

0.
20 P = 7.32305e−75

y (179)
n (301)

E CFX96

y n

0.
00

0.
10

0.
20

0.
30

Decision

S
ta

nd
ar

d
D

ev
ia

tio
n

y n

0.
00

0.
10

0.
20

0.
30

P = 5.85213e−08

y (51)
n (13)

F LC_96

Figure 16: Standard deviation in the ground phase of various qPCR devices. The sd_bg feature was used to
determine if the standard deviation between the thermo-cyclers and between positive and negative amplification
curves was different. The standard deviation was determined from the fluorescence values from the first cycle to
the takeoff point. If the takeoff point could not be determined, the standard deviation from the first cycle to the
eighth cycle was calculated. The Mann-Whitney test was used to compare the medians of the two populations (y,
positive; n, negative). The differences were significant for A) LC_480 (Roche), B) ABI_Prism_7700 (ABI), C)
LC1.0 (Roche), E) CFX96 (Bio-Rad) and F) LC96 (Roche). The difference was not significant for D) StepOne
(Thermo Fisher).

45

y n

−
30

0
−

20
0

−
10

0
0

b_
sl

op
e

y n

−
30

0
−

20
0

−
10

0
0

P = 2.24046e−51

A b_slope

y n

0
50

00
10

00
0

15
00

0
20

00
0

f_
in

te
rc

ep
t

y n

0
50

00
10

00
0

15
00

0
20

00
0

P = 0.0536185

B f_intercept

y n

0.
2

0.
4

0.
6

0.
8

1.
0

m
in

R
F

U

y n

0.
2

0.
4

0.
6

0.
8

1.
0 P = 7.31483e−135

C minRFU

y n

0.
96

0.
98

1.
00

1.
02

1.
04

m
ax

R
F

U

y n

0.
96

0.
98

1.
00

1.
02

1.
04

P = 0.552957

D maxRFU

y n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

in
it2

y n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P = 6.48883e−133

E init2

y n

0.
2

0.
4

0.
6

0.
8

1.
0

flu
o

y n

0.
2

0.
4

0.
6

0.
8

1.
0

P = 1.53896e−133

F fluo

y n

−
0.

02
0

−
0.

01
0

0.
00

0
0.

00
5

0.
01

0

sl
op

e_
bg

y n

−
0.

02
0

−
0.

01
0

0.
00

0
0.

00
5

0.
01

0 P = 1.29897e−64

G slope_bg

y n

0.
2

0.
4

0.
6

0.
8

1.
0

in
te

rc
ep

t_
bg

y n

0.
2

0.
4

0.
6

0.
8

1.
0

P = 1.22337e−135

H intercept_bg

y n

0.
0

0.
1

0.
2

0.
3

0.
4

sd
_b

g

y n

0.
0

0.
1

0.
2

0.
3

0.
4 P = 1.6439e−133

I sd_bg

y n

0.
2

0.
4

0.
6

0.
8

1.
0

he
ad

2t
ai

l_
ra

tio

y n

0.
2

0.
4

0.
6

0.
8

1.
0 P = 7.58703e−136

J head2tail_ratio

Figure 17: Analysis of slope and ratio features. Amplification curves from the datasets stepone_std, RAS002,
RAS003, lc96_bACTXY, C126EG595 and dil4reps94 were analyzed with the encu() function. These datasets
contain positive and negative amplification curves. Furthermore, the meta dataset contains amplification curves
that exhibit a hook effect or non-sigmoid shapes, for instance. All amplification curves are manually classified.
Altogether 626 positive and 317 negative amplification curves were included in the analysis. A) b_slope, B)
f_intercept, C) minRFU is the minimum (1% qantile) of the amplification curve, D) maxRFU is the maximum
(99% qantile) of the amplification curve, E) init2 is the initial template fluorescence from an exponential model,
F) fluo is the raw fluorescence value at the second derivative maximum, G) slope_bg is the slope calculated be
the earlyreg() function, H) intercept_bg is the intercept calculated be the earlyreg() function, I) sd_bg is
the standard deviation of the ground phase and J) head2tail_ratio is the between the RFU values of the head
and the tail, normalized to the slope from the head to the tail.

46

amplification curves (Figure 18A). Prior to this, the amplification curves were analyzed with the encu()
function (paragraph 0.4.2.1) and stored in the data_sample.rda file to save computing time. The file is
part of the PCRedux package. The dataset was split into two chunks. This is an important step during
such applications. One chunk is for adapting, i. e. training, the model and the other chunk for testing
the model. Typically, 70% to 80% of the data is used for training (Walsh, Pollastri, and Tosatto 2015,
Kuhn (2008)). The binomial logistic regression model was adapted using the function glm() by using
the parameter family = binomial(link = 'logit'). To objectify the splitting, the sample() function
was used.
options(warn = -1)
library(PCRedux)

data <- data_sample[data_sample$dataset %in%
c("batsch1",

"HCU32_aggR",
"lc96_bACTXY",
"RAS002",
"RAS003",
"stepone_std"),]

n_positive <- sum(data[["decision"]] == "y")
n_negative <- sum(data[["decision"]] == "n")

dat <- data.frame(polyarea = data[, "polyarea"],
decision = as.numeric(factor(data$decision,

levels = c("n", "y"),
label = c(0, 1))) - 1)

Select randomly observations from 70% of the data for training.
n_train is the number of observations used for training.

n_train <- round(nrow(data) * 0.7)

index_test is the index of observations to be selected for the training
index_test <- sample(1L:nrow(dat), size = n_train)

index_test is the index of observations to be selected for the testing
index_training <- which(!(1L:nrow(dat) %in% index_test))

train_data contains the data used for training

train_data <- dat[index_test,]

test_data contains the data used for training

test_data <- dat[index_training,]

Fit the binomial logistic regression model

model_glm <- glm(decision ~ polyarea, family=binomial(link='logit'),
data = train_data)

predictions <- ifelse(predict(model_glm,
newdata = test_data, type = 'response') > 0.5,

1, 0)

res_performeR <- performeR(predictions, test_data[["decision"]])[, c(1:10, 12)]

The ‘summary() function returns the results of the model fitting. This can be analysed and interpreted.

47

summary(model_glm)

##
Call:
glm(formula = decision ~ polyarea, family = binomial(link = "logit"),
data = train_data)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-4.9056 -0.3749 -0.1990 0.1561 1.6820
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.4997 0.2785 -8.975 <2e-16 ***
polyarea 78.8914 8.2739 9.535 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 494.86 on 362 degrees of freedom
Residual deviance: 179.52 on 361 degrees of freedom
AIC: 183.52
##
Number of Fisher Scoring iterations: 7

Based on the results it can be concluded that the parameters (Intercept) and polyarea are statistically
significant (P < 2e-16). This indicates a strong association between polyarea and the probability that
an amplification curve is positive.

In order to apply the model to a new dataset, further steps are necessary. predict() is a generic function
for prediction from the results of a model fitting function. All previously split test data is passed to
the function argument newdata. By setting the type = 'response' parameter, the predict() function
returns probabilities in the form of P (y = 1|X). In the case in hand, it was decided that a decision limit
of 0.5 is to be applied. If P (y = 1|X) < 0.5 then y = 0 (amplification curve negative), otherwise y = 1
(amplification curves positive).
options(warn = -1)
library(PCRedux)

par(mfrow = c(1,2))

Plot train_data (grey points) and the predicted model (blue)

plot(train_data$polyarea, train_data$decision, pch = 19,
xlab = "polyarea", ylab = "Probability",
col = adjustcolor("grey", alpha.f = 0.9), cex = 1.5)

mtext("A", cex = 1.2, side = 3, adj = 0, font = 2, las = 0)
abline(h = 0.5, col = "grey")

curve(predict(model_glm, data.frame(polyarea = x), type = "resp"),
add = TRUE, col = "blue")

Plot test_data (red)

points(test_data$polyarea, test_data$decision, pch = 19,
col = adjustcolor("red", alpha.f = 0.3))

legend("right", paste("Positive: ", n_positive,
"\nNegative: ", n_negative), bty = "n")

48

0.00 0.10 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

polyarea

P
ro

ba
bi

lit
y

A

Positive: 202
Negative: 317

T
P

R
S

P
C

P
P

V
N

P
V

F
P

R
F

N
R

F
D

R
A

C
C F
1

M
C

C
ka

pp
a

P
ro

ba
bi

lit
y

88
 %

95
 %

89
 %

94
 %

4.
6

%

12
 %

11
 %

93
 %

88
 %

83
 %

83
 %

0

B

Figure 18: Binomial logistic regression for the polyarea feature. A) binomial logistic regression model for the
response variable Y (decision) is categorical and must be converted into a numerical value. This regression
calculation makes it possible to estimate the probability of a categorical response using predictor variables X.
In this case, the predictor variable is polyarea. Gray dots are the value values used for training. Red dots are
the values used for testing. The regression curve of the binomial logistic regression is shown in blue. At 0.5, the
gray horizontal line marks the threshold value of probability used to determine whether an amplification curve is
negative or positive. B) The measure were determined with the performance() function from the PCRedux package.
Sensitivity, TPR; Specificity, SPC; Precision, PPV; Negative predictive value, NPV; Fall-out, FPR; False negative
rate, FNR; False discovery rate, FDR; Accuracy, ACC; F1 score, F1; Matthews correlation coefficient, MCC,
Cohen’s kappa (binary classification), kappa (κ).

Plot the sensitivity, specificity and other measures to describe the prediction.

position_bp <- barplot(as.matrix(res_performeR), yaxt = "n",
ylab = "Probability", main = "", las = 2,
col = adjustcolor("grey", alpha.f = 0.5))

par(srt = 90)
text(position_bp, rep(0.8, length(res_performeR)),

paste(signif(res_performeR, 2)*100, "%"), cex = 0.6)
axis(2, at = c(0, 1), labels = c("0", "1"), las = 2)
abline(h = 0.85, col = "grey")

mtext("B", cex = 1.2, side = 3, adj = 0, font = 2, las = 0)

The sensitivity, specificity and further parameters for estimating the prediction were calculated using
the performeR() function (paragraph 0.4.1.3). The results indicate that the sensitivity and specificity
for the test dataset provides a good result. However, the results in this case depend heavily on the
computer-aided random sampling of the training data and the total size of the dataset. Over-fitting and
under-fitting and other problems need to be addressed (Walsh, Pollastri, and Tosatto 2015).

49

To proof the results, further methods such as Likelihood Ratio Test, McFadden’s R2, k-fold cross-validation,
Receiver Operating Characteristic (ROC) analysis and model interpretation should be used (Arlot and
Celisse 2010, McFadden (1974), Sing et al. (2005)).

0.4.2.4 autocorrelation_test() - A Function to Detect Positive Amplification Curves

Autocorrelation analysis is a technique that is used in the field of time series analysis. It can be used to
reveal regularly occurring patterns in one-dimensional data (Spiess et al. 2016). The autocorrelation
measures the correlation of a signal f(t) with itself shifted by some time delay f(t− τ).

The autocorrelation_test() function coercers the amplification curve data to an object of the class
“zoo” (zoo package) as indexed totally ordered observations. Next follows the computation of a lagged
version of the amplification curve data. The shifting the amplification curve data is based back by a given
number of observations (default τ = 12).

Then follows a significance test for correlation between paired observations (amplification curve data &
lagged amplification curve data). The hypothesis is that the paired observation of positive amplification
curves has a significant correlation (stats::cor.test, significance level is 0.01) in contrast to negative
amplification curves (noise). The application of the autocorrelation_test() function is shown in the
following example.

In addition, the the decisions file decision_res_RAS002.csv from the human expert was analyzed for
the most frequent decision (modus) using the decision_modus() function (paragraph 0.4.1.1).
Test for autocorrelation in amplification curve data
Load the libraries magrittr for pipes and the amplification curve the data
The amplification curve data from the `RAS002` dataset was used.
The data.table package was used for fast import of the csv data
options(warn = -1)
library(magrittr)
library(PCRedux)
suppressMessages(library(data.table))

data <- RAS002

Test for autocorrelation in the RAS002 dataset

res_ac <- sapply(2:ncol(data), function(i) {
autocorrelation_test(data[, i], ns_2_numeric = TRUE)

})

Curves classified by a human after analysis of the overview. 1 = positive,
0 = negative

human_classification <- fread(system.file(
"decision_res_RAS002.csv",
package = "PCRedux"

))

head(human_classification)

RAS002 test.result.1 test.result.2 test.result.3
1: A01_gDNA.._unkn_B.Globin y y y
2: A01_gDNA.._unkn_HPRT1 n n n
3: A02_gDNA.._unkn_B.Globin y y y
4: A02_gDNA.._unkn_HPRT1 n n n
5: A03_gDNA.._unkn_B.Globin y y y
6: A03_gDNA.._unkn_HPRT1 n n n
conformity
1: TRUE

50

0 10 20 30 40 50

0
5

10
15

Cycle

R
F

U

A Positive amplification

Noise
median + 2 * MAD

Signal
median − 2 * MAD

W= 0
p−value = 0.000512

−2 −1 0 1 2
0

6
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

SHt, W = 0.69
p−value = 7.09e−09

B

0 10 20 30 40

0.
0

0.
8

Cycle

R
2

C LRt

Figure 19: The positive amplification curve F1.1 (testdat dataset) was analyzed with algorithms of the
amptester() function. A) The Threshold test (THt) is based on the Wilcoxon rank sum test. The test
compares 20% of the head to 15% of the tail region. A significant difference (p− value = 0.000512) between the
two regions was found for the amplfication curve F1.1. This is indicative of a positive amplification reaction.
B) Quantile-Quantile plot (Q-Q plot) of the the amplification curve. A Q-Q plot is a probability plot for a
graphical comparison of two probability distributions by plotting their quantiles against each other. In this
study the probability distribution of the amplification curve is compared to a theoretical normal distribution.
The orange line is the theoretical normal quantile-quantile plot which passes through the probabilities of the
first and third quartiles. The Shapiro-Wilk test (SHt) of normality checks whether the underlying population
of a sample (amplification curve) is significantly (α ≤ 5e−4) normal distributed. Since the p-value is 7.09e−9

the null hypothesis can be rejected. C) The Linear Regression test (LRt). This test determines the coefficient
of determination (R2) by an ordinary least squares linear (OLS) regression. Usually the non-linear part of an
amplification curve has an R2 smaller than 0.8.

51

0 10 20 30 40 50

−
0.

02
0.

00
0.

02
0.

04
0.

06

Cycle

R
F

U

B Negative amplification

Noise
median + 2 * MAD

Signal
median − 2 * MAD

W = 34
p−value = 0.621

−2 −1 0 1 2
−

0.
02

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

SHt, W = 0.988
p−value = 0.895

B

0 10 20 30 40

0.
0

0.
8

Cycle

R
2

C LRt

Figure 20: The negative amplification curve F1.3 (testdat dataset) was analyzed with algorithms of the
amptester() function. A) The Threshold test (THt) is based on the Wilcoxon rank sum test. The test compares
20% of the head to 15% of the tail region. No significant difference between the two regions was found for the
amplfication curve F1.3. Since the p-value is 0.621 the null hypothesis cannot be rejected. This is indicative of a
negative amplification reaction. B) Quantile-Quantile plot (Q-Q plot) of the the amplification curve. A Q-Q plot
is a probability plot for a graphical comparison of two probability distributions by plotting their quantiles against
each other. In this study the probability distribution of the amplification curve is compared to a theoretical
normal distribution. The orange line is the theoretical normal quantile-quantile plot which passes through the
probabilities of the first and third quartiles. The Shapiro-Wilk test (SHt) of normality checks whether the
underlying population of a sample (amplification curve) is significantly (α ≤ 5e−4) normal distributed. Since the
p-value is 0.895 the null hypothesis cannot be rejected. C) The Linear Regression test (LRt). This test determines
the coefficient of determination (R2) by an ordinary least squares linear (OLS) regression. Usually the non-linear
part of an amplification curve has an R2 smaller than 0.8.

52

2: TRUE
3: TRUE
4: TRUE
5: TRUE
6: TRUE
decs <- sapply(1L:nrow(human_classification), function(i) {

res <- decision_modus(human_classification[i, 2L:(ncol(human_classification) - 1)])
if (length(res) > 1) res[[1]] <- "n"
res[[1]]

}) %>% unlist()

Plot curve data as overview
Names of the observations

layout(matrix(c(1, 2, 3, 1, 4, 4), 2, 3, byrow = TRUE))
matplot(

data[, 1], data[, -1], xlab = "Cycle", ylab = "RFU",
main = "", type = "l", lty = 1,
col = decs, lwd = 2

)
legend("topleft", c("positive", "negative"), pch = 19, col = c(1, 2), bty = "n")
mtext("A RAS002 dataset", cex = 1.2, side = 3, adj = 0, font = 2)

Convert the n.s. (not significant) in 0 and others to 1.
Combine the results of the aromatic autocorrelation_test as variable "ac",
the human classified values as variable "hc" in a new data frame (res_ac_hc).

cutoff <- 0.8

res_ac_hc <- data.frame(
ac = ifelse(res_ac > cutoff, 1, 0),
hc = as.numeric(as.factor(decs)) - 1

) %>% as.matrix()
res_performeR <- performeR(res_ac_hc[, "ac"], res_ac_hc[, "hc"])

plot(density(res_ac), ylab = "Autocorrelation", main = "")
rug(res_ac)

abline(v = cutoff)
mtext("B", cex = 1.2, side = 3, adj = 0, font = 2, las = 0)

cdplot(
as.factor(decs) ~ res_ac, xlab = "Autocorrelation",
ylab = "Decision"

)
mtext("C", cex = 1.2, side = 3, adj = 0, font = 2, las = 0)

barplot(
as.matrix(res_performeR[, c(1:10, 12)]), yaxt = "n", ylab = "",
main = "Performance of autocorrelation_test",
col = adjustcolor("grey", alpha.f = 0.5)

)

53

0 10 20 30 40

25
00

30
00

35
00

40
00

45
00

Cycle

R
F

U

positive
negative

A RAS002 dataset

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0
1

2
3

4
5

6

N = 192 Bandwidth = 0.03632

A
ut

oc
or

re
la

tio
n

B

Autocorrelation

D
ec

is
io

n

0.7 0.8 0.9

y
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0C

TPR SPC PPV NPV FPR FNR FDR ACC F1 MCC kappa

Performance of autocorrelation_test

0

1
D

Figure 21: Autocorrelation analysis for amplification curves of the RAS002 dataset (PCRedux package). A) Plot
of all amplification curves of the RAS002 dataset. B) Density plot of B) Positive curves and negative curves as
determined by the autocorrelation_test() and a human expert. C) Performance analysis by the performeR()
function (see paragraph 0.4.1.3 for details).

axis(2, at = c(0, 1), labels = c("0", "1"), las = 2)
mtext("D", cex = 1.2, side = 3, adj = 0, font = 2, las = 0)

As shown in this example, the autocorrelation_test() function is able to distinguish between positive
and negative amplification curves. Negative amplification curve were in all cases non-significant. In
contrast, the coefficients of correlation for positive amplification curves ranged between 0.607 and 0.999
at a significance level of 0.01 and a lag of 3.

54

0.4.2.5 earlyreg() - A Function to Calculate the Slope and Intercept in the Ground Phase
of an Amplification Curve

The signal height and the slope in the first amplification curve cycles are helpful information for the analysis
of amplification curves. Some qPCR systems calibrate themselves according to the measured values in the
first cycles. This is noticeable in the form of strong signal changes which appear spontaneously between
the first and second cycle. For another, the signal level can be used to determine which background signal
is present and whether the ground phase already has a slope. From the slope it could be deduced whether
amplification has already started (see subsubsection 0.1.5).

In addition, the function earlyreg() was developed. This function uses an ordinary least squares linear
regression within a limited number of cycles. As ROI, the first 10 cycles were defined. This restriction is
based on empirical data suggesting that during the first ten cycles only a significant increase in signal
strength can be measured within few qPCRs. However, earlyreg() does not ignore the first cycle, as
many thermo-cyclers use this cycle for sensor calibration. Extreme values are therefore included. As
standard, the next nine amplitude values are used for the linear regression. The number of cycles can also
be adjusted via the parameter range. Since all amplification curves are normalized to the 99%-percentile,
there is also a comparability between the background signals and the slopes.

The following example illustrates a possible use of the function earlyreg(). For that purpose amplification
curves from the RAS002 dataset were analysed. In figure Figure 22A the amplification curves for all cycles
are shown. Next, the earlyreg() function was used to determine the slope and the intercept in the
range of the first ten PCR cycles. The results were used in a cluster analysis using k-means clustering
(Figure 22B). Therefore, the increase seems to be an indicator of differences between the amplification
curves. The Figure 22C shows the first 15 cycles colored according to their cluster. After the cluster
analysis this could also be observed (Figure 22D-F). Hence, it can be postulated that the increase in the
background phase is helpful for the classification of amplification curves.
options(warn = -1)
library(PCRedux)

data <- RAS002

well <- substr(colnames(data)[-1], 1, 10)

Normalize each amplification curve to their 0.99 percentile and use the
earlyreg function to determine the slope and intercept of the first
5 cycles

res_earlyreg <- do.call(rbind, lapply(2L:ncol(data), function(i) {
earlyreg(x = data[, 1], y = data[, i], range = 5, normalize = FALSE)

}))

Label the observation with their original names
rownames(res_earlyreg) <- colnames(data)[2:ncol(data)]

cl <- kmeans(res_earlyreg, 5)

rownames(res_earlyreg) <- well

par(fig = c(0,1,0,1), las = 0, bty = "o", oma = c(0, 0, 0, 0))
matplot(

data[, 1], data[, -1], pch = 19, lty = 1, type = "l",
xlab = "Cycle", ylab = "RFU", main = "", col = cl[["cluster"]]

)
mtext("A", cex = 1.2, side = 3, adj = 0, font = 2)
abline(v = c(1,5))
rect(20.5,3500,45,4700, col = "white", border = NA)

55

text(3, 3250, "ROI")

par(fig = c(0.525, 0.99, 0.5, 0.95), new = TRUE)
plot(res_earlyreg, col = cl[["cluster"]], pch = 19)
mtext("B k-means, k = 5", cex = 1.2, side = 3, adj = 0, font = 2)

0.4.2.6 head2tailratio() - A Function to Calculate the Ratio of the Head and the Tail of
a Quantitative PCR Amplification Curve

The ratios from the ground and plateau phase can be used to search for patterns in amplification curves.
Positive amplification curves have different slopes and intercepts at the start of the amplification curve
(head, background region) and the end of the amplification curve (tail, plateau region). Therefore, these
regions are potentially useful to extract a feature for an amplification curve classification. Negative
amplification curves - without an increase - are assumed to have a ratio of about 1. In contrast, positive
amplification curves should have a ratio of less than 1.

The head2tailratio() function calculates the ratio of the head and the tail of a quantitative PCR
amplification curve. As ROI, the areas in the ground phase (head) and plateau phases (tail) are used
(Figure 2A). For the calculation, the median from the first six data points of the amplification curve
and the median from the last six data points are used. The determination of six data points in both
regions was made on the basis of empirical experience. As a rule, no increase in amplification signals
can be measured in the first six cycles and in the last six cycles, the amplification curve is usually about
to transition into the plateau. This assumption is sometimes violated and might lead to false estimates.
For example, the amplification curves in Figure 23 show an increase within the first three cycles and the
amplification curves in Figure 24 have a negative slope in the tail. The median is used to minimize the
influence of outliers.
options(warn = -1)
library(PCRedux)

Load the RAS002 dataset and assign it to the object data

data <- RAS002
data_decisions <- RAS002_decisions

Calculate the head2tailratio of all amplification curves

res_head2tailratio <- lapply(2L:ncol(data), function(i) {
head2tailratio(

y = data[, i], normalize = TRUE, slope_normalizer = TRUE,
verbose = TRUE

)
})

Fetch all values of the head2tailratio analysis for a later comparison
by a boxplot.

res <- sapply(1L:length(res_head2tailratio), function(i)
res_head2tailratio[[i]]$head_tail_ratio)

data_normalized <- cbind(
data[, 1],
sapply(2L:ncol(data), function(i) {

data[, i] / quantile(data[, i], 0.99)
})

)

Assign color to the positive and negative decisions

56

0 10 20 30 40

25
00

30
00

35
00

40
00

45
00

Cycle

R
F

U

A

ROI

2500 3500
0

20
40

intercept

sl
op

e

B k−means, k = 5

Figure 22: Analysis of the ground phase with the earlyreg() function. A) The amplification curves show different
slopes and intercepts in the early ground phase (ROI: cycle 1 to 5) of the qPCR. Amplification curves (n = 192)
from the RAS002 dataset were used. B) Both the slope and the intercept were used for a cluster analysis (k-means,
Hartigan-Wong algorithm, number of centers k = 5). The amplification curves were separated into three clusters
dependent on their slope and intercept (colored in red, green, cyan, balck).

57

colors <- as.character(factor(
data_decisions, levels = c("y", "n"),
labels = c(

adjustcolor("black", alpha.f = 0.25), adjustcolor("red", alpha.f = 0.25))
))

res_wilcox.test <- stats::wilcox.test(res ~ data_decisions)

h <- max(na.omit(res))
h_text <- rep(h * 0.976, 2)

Plot the results of the analysis

par(mfrow = c(1, 2), las = 0, bty = "o", oma = c(0, 0, 0, 0))

matplot(
data_normalized[, 1], data_normalized[, -1],
xlab = "Cycle", ylab = "normalized RFU", main = "RAS002 dataset",
type = "l", lty = 1, lwd = 2, col = colors

)
for (i in 1L:(ncol(data_normalized) - 1)) {

points(
res_head2tailratio[[i]]$x_roi, res_head2tailratio[[i]]$y_roi,
col = colors[i], pch = 19, cex = 1.5

)
abline(res_head2tailratio[[i]]$fit, col = colors[i], lwd = 2)

}
mtext("A", cex = 1.2, side = 3, adj = 0, font = 2)

Boxplot of the head2tail ratios of the positive and negative
amplification curves.

boxplot(res ~ data_decisions, col = unique(colors), ylab = "Head to Tail Ratio")

lines(c(1, 2), rep(h * 0.945, 2))
text(1.5, h_text, paste0("P = ", signif(res_wilcox.test[["p.value"]])),

cex = 1)

mtext("B", cex = 1.2, side = 3, adj = 0, font = 2)

Figure 6 shows that negative amplification curves can have a trend. The trend may be positive or negative.
In subsubsection 0.1.5 some reasons were mentioned. How to deal with this is the question. One possible
solution could be to include this factor in the ratio calculation. The head2tailratio() function uses a
linear model that calculates the slope between the ground and plateau phases. If the slope of the model
is significant, then the ratio from the head and tail is normalized to this slope. This requires setting the
slope_normalizer parameter in the head2tailratio() function. By default, this parameter is not set.

0.4.2.7 hookreg() and hookregNL() - Functions to Detect Hook Effekt-like Curvatures

hookreg() and hookregNL() are functions to detect amplification curves bearing a hook effect (Barratt
and Mackay 2002,) or negative slope at the end of the amplification curve. Both functions calculate
the slope and intercept of an amplification curve data. The idea is that a strong negative slope at the
end of an amplification curve is indicative for a hook effect. hookreg() and hookregNL() are currently
undergoing a review process. For this reason, the functions will not be discussed in detail here. More
information is given in the vignette and manual of both functions.

Amplification curves with a hook effect like curvature are characterized by a negative trend in the late
phase of the amplification reaction (Figure 24 A, curve F1.1, F1.2, F2.1, F2.2, F3.1 and F3.2).

58

0 10 20 30 40

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

RAS002 dataset

Cycle

no
rm

al
iz

ed
 R

F
U

A

y n

20
0

40
0

60
0

80
0

10
00

12
00

H
ea

d
to

 T
ai

l R
at

io

P = 4.4086e−23P = 4.4086e−23

B

Figure 23: Calculation of the ratio between the head and the tail of a quantitative PCR amplification curve. A)
Plot of quantile normalized amplification curves from the RAS002 dataset. ROIs of the head and and tail are
highlighted by circles. The ranges for performing Robust Linear Regression are automatically selected using the
25% and 75% quantiles. Therefore not all data points are used in the regression model. The straight line is the
regression line from the robust linear model. The slopes of the positive and negative amplification curves differ.
B) Boxplot for the comparison of the head to tailratio. Positive amplification curves have a lower ratio than
negative curves. The difference between the classes is significant.

Calculate slope and intercept on noise (negative) amplification curve data
for the last eight cycles.
options(warn = -1)
library(qpcR)
library(magrittr)

res_hook <- sapply(2:ncol(boggy), function(i) {
hookreg(x = boggy[, 1], y = boggy[, i])

}) %>%
t() %>%
data.frame(obs = colnames(boggy)[-1], .)

The results of the hookreg() analysis were transferred to a tabular format.

Table 5: Screening results for the analysis with the hookreg algorithm. Samples withe a value of 1 in the hook
column had all a hook effect like curvature. The observations F4.1, F4.2, F5.1, F5.2, F6.1 and F6.2 miss entries
because the hoogreg algorithm could not fit a linear model. This is an expected behavior, since these amplification
curves did not have a hook effect like curvature.

obs intercept slope hook.start hook.delta p.value CI.low CI.up hook.fit hook.CI hook
F1.1 1.17 -0.01 26.00 15.00 0.00 -0.01 -0.01 1.00 1.00 1.00
F1.2 1.20 -0.01 26.00 15.00 0.00 -0.01 -0.01 1.00 1.00 1.00
F2.1 1.16 -0.01 32.00 9.00 0.00 -0.01 -0.00 1.00 1.00 1.00
F2.2 1.17 -0.01 32.00 9.00 0.00 -0.01 -0.00 1.00 1.00 1.00
F3.1 1.05 -0.00 35.00 6.00 0.05 -0.00 0.00 0.00 0.00 0.00
F3.2 1.08 -0.00 35.00 6.00 0.02 -0.01 0.00 0.00 0.00 0.00
F4.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F4.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F5.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F5.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F6.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F6.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

In Table 5 is shown that the first amplification curves (F1.1, F1.2, F2.1, F2.2, F3.1 and F3.2) appear to
have a hook effect-like curvature (“hook” column=1.00). The function estimate reliably the start of the
hook effect-like region.

The clusters for amplification curve were determined by k-means clustering in this example. Next we plot

59

0 10 20 30 40

0.
5

1.
0

1.
5

2.
0

Cycle

R
F

U

F1.1 Hook start cycle: 26
F1.2 Hook start cycle: 26
F2.1 Hook start cycle: 32
F2.2 Hook start cycle: 32
F3.1 Hook start cycle: 35
F3.2 Hook start cycle: 35
F4.1 Hook start cycle: no hook
F4.2 Hook start cycle: no hook
F5.1 Hook start cycle: no hook
F5.2 Hook start cycle: no hook
F6.1 Hook start cycle: no hook
F6.2 Hook start cycle: no hook

Figure 24: Detection of the hook effect in amplification curves. Amplification curves of the boggy dataset (qpcR)
were analyzed using the hookreg() function. The hook effect is characterized by a negative slope in the supposed
plateau phase. Samples F1.1, F1.2, F2.1 and F2.2 (red) show a statistically significant negative slope. In the red
rectangle the area of the hook effect is highlighted exemplarily for the sample F1.1. No statistically significant
negative slope (no hook effect) could be observed for the remaining amplification curves (black).

the results of the analysis (Figure 24). For the visualization the intercepts was plotted against the slope
with the clusters as determined by k-means clustering.
matplot(

x = boggy[, 1], y = boggy[, -1], xlab = "Cycle", ylab = "RFU",
main = "", type = "l", lty = 1, lwd = 2, col = res_hook$hook + 1

)

res_hook$hook.start[res_hook$hook.start == 0] <- "no hook"

legend(
"topleft", paste(as.character(res_hook$obs), "Hook start cycle:", res_hook$hook.start), pch = 19,
col = res_hook$hook + 1, bty = "n"

)
rect(26,2,40,2.3, border ="red")

0.4.2.8 mblrr() - A Function Perform the Quantile-filter Based Local Robust Regression

mblrr() is a function to perform the Median based Local Robust Regression (m b l r r) from a quantitative
PCR experiment. In detail, this function attempts to break the amplification curve in two ROIs (head
(~background) and tail (~plateau)). As opposed to the earlyreg() function, the mblrr()` function
does not use a fixed interval. Instead, themblrr()function dynamically determines cut
points for each amplification curve. For the ``mblrr() function was defined:

60

• The 25% quantile is the value for which 25% of all values are smaller than this value.
• The 75% quantile is the value for which 75% of all values are greater than this value.

Subsequent, a robust linear regression analysis (lmrob()) is preformed individually on both regions
of the amplification curve. The rationale behind this analysis is that the slope and intercept of an
amplification curve differ in the background and plateau region. This is also shown bey the simulations
in Figure 1C-E. In the example shown below, the observations “P01.W19”, “P06.W35”, “P33.W66”,
“P65.W90”, “P71.W23” and “P87.W01” were arbitrarily selected for demonstration purposes Figure 25.
Another example is shown in Figure 9A. Those amplification curves have a slight negative trend in the
baseline region and a positive trend in the plateau region.

The correlation coefficient5 is a measure to quantify the dependence on variables (e. g., number of cycles,
signal height). The correlation coefficient is always between -1 and 1, with a value close to -1 describing a
strong-negative dependency and close to 1 describing a strong-positive dependency; if the value is 0, there
is no dependency between the variables. The most frequently used correlation coefficient to describe a
linear dependency is the Pearson correlation coefficient r.

The correlation coefficient can also be used as a feature. Because similar data structures will have similar
correlation coefficients. Correlation coefficients are between -1 and +1, with -1 being a strong negative
correlation and 1 a strong positive correlation. The values of -1 and 1 have a perfect correlation. If the
value is 0, there is no correlation between the two variables. However. variables that are not strongly
correlated can also be important for modeling.
options(warn = -1)
library(PCRedux)

Select four amplification curves from the RAS002 dataset

data <- RAS002[, c(1, 2, 3, 4, 5)]

par(mfrow = c(2, 2))

for (i in 2L:ncol(data)) {
x <- data[, 1]
y_tmp <- data[, i] / quantile(data[, i], 0.99)
res_q25 <- y_tmp < quantile(y_tmp, 0.25)
res_q75 <- y_tmp > quantile(y_tmp, 0.75)
res_q25_lm <- try(

suppressWarnings(lmrob(y_tmp[res_q25] ~ x[res_q25])),
silent = TRUE

)
res_q75_lm <- try(

suppressWarnings(lmrob(y_tmp[res_q75] ~ x[res_q75])),
silent = TRUE

)

plot(x, y_tmp, xlab = "Cycle", ylab = "RFU (normalized)",
main = "", type = "b", pch = 19)

mtext(paste0(LETTERS[i], " ", colnames(data)[i]), cex = 1, side = 3,
adj = 0, font = 2)

abline(res_q25_lm, col = "red")
points(x[res_q25], y_tmp[res_q25], cex = 2.5, col = "red")
abline(res_q75_lm, col = "green")
points(x[res_q75], y_tmp[res_q75], cex = 2.5, col = "green")

}

Finally, the results of the analysis were printed in a tabular format.
5Pearson’s product moment correlation coefficient

61

0 10 20 30 40

0.
70

0.
80

0.
90

1.
00

Cycle

R
F

U
 (

no
rm

al
iz

ed
)

B A01_gDNA.._unkn_B.Globin

0 10 20 30 40

0.
88

0.
92

0.
96

1.
00

Cycle

R
F

U
 (

no
rm

al
iz

ed
)

C A01_gDNA.._unkn_HPRT1

0 10 20 30 40

0.
65

0.
75

0.
85

0.
95

Cycle

R
F

U
 (

no
rm

al
iz

ed
)

D A02_gDNA.._unkn_B.Globin

0 10 20 30 40

0.
88

0.
92

0.
96

1.
00

Cycle

R
F

U
 (

no
rm

al
iz

ed
)

E A02_gDNA.._unkn_HPRT1

Figure 25: Robust local regression to analyze amplification curves. The amplification curves were arbitrarily
selected from the RAS002 dataset. Not the differences in slopes and intercepts (red and green lines). The mblrr()
function is presumably useful for datasets which are accompanied by noise and artifacts.m, slop; n, intercept.

62

Load the xtable library for an appealing table output
library(xtable)

Analyze the data via the mblrr() function

res_mblrr <- do.call(cbind, lapply(2L:ncol(data), function(i) {
suppressMessages(mblrr(

x = data[, 1], y = data[, i],
normalize = TRUE

)) %>% data.frame()
}))
colnames(res_mblrr) <- colnames(data)[-1]

Transform the data for a tabular output and assign the results to the object
output_res_mblrr.

output_res_mblrr <- res_mblrr %>% t()

The output variable names of the mblrr() function are rather long. For better
readability the variable names were changed to "nBG" (intercept of head region),
"mBG" (slope of head region), "rBG" (Pearson correlation of head region),
"nTP" (intercept of tail region), "mTP" (slope of tail region), "rBG" (Pearson
correlation of tail region)

colnames(output_res_mblrr) <- c(
"nBG", "mBG", "rBG",
"nTP", "mTP", "rTP"

)

print(xtable(
output_res_mblrr, caption = "mblrr() text intro. nBG, intercept of

head region; mBG, slope of head region; rBG, Pearson
correlation of head region; nTP, intercept of tail region; mTP,
slope of tail region; rBG, Pearson correlation of tail region",

label = "tablemblrrintroduction"
), comment = FALSE, caption.placement = "top")

Table 6: mblrr() text intro. nBG, intercept of head region; mBG, slope of head region; rBG, Pearson correlation
of head region; nTP, intercept of tail region; mTP, slope of tail region; rBG, Pearson correlation of tail region

nBG mBG rBG nTP mTP rTP
A01_gDNA.._unkn_B.Globin 0.69 0.00 0.91 0.77 0.01 0.94
A01_gDNA.._unkn_HPRT1 0.89 0.00 0.87 0.80 0.01 1.00

A02_gDNA.._unkn_B.Globin 0.67 0.00 0.88 0.76 0.01 0.95
A02_gDNA.._unkn_HPRT1 0.91 0.00 0.90 0.82 0.00 1.00

In another example, the results from the mblrr() function were combined with the classifications (positive,
negative) by a human to apply them in an analysis with Fast and Frugal Trees (FFTrees). A general
introduction to decision trees is given in (Quinlan 1986, Luan, Schooler, and Gigerenzer (2011)). FFTrees
belong to class of simple decision rules. In many situations, FFTrees make fast decisions based on a few
features (N = 1 - 5). In this example six features were used for the analysis.

The FFTrees package (Phillips et al. 2017) provides an implementation for the R statistical computing
language. All that is needed for the present example are:

• the data assessed by the mblrr() function,
• the classification of the amplification curve data by a human,
• and a standard formula, which looks like outcome ← var1 + var2 + . . . along with the data

arguments. The function FFTrees() returns a fast and frugal tree object. This rich object contains

63

the underlying trees and many classification statistics (similar to paragraph 0.4.1.3). In the following
example, the RAS002 dataset from the qpcR package was used.

Load the xtable library for an appealing table output
options(warn = -1)
suppressMessages(library(FFTrees))
library(PCRedux)

The RAS002 amplification curves were analyzed with the mblrr() function
to save computing time and the.results of this analysis are stored in the
`data_sample` dataset.

data <- data_sample[data_sample$dataset == "RAS002", c("mblrr_intercept_bg",
"mblrr_slope_bg",
"mblrr_cor_bg",
"mblrr_intercept_pt",
"mblrr_slope_pt",
"mblrr_cor_pt")]

The output variable names of the mblrr() function are rather long. For better
readability the variable names were changed to "nBG" (intercept of head
region), "mBG" (slope of head region), "rBG" (Pearson correlation of head
region), "nTP" (intercept of tail region), "mTP" (slope of tail region),
"rBG" (Pearson correlation of tail region).

res_mblrr <- data.frame(
class = as.numeric(as.character(factor(RAS002_decisions,

levels = c("y", "n"),
label = c(1, 0)))),

data
)

colnames(res_mblrr) <- c("class", "nBG", "mBG", "rBG", "nTP", "mTP", "rTP")

res_mblrr.fft <- suppressMessages(
FFTrees(formula = class ~., data = res_mblrr)
)

Figure 26 shows the Fast and Frugal Trees by using the features nBG (intercept of head region), mBG
(slope of head region), rBG (Pearson correlation of head region), nTP (intercept of tail region), mTP
(slope of tail region), and rBG (Pearson correlation of tail region).

64

Data
N = 192

False True

42150

p(True)

22%

p(False)

78%

FFT #1 (of 6)

Correct
Rejection Miss

Decide False Decide True

False
Alarm Hit

nBG

False
1150

>= 0.711990517735668

F nTP

False

>= 0.829937862064231

F

True
410

< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231< 0.829937862064231

T

Performance (Training)

Truth

True False

True

False

Decision

1501

041

Cor RejMiss

False AlHit

mcu

1.2

pci

83

spec

100

sens

98

acc

99

BL

wacc

99

ROC

0 1
0

0.5

1

1 − Specificity (FAR)

S
en

si
tiv

ity
 (

H
R

)

C

C CART

L

L LR

R

R RF

S

S SVM

23
45 61

FFT

Figure 26: Visualization of FFTrees of a mblrr() function analysis. Top row Data) Overview of the dataset,
with displaying the total number of observations (N = 192) and percentage of positive (22%) and negative (78%)
amplification curves. Middle row FFT #1 (of 6)) Decision Tree with the number of observations classified
at each level of the tree. For the analysis, six features (nBG, intercept of head region; mBG, slope of head
region; rBG, Pearson correlation of head region; nTP, intercept of tail region; mTP, slope of tail region; rBG,
Pearson correlation of tail region) have been used for the analysis. After two tree levels (nBG, nTP) already
the decision tree is created. All positive amplification curves (N = 40) are correctly classified. Two observations
are classified as false-negative in the negative amplification curves. Lower row Performance) The FFTrees()
function determines several performance statistics. For the training data, there is a classification table on the left
side showing the relationship between tree decision and the truth. The correct rejection (Cor Rej) and Hit are
the right decisions. Miss and false alarm (False Al) are wrong decisions. The centre shows the cumulative tree
performance in terms of mean of used cues (mcu), Percent of ignored cues (pci), sensitivity (sens), specificity
(spec), accuracy (acc) and weighted Accuracy (wacc). The receiver operating characteristic (ROC) curve on
the right-hand side compares the performance of all trees in the FFTrees object. The system also displays the
performance of the fast frugal trees (#, green), CART (C, red), logistical regression (L, blue), random forest (R,
violet) and the support vector machine (S, yellow).

65

0.4.2.9 Change point analysis

Change point analysis (CPA) encompasses methods to identify or estimate single or multiple locations
of distributional changes in a series of data points indexed in time order. A change herein refers to
a statistical property. There exist several change point algorithms such as the binary segmentation
algorithm (A. J. Scott and Knott 1974). In the change point analysis one assumes independent ordered
observations X1, X2, . . . , Xn ∈ Rd (N. A. James and Matteson 2013). The the case of qPCR this is simply
the cycle-dependent fluorescence. This is be used to create k homogeneous subsets of unknown size
(Erdman, Emerson, and others 2007). While frequentist methods make an estimation of the parameter at
the location (e. g., mean, variance) of the change points at specific points, change point analysis using
the Bayesian method produces a probability for the occurrence of a change point at certain points. CPA
is used for example in econometrics and bioinformatics (Killick and Eckley 2014, Erdman, Emerson, and
others (2007)). For the analysis of the amplification curves it was hypothesized that the number of change
points differs between positive (sigmoidal) and negative (noise) amplification curves.

The pcrfit_single() function uses two independent approaches for change point analysis. These are
the bcp() function from the bcp package (Erdman, Emerson, and others 2007) and the e.agglo()
function from the ecp package (N. A. James and Matteson 2013). The e.agglo() function performs a
non-parametric change point analysis based on agglomerative hierarchical estimation and is useful to
“detect changes within the marginal distributions” (N. A. James and Matteson 2013). Measurement from
the qPCR systems typically shows noise that typically has rapidly changing components. Differentiators
amplify these rapidly changing noise components (Rödiger, Böhm, and Schimke 2013). Therefore, the
first derivation of the amplification curve was used for both change point analyses. It was assumed for
the change point analysis of amplification curves that this leads to larger differences between positive and
negative amplification curves. An example is shown on Figure 29. In contrast the bcp() [bcp] function
performs a change point analysis based on a Bayesian approach. This method can detect changes in the
mean of independent Gaussian observations. As result the analysis returns the posterior probability of a
change point at each Xi. An example is shown on Figure 29. Both the change point analysis methods
provide additional information to distinguish positive and negative amplification curves Figure 28E & F).

Loading required package: Rcpp

N:36, idsize:36, idval1:1, idval22:22
mm: 1, nn2: 36, N:36, cumksize.size: 36

N:36, idsize:36, idval1:1, idval22:22
mm: 1, nn2: 36, N:36, cumksize.size: 36

0.4.2.10 Test of an amplification reaction

A part of the pcrfit_single() function is the amptester() function from the chipPCR package. This
function contains tests to determine whether an amplification curve is positive or negative. The input
values for the function differ due to the different pre-processing steps in the pcrfit_single() function.
Therefore, the concepts of the tests are briefly described below.

• The first test, designated as SHt, is based on this Shapiro-Wilk test of normality. This relatively
simple procedure can be used to check whether the underlying population of a sample (amplification
curve) is significantly (α ≤ 5e− 04) normal distributed. In Figure 4 it can be seen that negative
amplification curves resemble a normal distribution, but positive amplification curves are deviating
from the normal distribution. The output is binary coded (negative = 0, positive = 1). The name
of the output of the pcrfit_single() function is amptester_shapiro.

• The second test is the Resids growth test (RGt), which tests if the fluorescence values in linear
phase are stable. Whenever no amplification occurs, fluorescence values quickly deviate from
linear model. Their standardized residuals will be strongly correlated with their value. For real
amplification curves, situation is much more stable. Noise (that means deviations from linear model)
in background do not correlate strongly with the changes in fluorescence. The decision is based
on the threshold value (here 0.5). The output is binary coded (negative = 0, positive = 1). The
output name of the pcrfit_single() function is amptester_rgt.

• The third test is the Linear Regression test (LRt). This test determines the coefficient of determina-
tion (R2) by an ordinary least squares linear (OLS) regression. The R2 are determined from a run
of circa 15% range of the data. If a sequence of more than six R2s is larger than 0.8 is found that is

66

5 10 15 20 25 30 35 40

12
0

80
40

0

Cycle

dR
F

U
/d

C
yc

le

A

Local maxima
Mean local maxima
Local minima
Mean local minima
peaks_ratio 0.012

5 10 15 20 25 30 35 40

14
10

8
6

4
2

Cycle

dR
F

U
/d

C
yc

le

B

Local maxima
Mean local maxima
Local minima
Mean local minima
peaks_ratio 0.063

Figure 27: Principle behind the peaks_ratio feature. The computation is based on a sequential linking of
functions. The diffQ() function (MBmca) determines numerically the first derivative of an amplification curve.
This derivative is passed to the mcaPeaks() function (MBmca). In the output all minima and all maxima are
contained. The ranges are calculated from the minima and maxima. The Lagged Difference is determined from
the ranges of the minima and maxima. Finally, the ratio of the differences (maximum/minimum) is calculated.

67

y n

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

po
ly

ar
ea

y n

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

P = 7.75372e−61

A polyarea

y n

0
1

2
3

4
5

6
7

pe
ak

s_
ra

tio

y n

0
1

2
3

4
5

6
7

P = 5.94019e−134

B peaks_ratio

y n

5
10

15
20

ch
an

ge
po

in
t_

e.
ag

gl
o

y n

5
10

15
20

P = 3.16941e−145

C changepoint_e.agglo

y n

0
5

10
15

20

ch
an

ge
po

in
t_

bc
p

y n

0
5

10
15

20

P = 5.47411e−104

D changepoint_bcp

y n

0.
0

0.
5

1.
0

1.
5

am
pt

es
te

r_
po

ly
go

n

y n

0.
0

0.
5

1.
0

1.
5

P = 7.14398e−137

E amptester_polygon

y n

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

am
pt

es
te

r_
sl

op
e.

ra
tio

y n

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

P = 2.4307e−05

F amptester_slope.ratio

Figure 28: Analysis of area and changepoint features. Amplification curves from the datasets stepone_std,
RAS002, RAS003, lc96_bACTXY, C126EG595 and dil4reps94 were analyzed with the encu() function. These datasets
contain positive and negative amplification curves. Furthermore, the meta dataset contains amplification curves
that exhibit a hook effect or non-sigmoid shapes, for instance. All amplification curves are manually classified.
Altogether 626 positive and 317 negative amplification curves were included in the analysis. A) polyarea, is the
area under the amplificatin curve determined by the Gauss polygon area formula. B) peaks_ratio, is the ratio of
the local minima and the local maxima. C) changepoint_e.agglo, makes use of energy agglomerative clustering.
Positive amplification curves have fewer change points than negative amplification curves. These two change point
analyses generally separate positive and negative amplification curves. D) changepoint_bcp, analyses change
points by a Bayesian approach. Positive amplification curves appear to contain more change points than negative
amplification curves. Nevertheless, there is an overlap between the positive and negative amplification curves in
both methods. This can lead to false-positive or false-negative classifications. E) amptester_polygon, is the cycle
normalized order of a polygon. F) amptester_slope.ratio, is the slop (linear model) of the raw fluorescence
values at the approximate first derivate maximum, second derivative minimum and second derivative maximum.

68

0 10 20 30 40

24
50

25
50

26
50

Cycle

R
F

U

A Negative

0 5 15 25 35

−
12

−
8

−
4

0

Cycle

d(
R

F
U

)
/ d

(c
yc

le
)

B

0 5 15 25 35

0.
0

0.
4

0.
8

Cycle

P
ro

ba
bi

lit
y

C
Baysian
Agglomerative

0 10 20 30 40

24
00

28
00

32
00

Cycle

R
F

U

D Positive

0 5 15 25 35

−
14

0
−

10
0

−
60

−
20

Cycle

d(
R

F
U

)
/ d

(c
yc

le
)

E

0 5 15 25 35

0.
0

0.
4

0.
8

Cycle

P
ro

ba
bi

lit
y

F
Baysian
Agglomerative

Figure 29: Application of Bayesian change point analysis and energy agglomerative change point analysis methods
to the RAS002 dataset. An analysis of a negative and a positive amplification curve from the RAS002 dataset was
performed using the pcrfit_single() function. In this process, the amplification curves were analysed for change
points using Bayesian change point analysis and energy agglomerative clustering. A) The negative amplification
curve has a base signal of cica 2450 RFU and only a small signal increase to 2650 RFU. There is a clear indication
of the signal variation (noise). B) The first negative derivative amplifies the noise so that some peaks are visible.
C) The change point analysis shows changes in energy agglomerative clustering at several positions (green vertical
line). The Bayesian change point analysis rarely exceeds a probability of 0.6 (grey vert line). D) The positive
amplification curve has a lower base signal (~ 2450 RFU) and increases up to the 40th cycle (~3400 RFU). A
sigmoid shape of the curve is clearly visible. E) The first negative derivation of the positive amplification curve
shows a distinctive peak with a minimum at cycle 25. F) The change point analysis in energy agglomerative
clustering shows changes (green vertical line) only at two positions. The Bayesian change point analysis shows a
probability higher then 0.6 (grey horizontal line) at several positions.

69

likely a nonlinear signal. This is a bit counter intuitive because R2 of nonlinear data should be low.
The output is binary coded (negative = 0, positive = 1). The output name of the pcrfit_single()
function is amptester_lrt.

• The fourth test is called Threshold test (THt), which is based on the Wilcoxon rank sum test. As
a simple rule the first 20% (head) and the last 15% (tail) of an amplification curve are used as
input data. From that a one-sided Wilcoxon rank sum tests of the head versus the tail is performed
(α ≤ 1e− 02). The output is binary coded (negative = 0, positive = 1). The output name of the
pcrfit_single() function is amptester_tht.

• The fifth test is called Signal level test (SLt). he test compares the signals of the head and the tail
by a robust “sigma” rule (median + 2 * median absolute deviation) and the the comparison of the
head/tail ratio. If the returned value is less than 1.25 (25 percent), then the amplification curve is
likely negative.The output is binary coded (negative = 0, positive = 1). The output name of the
pcrfit_single() function is amptester_slt.

• The sixth test is called Polygon test (pco). The pco test determines if the points in an amplification
curve (like a polygon) are in a “clockwise” order. The sum over the edges result in a positive value
if the amplification curve is “clockwise” and is negative if the curve is counter-clockwise. From
experience is noise positive and “true” amplification curves “highly” negative. In contrast to the
implementation in the amptester() function, the result is normalized by a division to the number
of PCR cycles. The output is numeric. The output name of the pcrfit_single() function is
amptester_polygon.

• The seventh test is the Slope Ratio test (SlR).This test uses the approximated first derivative
maximum, the second derivative minimum and the second derivative maximum of the amplification
curve. Next the raw fluorescence at the approximated second derivative minimum and the second
derivative maximum are taken from the original dataset. The fluorescence intensities are normalized
to the maximum fluorescence of this data. This data is used for a linear regression. Where the
slope is used. The output is numeric. The output name of the pcrfit_single() function is
amptester_slope.ratio.

Application of the “amptester()“ Features

Random Forest is an enhancement of decision tree algorithms. Random Forest uses n random data
subsets. The subset is to be used to capture trends precisely without taking into account the whole
data. In order to do this, an ensemble consisting of n small decision trees is generated. Each decision
tree contains a biased classifier. The majority of the previous classes are then selected for classification.
Compared to a single tree classifier, the Random Forest has a high robustness against noise, outliers and
over-fitting (Williams 2009, Breiman (2001)).

In the following example, the randomForest() function from the randomForest package (Liaw and
Wiener 2002) was used for the classification. The aim was to classify positive and negative amplification
curves. As response vector (y) served decision with its possible states “positive” and “negative” (factor).
The features amptester_shapiro, amptester_lrt, amptester_rgt, amptester_tht, amptester_slt,
amptester_polygon and amptester_slope.ratio served as a matrix of predictors describing the model
to be adapted. The batsch1, HCU32_aggR, stepone_std, RAS002, RAS003, lc96_bACTXY datasets were
used for the analysis. This dataset contains almost equal proportions of positive and negative amplification
curves (Figure 18A). Prior to this, the amplification curves were analyzed with the encu() function
(paragraph 0.4.2.1) and stored in the data_sample.rda file to save computing time. The file is part of
the PCRedux package.
options(warn = -1)
suppressMessages(library(randomForest))
library(PCRedux)

data <- data_sample[data_sample$dataset %in%
c("batsch1",

"HCU32_aggR",
"lc96_bACTXY",
"RAS002",
"RAS003",

70

"stepone_std"),]

n_positive <- sum(data[["decision"]] == "y")
n_negative <- sum(data[["decision"]] == "n")

dat <- data.frame(data[, c("amptester_shapiro",
"amptester_lrt",
"amptester_rgt",
"amptester_tht",
"amptester_slt",
"amptester_polygon",
"amptester_slope.ratio")],

decision = as.numeric(factor(data$decision,
levels = c("n", "y"),
label = c(0, 1))) - 1)

Select randomly observations from 70% of the data for training.
n_train is the number of observations used for training.

n_train <- round(nrow(data) * 0.7)

index_test is the index of observations to be selected for the training
index_test <- sample(1L:nrow(dat), size = n_train)

index_test is the index of observations to be selected for the testing
index_training <- which(!(1L:nrow(dat) %in% index_test))

train_data contains the data used for training

train_data <- dat[index_test,]

test_data contains the data used for training

test_data <- dat[index_training,]

model_rf = randomForest(decision ~ ., data = train_data, ntree = 4000,
importance = TRUE)

Determine variable importance
res_importance <- importance(model_rf)

par(mfrow = c(1,3))

plot(model_rf, main = "", las = 2)
mtext("A", cex = 1.2, side = 3, adj = 0, font = 2, las = 0)

rownames(res_importance) <- substr(rownames(res_importance), 11, 22)

barplot(t(as.matrix(sort(res_importance[, 1]))),
ylab = "%IncMSE", main = "", las = 2,
col = adjustcolor("grey", alpha.f = 0.5))

mtext("B", cex = 1.2, side = 3, adj = 0, font = 2, las = 0)

barplot(t(as.matrix(sort(res_importance[, 2]))),
ylab = "IncNodePurity", main = "", las = 2,

71

0

10
00

20
00

30
00

40
00

0.004

0.006

0.008

0.010

0.012

0.014

trees

E
rr

or

A

lr
t

th
t

rg
t

sl
op

e.
ra

tio

sh
ap

iro sl
t

po
ly

go
n

%
In

cM
S

E
0

10

20

30

40

50

B

lr
t

th
t

rg
t

sl
op

e.
ra

tio

sh
ap

iro sl
t

po
ly

go
n

In
cN

od
eP

ur
ity

0

5

10

15

20

25

30

C

Figure 30: Random Forest.

col = adjustcolor("grey", alpha.f = 0.5))
mtext("C", cex = 1.2, side = 3, adj = 0, font = 2, las = 0)

72

0.4.2.11 Parallel Programming

pcrfit_single() is a function, which calculates 48 potential features from an amplification curve. This
comes at a cost, since several internal functions are computational very intensive (Porzelius, Knaus,
and Schwarzer 2009, Schmidberger et al. (2009)). For example, pcrfit() function (qpcR package)
in pcrfit_single() fits and optimizes eight non-linear (sigmoid) models to the amplification curve
data. encu() (ENcode CUrves) is a relative of the pcrfit_single() function. Similarly, this function
calculates numerous but with an emphasis on features extraction of large amplification curve datasets.

The pcrfit_single() function is performing the analysis for a single process and the pblapply()
function from the pbapply package is used internally to is delivers a progress bar and leverages parallel
processing. Examples are given in the documentation of the encu() function. Parallel computing
technologies saves scientists time in their routine tasks of analyzing experimental data. Information about
parallel computing technologies in R are available from Eddelbuettel (2017).

To process high data volumes and to deal with speed issues several R packages for parallelization were
evaluated (Vera, Jansen, and Suppi 2008, Porzelius, Knaus, and Schwarzer (2009), Boehringer (2013)).
For the calculation of the curve parameters the custom-made function pcrfit_parallel() was developed.
In particular, to benchmark and evaluate the performance of multiple learners on multiple tasks studies
quickly become resource-demanding. Therefore, packages such as mlr support natively parallelization
(Bischl et al. 2010).

The code block below shows an example for a parallelized version of pcrfit_single(). This function
is called pcrfit_parallel(), which is intended for users who wish to calculate the features of a large
amplification curve dataset. This function appears to be works on Linux systems. On Windows systems
error messages were reported. pcrfit_parallel() makes use of parallelized code to make use of multi-
core architectures. In this function we import from the parallel package the detectCores() function.
This function determines the number of available cores. Function from the foreach package (e. g.,
%dopar%, foreach()) are used for the further organization of the CPU usage. The pcrfit_single()
performs the analysis for a single process.

• The parameter data is the dataset containing the cycles and fluorescence amplitudes.
• The parameter n_cores defines the numbers of cores that should be left unused by this function.

By default, pcrfit_parallel() is using only one core (n_cores=1). n_cores="all" uses all available
cores. The output of the pcrfit_parallel() function is similar to the pcrfit_single() function.
Copy and paste the code to an R console to evaluate it

library(parallel)
library(doParallel)

pcrfit_parallel <- function(data, n_cores=1) {
Determine the number of available cores and register them
if (n_cores == "all") {

n_cores <- detectCores()
}

registerDoParallel(n_cores)

Prepare the data for further processing
Normalize RFU values to the alpha percentile (0.99)
cycles <- data.frame(cycles = data[, 1])
data_RFU <- data.frame(data[, -1])
data_RFU_colnames <- colnames(data_RFU)
data_RFU <- sapply(1L:ncol(data_RFU), function(i) {

data_RFU[, i] / quantile(data_RFU[, i], 0.99, na.rm = TRUE)
})
colnames(data_RFU) <- data_RFU_colnames

just to shut RCHeck for NSE we define ith_cycle
ith_cycle <- 1

73

run_res <- foreach::foreach(
ith_cycle = 1L:ncol(data_RFU),

.packages = c(
"bcp", "changepoint", "chipPCR", "ecp", "MBmca",
"PCRedux", "pracma", "qpcR", "robustbase",
"zoo"

),
.combine = rbind

) %dopar% {
suppressMessages(pcrfit_single(data_RFU[, ith_cycle]))

}

res <- cbind(runs = colnames(data_RFU), run_res)

rownames(res) <- NULL

res
}

Calculate curve features of an amplification curve data. Note: Not all
CPU cores are used. If need set "all" to use all available cores.
In this example the testdat dataset from the qpcR package is used.
The observations F1.1 and F1.2 are positive amplification curves. The observations
F1.3 and F1.4 are negative.
options(warn = -1)
library(qpcR)
res_pcrfit_parallel <- pcrfit_parallel(testdat[, 1:5])
res_pcrfit_parallel

74

1 Summary and Conclusions

The PCRedux enables the user to extract features from amplification curve data. Numerous features can
be extracted from the amplification curve. Some of them have not been described in the literature. We
consider PCRedux as enabling technology for further research. For example, the proposed features are
useable for machine learning applications or quality assessment of data.

Such software can be used in high-throughput applications in combination with other technologies, such
as next generation sequencing. Next generation sequencing depends on pre-tests of the input DNA, prior
to sequencing and is also used for confirmatory experiments after RNA-Seq quantification. To this end
automatized quality control and decision support are conceivable applications.

The pcrfit_single() function is an extendable wrapper function for several algorithm. Currently, 48
features can be calculated from an amplification curve.

Of note, we would like to emphasis that the functionality of this package is not limited to amplification
curve data from qPCR experiments. As stated before, amplification curves have a sigmoid curve shape.
Presumably, this can also be used for melting curve analysis.

References

Arlot, Sylvain, and Alain Celisse. 2010. “A survey of cross-validation procedures for model selection.”
Statistics Surveys 4: 40–79. doi:10.1214/09-SS054.

Bååth, Rasmus. 2012. “The State of Naming Conventions in R.” The R Journal 4 (2): 74–75. http:
//journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf.

Barratt, Kevin, and John F. Mackay. 2002. “Improving Real-Time PCR Genotyping Assays by
Asymmetric Amplification.” Journal of Clinical Microbiology 40 (4): 1571–2. doi:10.1128/JCM.40.4.1571-
1572.2002.

Bischl, Bernd, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus, Giuseppe
Casalicchio, and Zachary M. Jones. 2010. mlr: Machine learning in R. http://www.jmlr.org/papers/
volume17/15-066/source/15-066.pdf.

Boehringer, Stefan. 2013. “Dynamic Parallelization of R Functions.” The R Journal 5 (2): 88–97.
http://journal.r-project.org/archive/2013-2/RJournal_2013-2_boehringer.pdf.

Breiman, Leo. 2001. “Random forests.” Machine Learning 45 (1): 5–32.

Brito, Paula, ed. 2008. COMPSTAT 2008: Proceedings in Computational Statistics. Physica-Verlag
Heidelberg.

Bustin, Stephen. 2017. “The continuing problem of poor transparency of reporting and use of
inappropriate methods for RT-qPCR.” Biomolecular Detection and Quantification 12 (June): 7–9.
doi:10.1016/j.bdq.2017.05.001.

Bustin, Stephen A. 2014. “The reproducibility of biomedical research: Sleepers awake!” Biomolecular
Detection and Quantification 2 (December): 35–42. doi:10.1016/j.bdq.2015.01.002.

Charpiat, Guillaume, Olivier Faugeras, and Renaud Keriven. 2003. “Shape metrics, warping and statistics.”
In Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, 2:II–627. IEEE.
http://ieeexplore.ieee.org/abstract/document/1246758/.

Cook, Dianne, and Deborah F. Swayne. 2007. Interactive and Dynamic Graphics for Data Analysis:
With R and GGobi. 2007 edition. 1st Ser. New York: Springer. http://www.springer.com/us/book/
9780387717616.

De Vries, Andrie, and Joris Meys. 2012. R for Dummies. 2nd ed. John Wiley & Sons.

Dvinge, Heidi, and Paul Bertone. 2009. “HTqPCR: high-throughput analysis and visualization of quanti-
tative real-time PCR data in R.” Bioinformatics 25 (24): 3325–6. doi:10.1093/bioinformatics/btp578.

Eddelbuettel, Dirk. 2017. “CRAN Task View: High-Performance and Parallel Computing with R,”

75

https://doi.org/10.1214/09-SS054
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf
https://doi.org/10.1128/JCM.40.4.1571-1572.2002
https://doi.org/10.1128/JCM.40.4.1571-1572.2002
http://www.jmlr.org/papers/volume17/15-066/source/15-066.pdf
http://www.jmlr.org/papers/volume17/15-066/source/15-066.pdf
http://journal.r-project.org/archive/2013-2/RJournal_2013-2_boehringer.pdf
https://doi.org/10.1016/j.bdq.2017.05.001
https://doi.org/10.1016/j.bdq.2015.01.002
http://ieeexplore.ieee.org/abstract/document/1246758/
http://www.springer.com/us/book/9780387717616
http://www.springer.com/us/book/9780387717616
https://doi.org/10.1093/bioinformatics/btp578

September. https://CRAN.R-project.org/view=HighPerformanceComputing.

Erdman, Chandra, John W. Emerson, and others. 2007. “bcp: an R package for performing a Bayesian
analysis of change point problems.” Journal of Statistical Software 23 (3): 1–13. https://www.researchgate.
net/profile/Chandra_Erdman/publication/26538600_bcp_An_R_Package_for_Performing_a_
Bayesian_Analysis_of_Change_Point_Problems/links/56dee56608aec8c022cf2fd2.pdf.

Febrero-Bande, Manuel, and Manuel Oviedo de la Fuente. 2012. “Statistical Computing in Functional
Data Analysis: The R Package fda.usc.” Journal of Statistical Software 51 (4): 1–28. http://www.
jstatsoft.org/v51/i04/.

Feuer, Ronny, Sebastian Vlaic, Janine Arlt, Oliver Sawodny, Uta Dahmen, Ulrich M. Zanger, and Maria
Thomas. 2015. “LEMming: A Linear Error Model to Normalize Parallel Quantitative Real-Time PCR
(qPCR) Data as an Alternative to Reference Gene Based Methods.” PLOS ONE 10 (9): e0135852.
doi:10.1371/journal.pone.0135852.

Greene, Casey S., Jie Tan, Matthew Ung, Jason H. Moore, and Chao Cheng. 2014. “Big Data
Bioinformatics.” Journal of Cellular Physiology 229 (12): 1896–1900. doi:10.1002/jcp.24662.

Gunay, Melih, Evgin Goceri, and Rajarajeswari Balasubramaniyan. 2016. “Machine Learning for
Optimum CT-Prediction for qPCR.” In Machine Learning and Applications (ICMLA), 2016 15th
IEEE International Conference on Machine Learning and Applications (ICMLA), 588–92. IEEE.
doi:10.1109/ICMLA.2016.0103.

Herrera, Francisco, Sebastián Ventura, Rafael Bello, Chris Cornelis, Amelia Zafra, Dánel Sánchez-Tarragó,
and Sarah Vluymans. 2016. Multiple Instance Learning. Cham: Springer International Publishing.
http://link.springer.com/10.1007/978-3-319-47759-6.

Hothorn, Torsten, and Brian S. Everitt. 2014. A Handbook of Statistical Analyses using R, Third Edition.
3rd ed. Oakville: Chapman; Hall/CRC.

Hothorn, Torsten, Kurt Hornik, and Achim Zeileis. 2006. “Unbiased Recursive Partitioning: A Con-
ditional Inference Framework.” Journal of Computational and Graphical Statistics 15 (3): 651–74.
doi:10.1198/106186006X133933.

Igual, Laura, and Santi Seguí. 2017. Introduction to Data Science. Undergraduate Topics in Computer
Science. Cham: Springer International Publishing. http://link.springer.com/10.1007/978-3-319-50017-1.

Isaac, Peter G. 2009. “Essentials of nucleic acid analysis: a robust approach.” Annals of Botany 104 (2):
vi–vi. doi:10.1093/aob/mcp135.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to
Statistical Learning. Vol. 103. Springer Texts in Statistics. New York, NY: Springer New York.
http://link.springer.com/10.1007/978-1-4614-7138-7.

James, Nicholas A., and David S. Matteson. 2013. “ecp: An R package for nonparametric multiple change
point analysis of multivariate data.” arXiv Preprint arXiv:1309.3295. https://arxiv.org/abs/1309.3295.

Killick, Rebecca, and Idris A. Eckley. 2014. “changepoint: An R Package for Changepoint Analysis.”
Journal of Statistical Software 58 (3): 1–19. http://www.jstatsoft.org/v58/i03/.

Kitchin, Rob. 2014. The data revolution : big data, open data, data infrastructures & their consequences.
Los Angeles, California London: SAGE Publications.

Knuth, D. E. 1984. “Literate Programming.” The Computer Journal 27 (2): 97–111. doi:10.1093/comjnl/27.2.97.

Kuhn, Max. 2008. “Building Predictive Models in R Using the caret Package.” Journal of Statistical
Software 28 (5). http://www.jstatsoft.org/v28/i05/.

Lanubile, F., C. Ebert, R. Prikladnicki, and A. Vizcaíno. 2010. “Collaboration Tools for Global Software
Engineering.” IEEE Software 27 (2): 52–55. doi:10.1109/MS.2010.39.

Lee, J. K. 2010. Statistical Bioinformatics: For Biomedical and Life Science Researchers. Wiley.
https://books.google.de/books?id=aT1MBGtxSNsC.

Lefever, Steve, Jan Hellemans, Filip Pattyn, Daniel R. Przybylski, Chris Taylor, René Geurts, Andreas
Untergasser, Jo Vandesompele, and on behalf of the RDML Consortium. 2009. “RDML: structured

76

https://CRAN.R-project.org/view=HighPerformanceComputing
https://www.researchgate.net/profile/Chandra_Erdman/publication/26538600_bcp_An_R_Package_for_Performing_a_Bayesian_Analysis_of_Change_Point_Problems/links/56dee56608aec8c022cf2fd2.pdf
https://www.researchgate.net/profile/Chandra_Erdman/publication/26538600_bcp_An_R_Package_for_Performing_a_Bayesian_Analysis_of_Change_Point_Problems/links/56dee56608aec8c022cf2fd2.pdf
https://www.researchgate.net/profile/Chandra_Erdman/publication/26538600_bcp_An_R_Package_for_Performing_a_Bayesian_Analysis_of_Change_Point_Problems/links/56dee56608aec8c022cf2fd2.pdf
http://www.jstatsoft.org/v51/i04/
http://www.jstatsoft.org/v51/i04/
https://doi.org/10.1371/journal.pone.0135852
https://doi.org/10.1002/jcp.24662
https://doi.org/10.1109/ICMLA.2016.0103
http://link.springer.com/10.1007/978-3-319-47759-6
https://doi.org/10.1198/106186006X133933
http://link.springer.com/10.1007/978-3-319-50017-1
https://doi.org/10.1093/aob/mcp135
http://link.springer.com/10.1007/978-1-4614-7138-7
https://arxiv.org/abs/1309.3295
http://www.jstatsoft.org/v58/i03/
https://doi.org/10.1093/comjnl/27.2.97
http://www.jstatsoft.org/v28/i05/
https://doi.org/10.1109/MS.2010.39
https://books.google.de/books?id=aT1MBGtxSNsC

language and reporting guidelines for real-time quantitative PCR data.” Nucleic Acids Research 37 (7):
2065–9. doi:10.1093/nar/gkp056.

Liaw, Andy, and Matthew Wiener. 2002. “Classification and Regression by randomForest.” R News 2
(3): 18–22. http://CRAN.R-project.org/doc/Rnews/.

Luan, Shenghua, Lael J. Schooler, and Gerd Gigerenzer. 2011. “A signal-detection analysis of fast-and-
frugal trees.” Psychological Review 118 (2): 316–38. doi:10.1037/a0022684.

Luo, Ping, Liang Lin, and Hongyang Chao. 2010. “Learning shape detector by quantizing curve segments
with multiple distance metrics.” In European Conference on Computer Vision, 342–55. Springer.

Mallona, Izaskun, Anna Díez-Villanueva, Berta Martín, and Miguel A. Peinado. 2017. “Chainy:
an universal tool for standardized relative quantification in real-time PCR.” Bioinformatics.
doi:10.1093/bioinformatics/btw839.

Mallona, Izaskun, Julia Weiss, and Marcos Egea-Cortines. 2011. “pcrEfficiency: a Web tool for PCR
amplification efficiency prediction.” BMC Bioinformatics 12: 404. doi:10.1186/1471-2105-12-404.

Martins, C., G. Lima, Mr. Carvalho, L. Cainé, and Mj. Porto. 2015. “DNA quantification by real-
time PCR in different forensic samples.” Forensic Science International: Genetics Supplement Series 5
(December): e545–e546. doi:10.1016/j.fsigss.2015.09.215.

Matz, Mikhail V., Rachel M. Wright, and James G. Scott. 2013. “No Control Genes Required: Bayesian
Analysis of qRT-PCR Data.” PLoS ONE 8 (8): e71448. doi:10.1371/journal.pone.0071448.

McCall, Matthew N., Helene R. McMurray, Hartmut Land, and Anthony Almudevar. 2014. “On
non-detects in qPCR data.” Bioinformatics 30 (16): 2310–6. doi:10.1093/bioinformatics/btu239.

McFadden, Daniel L. 1974. “Conditional Logit Analysis of Qualitative Choice Behavior.” In Frontiers
in Economics, Frontiers in Economics:105–42. P. Zarembka (ed.). New York: Academic Press. https:
//eml.berkeley.edu/reprints/mcfadden/zarembka.pdf.

Myers, Glenford J., Tom Badgett, Todd M. Thomas, and Corey Sandler. 2004. The art of software
testing. 2nd ed. Hoboken, N.J: John Wiley & Sons.

Neve, Jan De, Joris Meys, Jean-Pierre Ottoy, Lieven Clement, and Olivier Thas. 2014. “unified-
WMWqPCR: the unified Wilcoxon–Mann–Whitney test for analyzing RT-qPCR data in R.” Bioinformatics
30 (17): 2494–5. doi:10.1093/bioinformatics/btu313.

Nolan, Tania, Rebecca E Hands, and Stephen A Bustin. 2006. “Quantification of mRNA using real-time
RT-PCR.” Nature Protocols 1 (November): 1559. http://dx.doi.org/10.1038/nprot.2006.236.

Pabinger, Stephan, Stefan Rödiger, Albert Kriegner, Klemens Vierlinger, and Andreas Weinhäusel. 2014.
“A survey of tools for the analysis of quantitative PCR (qPCR) data.” Biomolecular Detection and
Quantification 1 (1): 23–33. doi:10.1016/j.bdq.2014.08.002.

Pabinger, Stephan, Gerhard G. Thallinger, René Snajder, Heiko Eichhorn, Robert Rader, and Zlatko
Trajanoski. 2009. “QPCR: Application for real-time PCR data management and analysis.” BMC
Bioinformatics 10 (1): 268. doi:10.1186/1471-2105-10-268.

Perkins, James R., John M. Dawes, Steve B. McMahon, David LH Bennett, Christine Orengo, and Matthias
Kohl. 2012. “ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation
of RT-qPCR quantification cycle (Cq) data.” BMC Genomics 13 (1): 296. doi:10.1186/1471-2164-13-296.

Phillips, Nathaniel, Hansjoerg Neth, Jan Woike, and Wolfgang Gaissmaer. 2017. FFTrees: Generate,
Visualise, and Evaluate Fast-and-Frugal Decision Trees. https://CRAN.R-project.org/package=FFTrees.

Porzelius, Christine, Harald Binder Jochen Knaus, and Guido Schwarzer. 2009. “Easier Parallel
Computing in R with snowfall and sfCluster.” The R Journal 1 (1): 54–59. http://journal.r-project.org/
archive/2009-1/RJournal_2009-1_Knaus+et+al.pdf.

Quinlan, J. Ross. 1986. “Induction of decision trees.” Machine Learning 1 (1): 81–106. http://link.
springer.com/article/10.1007/BF00116251.

Richards, F. J. 1959. “A Flexible Growth Function for Empirical Use.” Journal of Experimental Botany

77

https://doi.org/10.1093/nar/gkp056
http://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1037/a0022684
https://doi.org/10.1093/bioinformatics/btw839
https://doi.org/10.1186/1471-2105-12-404
https://doi.org/10.1016/j.fsigss.2015.09.215
https://doi.org/10.1371/journal.pone.0071448
https://doi.org/10.1093/bioinformatics/btu239
https://eml.berkeley.edu/reprints/mcfadden/zarembka.pdf
https://eml.berkeley.edu/reprints/mcfadden/zarembka.pdf
https://doi.org/10.1093/bioinformatics/btu313
http://dx.doi.org/10.1038/nprot.2006.236
https://doi.org/10.1016/j.bdq.2014.08.002
https://doi.org/10.1186/1471-2105-10-268
https://doi.org/10.1186/1471-2164-13-296
https://CRAN.R-project.org/package=FFTrees
http://journal.r-project.org/archive/2009-1/RJournal_2009-1_Knaus+et+al.pdf
http://journal.r-project.org/archive/2009-1/RJournal_2009-1_Knaus+et+al.pdf
http://link.springer.com/article/10.1007/BF00116251
http://link.springer.com/article/10.1007/BF00116251

10 (2): 290–301. doi:10.1093/jxb/10.2.290.

Ritz, Christian, and Andrej-Nikolai Spiess. 2008. “qpcR: an R package for sigmoidal model selec-
tion in quantitative real-time polymerase chain reaction analysis.” Bioinformatics 24 (13): 1549–51.
doi:10.1093/bioinformatics/btn227.

Rödiger, Stefan, Alexander Böhm, and Ingolf Schimke. 2013. “Surface Melting Curve Analysis with R.”
The R Journal 5 (2): 37–53. http://journal.r-project.org/archive/2013-2/roediger-bohm-schimke.pdf.

Rödiger, Stefan, Michał Burdukiewicz, and Peter Schierack. 2015. “chipPCR: an R package to pre-process
raw data of amplification curves.” Bioinformatics 31 (17): 2900–2902. doi:10.1093/bioinformatics/btv205.

Rödiger, Stefan, Michał Burdukiewicz, Konstantin A. Blagodatskikh, and Peter Schierack. 2015. “R as
an Environment for the Reproducible Analysis of DNA Amplification Experiments.” The R Journal 7
(2): 127–50. http://journal.r-project.org/archive/2015-1/RJ-2015-1.pdf.

Rödiger, Stefan, Michał Burdukiewicz, Andrej-Nikolai Spiess, and Konstantin Blagodatskikh. 2017.
“Enabling reproducible real-time quantitative PCR research: the RDML package.” Bioinformatics, August.
doi:10.1093/bioinformatics/btx528.

Rödiger, Stefan, Peter Schierack, Alexander Böhm, Jörg Nitschke, Ingo Berger, Ulrike Frömmel, Carsten
Schmidt, et al. 2013. “A highly versatile microscope imaging technology platform for the multiplex
real-time detection of biomolecules and autoimmune antibodies.” Advances in Biochemical Engineer-
ing/Biotechnology 133: 35–74. doi:10.1007/10_2011_132.

Ronde, Maurice W. J. de, Jan M. Ruijter, David Lanfear, Antoni Bayes-Genis, Maayke G. M. Kok,
Esther E. Creemers, Yigal M. Pinto, and Sara-Joan Pinto-Sietsma. 2017. “Practical data handling
pipeline improves performance of qPCR-based circulating miRNA measurements.” RNA 23 (5): 811–21.
doi:10.1261/rna.059063.116.

Rote, Günter. 1991. “Computing the minimum Hausdorff distance between two point sets on a line under
translation.” Information Processing Letters 38 (3): 123–27. doi:10.1016/0020-0190(91)90233-8.

Ruijter, J M, C Ramakers, W M H Hoogaars, Y Karlen, O Bakker, M J B van den Hoff, and A F M
Moorman. 2009. “Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR
data.” Nucleic Acids Research 37 (6): e45. doi:10.1093/nar/gkp045.

Ruijter, Jan M., Peter Lorenz, Jari M. Tuomi, Michael Hecker, and Maurice J. B. van den Hoff.
2014. “Fluorescent-increase kinetics of different fluorescent reporters used for qPCR depend on moni-
toring chemistry, targeted sequence, type of DNA input and PCR efficiency.” Microchimica Acta, 1–8.
doi:10.1007/s00604-013-1155-8.

Ruijter, Jan M., Michael W. Pfaffl, Sheng Zhao, Andrej N. Spiess, Gregory Boggy, Jochen Blom, Robert
G. Rutledge, et al. 2013. “Evaluation of qPCR curve analysis methods for reliable biomarker discovery:
Bias, resolution, precision, and implications.” Methods 59 (1): 32–46. doi:10.1016/j.ymeth.2012.08.011.

Ruijter, Jan M., Adrián Ruiz Villalba, Jan Hellemans, Andreas Untergasser, and Maurice J. B. van
den Hoff. 2015. “Removal of between-run variation in a multi-plate qPCR experiment.” Biomolecular
Detection and Quantification, Special Issue: Advanced Molecular Diagnostics for Biomarker Discovery –
Part I, 5 (September): 10–14. doi:10.1016/j.bdq.2015.07.001.

Saeys, Y., I. Inza, and P. Larranaga. 2007. “A review of feature selection techniques in bioinformatics.”
Bioinformatics 23 (19): 2507–17. doi:10.1093/bioinformatics/btm344.

Sauer, Eva, Ann-Kathrin Reinke, and Cornelius Courts. 2016. “Differentiation of five body fluids from
forensic samples by expression analysis of four microRNAs using quantitative PCR.” Forensic Science
International: Genetics 22 (May): 89–99. doi:10.1016/j.fsigen.2016.01.018.

Schmidberger, Markus, Martin Morgan, Dirk Eddelbuettel, Hao Yu, Luke Tierney, and Ulrich Mansmann.
2009. “State-of-the-art in Parallel Computing with R.” Journal of Statistical Software 47 (1).

Scott, A. J., and M. Knott. 1974. “A Cluster Analysis Method for Grouping Means in the Analysis of
Variance.” Biometrics 30 (3): 507. doi:10.2307/2529204.

Seibelt, Pablo. 2017. xray: X Ray Vision on your Datasets. https://CRAN.R-project.org/package=xray.

Sing, Tobias, Oliver Sander, Niko Beerenwinkel, and Thomas Lengauer. 2005. “ROCR: visualizing

78

https://doi.org/10.1093/jxb/10.2.290
https://doi.org/10.1093/bioinformatics/btn227
http://journal.r-project.org/archive/2013-2/roediger-bohm-schimke.pdf
https://doi.org/10.1093/bioinformatics/btv205
http://journal.r-project.org/archive/2015-1/RJ-2015-1.pdf
https://doi.org/10.1093/bioinformatics/btx528
https://doi.org/10.1007/10_2011_132
https://doi.org/10.1261/rna.059063.116
https://doi.org/10.1016/0020-0190(91)90233-8
https://doi.org/10.1093/nar/gkp045
https://doi.org/10.1007/s00604-013-1155-8
https://doi.org/10.1016/j.ymeth.2012.08.011
https://doi.org/10.1016/j.bdq.2015.07.001
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.1016/j.fsigen.2016.01.018
https://doi.org/10.2307/2529204
https://CRAN.R-project.org/package=xray

classifier performance in R.” Bioinformatics 21 (20): 3940–1. doi:10.1093/bioinformatics/bti623.

Spiess, Andrej-Nikolai, Claudia Deutschmann, Michał Burdukiewicz, Ralf Himmelreich, Katharina Klat,
Peter Schierack, and Stefan Rödiger. 2015. “Impact of Smoothing on Parameter Estimation in Quantitative
DNA Amplification Experiments.” Clinical Chemistry 61 (2): 379–88. doi:10.1373/clinchem.2014.230656.

Spiess, Andrej-Nikolai, Caroline Feig, and Christian Ritz. 2008. “Highly accurate sigmoidal fitting
of real-time PCR data by introducing a parameter for asymmetry.” BMC Bioinformatics 9 (1): 221.
doi:10.1186/1471-2105-9-221.

Spiess, Andrej-Nikolai, Stefan Rödiger, Michał Burdukiewicz, Thomas Volksdorf, and Joel Tellinghuisen.
2016. “System-specific periodicity in quantitative real-time polymerase chain reaction data questions
threshold-based quantitation.” Scientific Reports 6 (December): 38951. doi:10.1038/srep38951.

Therneau, Terry, Beth Atkinson, and Brian Ripley. 2017. rpart: Recursive Partitioning and Regression
Trees. https://CRAN.R-project.org/package=rpart.

Tichopad, Ales, Michael Dilger, Gerhard Schwarz, and Michael W Pfaffl. 2003. “Standardized deter-
mination of real-time PCR efficiency from a single reaction set-up.” Nucleic Acids Research 31 (20):
e122.

Tierney, Nicholas. 2017. “Visdat: Visualising Whole Data Frames.” The Journal of Open Source Software
2 (16). The Open Journal.

Vera, Gonzalo, Ritsert C. Jansen, and Remo L. Suppi. 2008. “R/parallel – speeding up bioinformatics
analysis with R.” BMC Bioinformatics 9 (September): 390. doi:10.1186/1471-2105-9-390.

Walsh, Ian, Gianluca Pollastri, and Silvio C. E. Tosatto. 2015. “Correct machine learning on
protein sequences: a peer-reviewing perspective.” Briefings in Bioinformatics, September, bbv082.
doi:10.1093/bib/bbv082.

Wickham, Hadley. 2011. “testthat: Get Started with Testing.” The R Journal 3 (1): 5–10. http:
//journal.r-project.org/archive/2011/RJ-2011-002/index.html.

Williams, Graham J. 2009. “Rattle: A Data Mining GUI for R.” The R Journal 1 (2): 45–55. http:
//journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf.

Wilson, Greg, Jennifer Bryan, Karen Cranston, Justin Kitzes, Lex Nederbragt, and Tracy K. Teal.
2017. “Good enough practices in scientific computing.” PLOS Computational Biology 13 (6): e1005510.
doi:10.1371/journal.pcbi.1005510.

79

https://doi.org/10.1093/bioinformatics/bti623
https://doi.org/10.1373/clinchem.2014.230656
https://doi.org/10.1186/1471-2105-9-221
https://doi.org/10.1038/srep38951
https://CRAN.R-project.org/package=rpart
https://doi.org/10.1186/1471-2105-9-390
https://doi.org/10.1093/bib/bbv082
http://journal.r-project.org/archive/2011/RJ-2011-002/index.html
http://journal.r-project.org/archive/2011/RJ-2011-002/index.html
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
https://doi.org/10.1371/journal.pcbi.1005510

	Analysis of Simgmoid Shaped Curves for Data Mining and Machine Learning Applications: An Introduction
	Why is there is need for this software?
	Technologies for Working with Amplification Curve Data
	Relevance of Amplification Curve Data Analysis
	Software for the Analysis of Amplification Curve Data
	Principles of Amplification Curve Data Analysis

	Development, Implementation and Installation
	Version Control and Continuous Integration
	Naming Convention and Literate Programming
	Installation of the Package
	Unit Testing of the Package

	Technologies for Amplification Curve Classification and Classified Amplification Curves
	Classified Amplification Curves
	Graphical User Interfaces for Amplification Curve Classification

	Functions of the Package
	Helper Functions of the Package
	decision_modus() - A Function to Get a Decision (Modus) from a Vector of Classes
	visdat_pcrfit() - A Function to Visualize the Content of Data From an Analysis with the pcrfit_single() Function
	performeR() - Performance Analysis for Binary Classification
	qPCR2fdata() - A Helper Function to Convert Amplification Curve Data to the fdata Format

	Amplification Curve Analysis Functions of the package
	pcrfit_single() - A Function to Calculate Features from an Amplification Curve
	Model Selection
	Quantification Points, Ratios and Slopes
	autocorrelation_test() - A Function to Detect Positive Amplification Curves
	earlyreg() - A Function to Calculate the Slope and Intercept in the Ground Phase of an Amplification Curve
	head2tailratio() - A Function to Calculate the Ratio of the Head and the Tail of a Quantitative PCR Amplification Curve
	hookreg() and hookregNL() - Functions to Detect Hook Effekt-like Curvatures
	mblrr() - A Function Perform the Quantile-filter Based Local Robust Regression
	Change point analysis
	Test of an amplification reaction
	Parallel Programming

	Summary and Conclusions
	References

