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Abstract

This paper describes the R package OptimaRegion for the computation of confidence re-
gions on the location of the optima (global maxima or minima) of response surface models.
Both parametric (quadratic and cubic polynomials in up to 5 covariates) and nonparamet-
ric models (thin plate splines in 2 covariates) are supported. The methods are based on
bootstrapping and Tukey’s data depth, and therefore their performance does not rely on
any distributional assumption about the response. A coverage analysis is presented demon-
strating the quality of the regions found. The package also contains an R implementation
of the Gloptipoly algorithm for the global optimization of polynomial responses subject to
bounds.

Keywords: Nonparametric regression, Response Surface Methodology, Optimization, Data-
depth .

Introduction

The goal of many experiments in engineering and science is to find either the maximum, or
“peak”, or the minimum, or “deepest valley”, of some response of interest. How to design and
analyze optimization experiments are problems that pertain to the classical field of Response
Surface Methodology (RSM) (Box and Draper 1987; Del Castillo 2007). The classical approach
in RSM consists in optimizing a fitted model obtained from experimental data, treating it as
if it were the true input/output description of the system under study, neglecting the inherent
uncertainty of the fitted model. From a frequentist point of view, any property or characteristic
of a response surface fitted from experimental data is subject to sampling variability, and hence it
should be possible, in principle, to conduct statistical inference on it. Solutions to the problem of
statistical inference in RSM have been proposed, usually assuming a polynomial response surface
model fitted with ordinary least squares under a normality assumption (Myers and Montgomery
1995; Del Castillo 2007).

One of the most useful inferences in RSM is that of finding a confidence region (CR) on the
location of the global maximum or minimum of a response surface. These CRs have found several
applications in engineering and science. For instance, Carter, Wampler, Stablein, and Campbell
(1982) proposed the idea of using a CR for the optimal dose combination of an anti-Cancer
drug as a way to test for therapeutic synergism. If the CR for the optimal dose combination
excludes all zero-dose treatment combinations, then there is statistically significant evidence that
all of the components are therapeutically synergistic. Otherwise, there are components that
can be eliminated from the formulation, a possibility of interest to companies wishing to reduce
costs. Also related to pharmaceuticals, a CR on the optima of a response is useful for finding a
“design space” in drug development (Peterson 2008). In general, a CR on the optimal settings
of a production process is useful in industrial experiments as their size provides a measure of
robustness. It also provides a set of solutions within which the engineer can “tweak” the optimal
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recipe without jeopardizing the expected system response (Del Castillo 2007). A quite different
application comes from evolutionary biology. Brooks, Hunt, Blows, Smith, Bussiere, and Jennions
(2005) use a CR on the maxima of experimentally observed fitness responses to test whether an
animal has achieved stabilizing selection.

Previous work on CRs for the location of response surface optima assume normal-distributed
errors and a quadratic polynomial form (Peterson, Cahya, and del Castillo 2002; Cahya, del
Castillo, and Peterson 2004; Wan, Liu, Bretz, and Han 2016), with the first authors providing
MATLAB code for up to 3 experimental factors. Early work on confidence regions (Box and
Hunter 1954) focused on regions for stationary points of response surfaces, not necessarily on
optimum points, and hence are of limited value (Del Castillo and Cahya 2001). We make special
emphasis in solving the underlying global optimization problem of a response surface that is
not necessarily convex or concave, a problem that has plagued this topic since its inception, the
possibility of non-gaussian errors, and the use of either polynomial models of higher order and in
higher dimensions or more flexible spline models. In this paper, we discuss and illustrate methods
implemented in the R package OptimaRegion for the computation and display of distribution-free
CRs on the location of global optima of both polynomial and thin plate spline models. The
CRs are data-depth based, and follow recent results on the computation of confidence regions of
parametric functions using bootstrapping.

Description of the problem

We wish to find a confidence region (CR) for the (global) optima of a function in k variables
fitted from observed experimental data without relying in multivariate normality or any other
distributional assumption of the data. We assume in this paper a maximization goal without
loss of generality. In this paper, bootstrapping methods and their software implementation are
presented that provide valid and unbiased confidence regions for the optima of a function fitted
either using a linear regression (polynomial) model or a thin plate spline model. A valid 1− α
CR for a parameter θ, Cθ

1−α, is a set such that P (θ ∈ Cθ
1−α) ≥ 1− α. Interest is of course in

CR’s that are smallest in size and still have confidence level of at least 1 − α, and hence we
will consider not only the coverage but the area of the CR’s. Also, a 1 − α CR is unbiased
if P (θ′ ∈ Cθ

1−α) ≤ 1 − α for all θ′ 6= θ (Casella and Berger 2002). That is, the probability of
covering any wrong parameter should always be less than the probability of covering the true
parameter.

More specifically, we wish to find a CR for the function:

x∗ = h(x; β̂) = arg max f(x, β̂)

where f(x, β̂) is either a polynomial regression model in x or a Thin Plate Spline model in x. In
both cases, we assume maximization without loss of generality, and subject the optimum to lie
in a region defined by linear bounds on the regressors. In the polynomial model case, x∗ ∈ Rk is
a random vector with a sampling distribution that depends on the sampling distribution of the
p× 1 least squares estimator β̂ in Y = Xβ + ε where X is a n× p design matrix with columns
corresponding to the terms in the quadratic polynomial model f(x, β̂), and the random errors εi
in ε are to be i.i.d. with zero mean, constant variance and with an unknown and unspecified
distribution.

Direct bootstrapping approach

A direct application of the idea of bootstrapping consists in fitting many response surface models,
globally optimizing each and trimming the outmost α percent x∗ = h(β) vectors using some



Enrique del Castillo, Peng Chen, Adam Meyers, John Hunt, James Rapkin 3

Figure 1: A direct bootstrapping approach to compute the CR on the optima of a response surface f(x,β), C
h(β)
1−α

fitted to experimental data.

method that orders interior and exterior multivariate data (see Figure 1). Unfortunately (see
Table 1 below), this method does not provide valid confidence regions, i.e., the coverage provided
is smaller than the advertised coverage. The reason, as discussed by Woutersen and Ham (2013),
is that by trimming the h(β) values we are eliminating extreme observations of h that occurred
because either a) β was very extreme or b) because β is not very extreme but h(β) is extreme.
A CR on h(β) should exclude instances where h, and not β, are extreme. This is achieved
with the method implemented in the OptimaRegion package, based on Rao’s confidence region
approach (Rao 1973) but not with the direct approach. As mentioned by Wan et al. (2016), Rao’s
projection method is the only confidence set available that guarantees the (1− α) confidence
level and hence it is the basis of our bootstrapping method.

Implementation of the bootstrapping methods in OptimaRegion

OptimaRegion implements a bootstrapping approach for confidence regions of response surface
optima based on Rao (1973) (p. 473) projection idea, mapping the confidence set of response
parameters to the confidence set of optima in a discrete or pointwise manner.

1 Obtain a 100(1− α)% CR for β, Cβ
1−α, from the asymptotic distribution of β̂.

2 For each β ∈ Cβ
1−α, evaluate h(β).

3 Let C
h(β)
1−α = {τ ∈ Rk|τ = h(β) for all β ∈ Cβ

1−α}

To estimate this confidence region, we use bootstrapping in steps 1 and 3:

1B Obtain an estimate of the 100(1− α)% CR for β by bootstrapping B instances of β̂. These

instances make Ĉβ
1−α;

2B For each β ∈ Ĉβ
1−α, evaluate h(β).

3B Let Ĉ
h(β)
1−α = {τ ∈ Rk|τ = h(β) for all β ∈ Ĉβ

1−α}

Note that in order to implement this method for h(x; β̂) = arg max f(x, β̂), we need a means
to define the “innermost” β parameters in step 1B, and an optimization method that finds the
global maximums of each h(β) in step 2B. In step 1B, OptimaRegion uses Tukey’s data depth
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Figure 2: Overview of the projection bootstrapping approach implemented in OptimaRegion for finding a CR on
the global optima of a function f(x,β), C

h(β)
1−α from experimental data. First a CR on the response parameters,

Cβ1−α is obtained.

(Tukey 1975) as implemented in the DepthProc package, and in step 2B it uses either a nonlinear
programming algorithm with multiple restarts as implemented in the nloptr package (for thin
plate spline and quadratic polynomials subject to linear constraints in two regressors) or our R
implementation of the GloptiPoly global optimization algorithm (for higher polynomial models
subject to bounds). Tukey’s data depth is used to order the B instances β̂ and trim the α %
outermost (the α % with lowest DT value; for instance, points such that DT (x) = 0 define the

convex hull of F ). This yields Ĉβ
1−α in step 1B.

Furthermore, since we are computing Ĉβ
1−α pointwise for a finite number of B vectors β, our

final confidence region for h(β) will also be a pointwise region. This means that to end up with
a region we need some additional rule that defines the boundary of the region. Woutersen and
Ham (2013) the authors propose to use an arbitrary quantity η > 0 and define the CR for h(β)
to be the set of all β that are no farther than the euclidean distance η from each of the B h(β)
values (in R2 the CR will then be composed of the union of B circles around each x∗). While
this step was specified in order to be able to proof the validity of the resulting CR, in practice it
is not clear how to select the radius η to make the resulting CR as small as possible and avoid
overly conservative CR’s. OptimaRegion displays the CRs by plotting the convex hull of all the
points generated. The coordinates of all the generated points inside the CR are returned, and
the average or centroid estimate of the optimal points x∗, a “bagging” (bootstrapped aggregated)
estimate, is also plotted.

In what follows we concentrate in computational methods for obtaining CR’s for h(x; β̂) =
arg max f(x, β̂) subject to linear bounds. The underlying global optimization process of a non-
convex function makes finding the desired confidence regions a very difficult problem for k > 2.
Therefore, OptimaRegion contains separate functions for k = 2 where a nonlinear programming
method is called from a lattice of initial points, and for polynomial functions with 2 < k ≤ 5
using the GloptiPoly global optimization method which guarantees finding the location of the
global optima in polynomial models. Both ordinary least-squares-fitted polynomial models and
regularized thin plate spline models are considered. The package assumes these models are to be
fit from experimental data, so the user only need to enter the response (y) and covariate (x) data.

Types of response surface models considered in package OptimaRegion

The package finds the CR of optima of two classes of response surface models:
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• Polynomial response surface models.- These are linear parametric models of the form:

y = f(x,β) + ε

where f(x,β) =
∑p−1

j=0 βjφj(x) where φj(x) : Rk → R is a polynomial basis, typically with
φ0(x) = 1. Most common in response surface methodology is the quadratic polynomial
case in k numeric factors, where p = k(k − 1)/2 + 2k + 1 (Myers and Montgomery 1995).
Also common in mixture experiments are cubic polynomial models. OptimaRegion fits and
determines the CR of the optima of up to cubic polynomials in up to k = 5 experimental
factors. The fitting is based on ordinary least squares using the lm function in package
stats. Bootstrapping is based on the ordinary residuals yi − f̂(xi).

• Thin Plate Spline models.- Low order polynomials as in used in Response Surface method-
ology are not usually flexible enough to model widely variable functions over a larger
experimental region. For an instance in evolutionary biology, Rapkin, Jensen, Archer,
House, Sakaluk, Del Castillo, and Hunt (2018) used as a more flexible alternative Thin
Plate Splines (TSP) to model trade-offs between immune response and reproductive effort
in nutrition experiments with crickets, and computed CRs on the maxima of the fitted
functions. TSPs are nonparametric models that have the form y = f(x) + ε where f(x) is
fitted by solving the penalized sum of squares:

f̂ = arg min
f∈H

S(f) = arg min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 + λJm(f)

where λ > 0 is a quantity that penalizes the total variation of f , Jm(f). The minimization
is done over a Hilbert space H decomposed as H = H0 ⊕H1 where H0 = span{φi(x)}pi=1 is
the so-called null space of functions φ(x) that are not penalized and H1 is a reproducible
kernel Hilbert space of functions whose smoothness determines the smoothness of the fitted
function, which results in f̂(x) being equal to the sum of specific instances of these two
types of functions. Remarkably, the Kimeldorf-Wahba representer theorem shows how the
solution to this infinite dimensional optimization problem is given by a finite number of
parameters:

f̂ = T β̂ +Kδ̂

where T is an n× p matrix of polynomial functions of order m and K is an n× n matrix,
K = {R(xi,xj)}ni,j=1, where the R(xi,xj) are radial basis functions that depend on the

distance r only, i.e., R(r) = a||r||2m−d log(r) if d is even and R(r) = a||r||rd−m if d is
odd (a is a constant that depends on m and d). The vectors of parameters β and δ
are obtained from minimizing S(f) (for a proof and details, see Wahba (1990)). This
formulation shows the relation between a thin plate spline model and an universal kriging
model with a parameter-free spatial covariance model (Nychka 2000). Thus, despite being a
nonparametric model, the prediction at a new point x0 is given by the parametric expression

f̂(x0) = T′0β̂ + K′0δ̂

where T0 and K0 are 1 × p and K0 are 1 × n vectors analogous to matrices T and K.
Bootstrapping is based on the residuals y − T β̂ −Kδ̂. OptimaRegion fits and computes
residuals for this model using the fields package (Douglas Nychka, Reinhard Furrer, John
Paige, and Stephan Sain 2017). The aforementioned projection method is then based on
building first a bootstrapped joint CR on parameters (β, δ).

Functions in package OptimaRegion

There are 5 main functions in the OptimaRegion package:
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Function Objective

OptRegionQuad Computes distribution-free bootstrapped confidence regions
for the location of the optima of a quadratic polynomial model in 2 regressors

OptRegionTps Computes distribution-free bootstrapped confidence regions
for the location of the optima of a Thin Plate Spline model in 2 regressors

GloptiPolyRegion Computes distribution-free bootstrapped CRs for the location
of global optima for polynomial models up to cubic order in up to 5 regressors

CRcompare Computes bootstrapped confidence intervals for the distance
between the optima of two different response surface models, either quadratic
polynomials or thin plate spline models

GloptipolyR R implementation of the “Gloptipoly” algorithm (Lasserre 2001)
for global optimization of polynomial equations subject to bounds

Examples

Example 1. CR on the maximum of a fitted quadratic polynomial using OptRegionQuad.-
Consider a mixture-amount experiment in two components (Drug dataset) where the effectiveness
of the drug (a percentage) is the response, which in many cases has value zero. Hence, the data
cannot be considered normal and classic approaches to find a CR cannot be used. Thus, we try
using OptRegionQuad as it does not rely on any normality assumption. Given the shape of the
experimental region, the triangularRegion switch is set to on, with upper and right vertices
as specified for vertex1 and vertex2 (the other vertex is the origin). This indicates the limits
of the experimental region, and therefore, the region where the maxima of the response surface
should be sought. Peterson and Novick (2007) pointed out how mixture-amount experiments in
2 components have such a triangular region of interest. The R command is:

out <- OptRegionQuad(X = Drug[,1:2], y = Drug[3], nosim = 500, LB = c(0,0),

UB = c(0.08,11), xlab = "Component 1 (mg.)", ylab = "Component 2 (mg.)",

triangularRegion = TRUE, vertex1 = c(0.02,11), vertex2 = c(0.08,1.8),

outputPDFFile = "Mixture_plot.pdf")

The resulting 95% confidence region generated in the PDF file is shown in Figure 3, which also
shows smoothed contours of the response. Note these are not the quadratic polynomial contours.
Also, note how the CR is “pushed” against the constraint and results in a “thin line”. The red
dot is the centroid of all the generated maxima, the bagging estimate of x∗.

Example 2. CR on the global maximum of a fitted Thin Plate Spline model for a
mixture-amount experiment using OptRegionTps.- Consider next the same mixture-amount
experiments as before (drugs dataset) but suppose we think the quadratic polynomial model
provides is not flexible enough to represent the true surface. Instead, we can try fitting and
optimizing a Thin Plate Spline (TPS) model using function OptRegionTps.

out <- OptRegionTps(X = Drug[,1:2], y = Drug[,3], nosim = 500, lambda = 0.05,

LB = c(0,0), UB = c(0.08,11), xlab = "Component 1 (mg.)", ylab = "Component 2 (mg.)",

triangularRegion = TRUE, vertex1 = c(0.02,11), vertex2 = c(0.08,1.8),

outputPDFFile = "Mixture_plot.pdf")

In contrast with example 1, OptRegionTps will take a few minutes to complete the computations
in a fast PC. Note the parameter lambda=0.05; this is the penalization parameter when fitting
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Figure 3: Example 1: a 95% CR on the maximum of a 2-drug mixture amount experiment, Drugs datafile. Plot
generated with the OptRegionQuad function.
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Figure 4: Example 2: a 95% CR on the maximum of a 2-drug mixture amount experiment, Drugs datafile. Plot
generated with the OptRegionTps function.

a TPS model. Larger values of lambda make the fitted model less “wiggly”. The confidence
levels obtained are conditional on the pre-selected value of lambda which can be obtained via
crossvalidation using the package fields. The PDF output file showing the CR plot is shown in
Figure 4. In this case, the CR contains area in the interior of the triangular experimental region.
The linear boundaries of the shaded CR are the result of using the convex hull of the optima
generated by the bootstrapping algorithm. Increasing the number of bootstraps may smooth
the boundaries somewhat (i.e., shorter linear segments) but the computation time will increase
accordingly. Despite being a better model for this dataset, the more flexible character of the TPS
model contains a good deal of uncertainty about the location of the maximum drug components
that maximizes the efficacy.

Example 3. CR on the global maximum of a fitted Thin Plate Spline model for a
factorial experiment using OptRegionTps. We now illustrate the use of the OptRegionTps

function for an experiment where the factors are centered around zero and the experimental
region is a square. Suppose we generate some dummy ’X’ and ’y’ data by means of Monte Carlo
simulation:
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Figure 5: Example 2: a 95% CR on the maximum of a 2 factor randomly generated factorial experiment over a
squared region. Plot generated with the OptRegionTps function.

X <- cbind(runif(100,-2,2), runif(100,-2,2))

y <- as.matrix(72 - 11.78*X[,1] + 0.74*X[,2] - 7.25*X[,1]^2 - 7.55*X[,2]^2 -

4.85*X[,1]*X[,2] + rnorm(100,0,8))

Next we compute a 95% CR on the maxima of a fitted TPS model:

out <- OptRegionTps(X = X, y = y, nosim = 200, LB = c(-2,-2), UB = c(2,2),

xlab = "X1", ylab = "X2")

Note we did not specify a triangular region. The PDF file created on completion is shown in
Figure 5 and displays the corresponding region, together with the contours of the fitted TPS model.

Example 4. Computing confidence intervals on the distance between two response
surfaces using CRcompare.- Suppose we have experimental data from which we can fit a
quadratic polynomial model to each of two different responses. We now wish to investigate if the
“peaks” of each response are significantly close. A confidence interval on the distance between the
two maxima can be computing with the CRcompare function. To use this function, we need to
provide the ’X’ and ’y’ experimental data for each response. We first generate some data for
illustration purposes:

X1 <- cbind(runif(100,-2,2), runif(100,-2,2))

y1 <- as.matrix(72 - 11.78*X1[,1] + 0.74*X1[,2] - 7.25*X1[,1]^2 - 7.55*X1[,2]^2 -

4.85*X1[,1]*X1[,2] + rnorm(100,0,8))

X2 <- cbind(runif(100,-2,2), runif(100,-2,2))

y2 <- as.matrix(72 - 11.78*X2[,1] + 0.74*X2[,2] - 7.25*X2[,1]^2 - 7.55*X2[,2]^2 -

4.85*X2[,1]*X2[,2] + rnorm(100,0,8))

We next run the CRcompare routine with this input-output data:
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out <- CRcompare(X1 = X1, y1 = y1, X2 = X2, y2 = y2, responseType = 'Quad',
nosim1and2 = 200, alpha = 0.05, LB1 = c(-2,-2), UB1 = c(2,2), LB2 = c(-2,-2),

UB2 = c(2,2) )

Note we specified a quadratic (’Quad’) response model for both responses and 200 bootstrap iter-
ations. Also note that the lower and upper bounds within which each response may have its max-
imum can differ (’maximization’ is TRUE by default). CRcompare will run either OptRegionQuad
or OptRegionTps for each response and compute all the pairwise distances from the two CR’s. It
will then bootstrap the distances and will output the corresponding bootstrap confidence interval
on the mean and median distance:

> out$mean

[1] 0.3643884

> out$median

[1] 0.305715

> out$ciMean

conf

[1,] 0.95 36.43 984.66 0.3324372 0.406087

> out$ciMedian

conf

[1,] 0.95 18 966.76 0.2833316 0.3490922

Hence, a 95% confidence interval on the mean distance is (0.3324,0.4060) and a 95% confidence
interval on the median distance is (0.2833,0.3490).

Example 5. Computing a CR on the global optimum of a polynomial model in 3
factors using GloptiPolyRegion. Box and Draper (1987) (p. 305) analyze a 3-factor experiment
using classical response surface techniques, in particular, canonical analysis, to determine the
nature of the optimum of a quadratic polynomial model. In this experiment , the goal is to find
the percentage concentration of two constituents (x1 and x2, in coded units) and the temperature
(x3, coded) that maximize the elasticity of certain polymer (y). The data for this experiment can
be found in file quad_3D:

> str(quad_3D)

Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 16 obs. of 4 variables:

$ x1: num -1 1 -1 1 -1 1 -1 1 -2 2 ...

$ x2: num -1 -1 1 1 -1 -1 1 1 0 0 ...

$ x3: num -1 -1 -1 -1 1 1 1 1 0 0 ...

$ y : num 25.7 49 42.8 35.9 41.5 ...

The second order polynomial model fitted using ordinary least squares is:

f̂(x) = 57.31 + 1.5x1 − 2.13x2 + 1.81x3

− 7.13x1x2 − 3.27x1x3 − 2.73x2x3 − 4.69x21 − 6.27x22 − 5.21x23,

and has an excellent fit with all terms statistically significant, no lack of fit, R2 = 0.972, and
all usual diagnostics look adequate (see Del Castillo (2007), chapter 7). The fitted quadratic
polynomial has a maximum at (0.4603,−0.4644, 0.1509). At the end of their analysis, Box and
Draper (1987) indicated how
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“A more accurate picture about what is known at this stage of experimentation can
be gained by the confidence region calculation described in Box and Hunter, 1954”

but provided not such calculation. Del Castillo and Cahya (2001) reanalyzed this experiment,
showing how a confidence region on stationary points, such as Box and Hunter’s, results in a
disjoint region, since, despite the excellent fit, there is a non-neglible probability the function is
in reality a saddle function, whose stationary point is located far away from the region where
the other stationary point, which corresponds to a maximum, occurs (Box and Hunter regions
are CR on all the stationary points, not on the global optima. In most engineering and science
applications, a CR on true optima is desired). To generate a 90% confidence region for the global
maximum, we run the R command:

out <- GloptiPolyRegion(

X = quad_3D[, 1:3], y = quad_3D[, 4], degree = 2,

lb = c(-2, -2, -2), ub = c(2, 2, 2), B = 500, alpha = 0.1,

maximization = TRUE, outputPDFFile = "CR_quad_3D.pdf", verbose = TRUE

)

and obtain the confidence region in Figure 6. Contrary to the CR on all stationary points,
the region obtained is not disjoint and corresponds only to points of maximum response. To
determine the resulting set of bootstrapped maxima and the bagging estimate of the global
maximum, enter:

> str(out)

List of 2

$ boot_optima : num [1:1800, 1:3] 0.396 0.561 0.406 0.926 0.29 ...

$ boost_optimum: num [1:3] 0.502 -0.499 0.149

Figure 6: Pairwise projections of a 90% CR for the location of the global maximum in the example in Box and
Draper (1987) obtained using GloptiPolyRegion.

Example 6. A CR on the global optimum of a 5-factor cubic polynomial model
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using GloptiPolyRegion. Consider next the function:

f(x) = µ(x) + ε = 10− (x1 − 1.5)2 − (x2 − 2)2 − (x3 − 2.5)2 − (x4 − 3)2 − (x5 − 3.5)2

+0.1x31 − 0.1x32 − 0.1x33 − 0.1x34 − 0.1x35 + x2x4 − x3x4 + ε

with ε ∼ N(0, σ2 = 22) (i.i.d), defined in the region R = {0 ≤ xi ≤ 5 for i = 1, · · · 5}. The
mean response has a global maximum at x∗ = (2.28, 2.44, 1.02, 2.65, 2.54). 300 simulated
realizations of this function at points x ∈ R generated using a Latin Hypercube can be found in
the dataset cubic_5D. To obtain a 95% CR on the location of the maximum response, we enter
the command:

out <- GloptiPolyRegion(

X = cubic_5D$design_matrix, y = cubic_5D$response, degree = 3,

lb = rep(0, 5), ub = rep(5, 5), B = 200, alpha = 0.05,

maximization = TRUE, outputPDFFile = "CR_cubic_5D.pdf", verbose = TRUE

)

Figure 7 shows a matrix scatter plot generated by this command, displaying the desired CR.
To determine the resulting set of bootstrapped maxima and the bagging estimate of the global
maximum, enter:

> str(out)

List of 2

$ boot_optima : num [1:1900, 1:5] 5 2.37 2.44 2.89 5 ...

$ bagged_optimum: num [1:5] 3.85 2.38 1 2.62 2.49

Numerical evaluation of coverage probability

For a given point x (equal to x∗ or any other point), the coverage is defined as the proportion

of times x ∈ Ĉβ
1−α in Ns trials from simulated data. Wei and Lee (Wei and Lee 2012) show

how a data-depth confidence region is second order accurate, that is, its coverage error (the
difference between the actual coverage and the nominal confidence level) is of order n−1 where n
denotes the sample size. They showed this result holds for different depth measures, including
Tukey’s data depth measure. Here we evaluate the performance of the functions OptRegionQuad,
GloptiPolyRegion and OptRegionTps in package OptimaRegion via Monte Carlo simulation,
focusing on the coverage and size of the resulting confidence regions.

1) Coverage of CR on the optima of a quadratic polynomial model in two
covariates–general nonlinear optimization.

A CR for the optima of a quadratic polynomial model using the method described above
is obtained using the OptRegionQuad function. Table 1 shows some coverage levels for the
global maximum of the simulated response surface f(x) compared with the direct bootstrapping
approach referred earlier. Here

f(x) = 90.79− 1.095x1 − 1.045x2 − 0.775x1x2 − 2.781x21 − 2.524x22

to which i.i.d. N(0, σ2) noise was added. This function has a single maximum at x∗ =
(−0.1716,−0.1806)′. The points x at which the function was simulated were the 11 runs in a
rotatable Central Composite Design with a domain of radius

√
2 around the origin (Box and
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Figure 7: Pairwise projections of a 95% CR on the maximum of f(x) = 10− (x1 − 1.5)2 − (x2 − 2)2 − (x3 − 2.5)2 −
(x4 − 3)2 − (x5 − 3.5)2 + 0.1x31 − 0.1x32 − 0.1x33 − 0.1x34 − 0.1x35 + x2x4 − x3x4.

Draper 1987; Del Castillo 2007) with 11 runs, in addition to sets of 11 runs randomly generated
according to a uniform distribution on the square that goes from (−

√
2,−
√

2) in its lower left
corner to (

√
2,
√

2) in the upper right corner, giving a total of n observations.

The results on Table 1 show how, compared with the naive bootstrapping approach, only
the approach implemented in the OptRegionQuad function generates valid confidence regions,
although always achieving higher than advertised coverages1. A reason for this behavior is that
the final CR contour is obtained from the convex hull of the optima x∗ which will tend to provide
conservative coverage regardless of n and σ (see Table 2). The direct bootstrap method, in
contrast, does not achieve the nominal coverage and cannot be recommended (and hence the
OptimaRegion package does not implement it).

However, the areas of the CRs computed by OptRegionQuad are quite small, rapidly decreasing
in size as n increases (Table 2), a very desirable property. Finally, Table 3 shows that the CRs
obtained by OptRegionQuad are unbiased, since the coverage of non-optimal points is always
lower than 1− α, with lower coverages the farther is the non-optimal point from x∗.

1Recall that the estimated standard error of the estimated coverage p̂ is given by
√
p̂(1− p̂)/n, so all the

estimated coverages presented in this paper are very precise.
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CR type Ns B α n (reps.) coverage

Direct 1000 1000 0.10 55 (5) 0.843
Direct 1000 1000 0.10 1100 (100) 0.868

OptRegionQuad 1000 1000 0.05 1100 (100) 0.981
OptRegionQuad 1000 1000 0.10 1100 (100) 0.979
OptRegionQuad 1000 1000 0.20 1100 (100) 0.930

Table 1: Estimated coverages of bootstrapped (1 − α)100% CRs for the maximum of a quadratic polynomial
regression model. Ns is the number of simulations, B is the number of bootstrapped samples, n is the sample size.
Simulated noise has σ = 2.

n(reps.) coverage σ area sd.(area) area
max area

sd(area)
max area

1100(100) 0.981 2 0.007 0.00087 0.00088 0.0001
2200(200) 0.978 2 0.0036 0.00036 0.00045 0.000045
5500(500) 0.987 2 0.0014 0.00013 0.00018 0.000016
1100(100) 0.988 5 0.052 0.012 0.0065 0.0015
2200(200) 0.984 5 0.023 0.0037 0.0029 0.00046
5500(500) 0.985 5 0.009 0.0011 0.0012 0.00014
1100(100) 0.983 10 0.475 0.4004 0.059 0.0501
2200(200) 0.981 10 0.137 0.068 0.0172 0.0085
5500(500) 0.987 10 0.041 0.0083 0.0052 0.00104

Table 2: Estimated coverages of the optimal point of a 95% bootstrapped CR as obtained by OptRegionQuad

for the maximum of a quadratic polynomial regression model. In all cases, Ns = 1000, and B = 1000 were used.
Maximum area in the search region is 8 = (−

√
2,
√

2)× (−
√

2,
√

2).

2) Coverage of CRs for optima of higher order polynomial models in higher
number of variables using the GloptiPoly algorithm

Since the fitted polynomial models cannot be expected (or should not be forced) to be convex or
concave, it is necessary to use some general nonlinear optimization techniques and run them from
multiple initial solutions to obtain the best possible estimate of the location of the global optima.
This method, however, requires the initial solutions to be dense enough in the experimental
region, which is feasible only for functions of one or two regressors, becoming unrealistic when
the dimension of the experimental region is higher. For this reason, OptimaRegion provides
separate functions for quadratic polynomials in 2 regressors and for higher oder polynomials in
more regressors.

Three factor coverage analysis. For higher dimensional polynomial models, we utilize
the GloptiPoly algorithm (Lasserre 2001; Henrion and Lasserre 2003) to search for the global
optima. This algorithm reduces a generally non-convex polynomial optimization problem to a
sequence of convex linear matrix inequality problems, which generate a sequence of lower bounds
monotonically converging to the global optimum of the original problem. For the small-scale
response surface problems described in the literature, the global optima can be reached at low
computational cost using this method.

The GloptiPoly algorithm is incorporated into the GloptiPolyRegion function to compute
confidence regions on optima (it is also implemented as a stand alone function for simpler global
optimization problems, see the Appendix). To determine the coverage of the CR obtained by
GloptiPolyRegion we consider the cubic model in 3 variables:

f(x) = µ(x) + ε = 10− (x1 − 1)2 − (x2 − 2)2 − (x3 − 3)2 + 0.1x31 − 0.1x32 − 0.1x33 + ε

defined in the region R = {0 ≤ xi ≤ 5 for i = 1, 2, 3}, which, assuming we wish to maximize
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coverage σ a b

0.760 5 1.20 1.00
0.047 5 1.50 1.00
0.008 5 0.50 1.00
0.000 5 0.20 1.00
0.000 5 2.00 1.00
0.795 5 1.00 1.20
0.083 5 1.00 1.50
0.001 5 1.00 0.50
0.000 5 1.00 0.20
0.000 5 1.00 2.00

0.985 5 1.00 1.00

Table 3: Estimated coverages of non-optimal points (a · x∗1, b · x∗2) using 95% bootstrapped CRs as obtained by
OptRegionQuad for the maximum of a quadratic polynomial regression model. In all cases, n(reps.) = 5500(500),
Ns = 1000, and B = 1000. The last case (a = b = 1) corresponds to the coverage of the true optimum point.

has a maximum at x∗ = (1.23, 1.61, 2.24). We simulated realizations of this function with
ε ∼ N(0, σ = 4). The CRs are computed from a noisy sample of size N = nm = 1500, where
n = 100 is the number of unique x− locations generated via a HLS design within R and m = 15
is the number of replicates at each location. Table 4 shows the coverage analysis under different
n = 100, 150, 200, 500 values while m = 15 is fixed. For each value of n, we computed 200 CRs
each based on B = 1000 bootstrapped replications. Under the chosen n values, all simulated
coverage probabilities are always above the advertised confidence level 95%. As n increases, both
the mean and the standard deviation of the volumes of the CRs decrease, providing a more
accurate estimate on the location of the optimal point. Table 5 shows the coverages of some
non-optimal points for n = 500, which indicate that the CRs obtained are unbiased.

n coverage volume sd.(volume) volume
max volume (%) sd(volume)

max volume (%)

100 0.980 0.33 0.25 0.264 0.200
150 0.960 0.09 0.04 0.072 0.032
200 0.970 0.04 0.02 0.032 0.016
500 0.955 0.01 ≈ 0 0.008 ≈ 0

Table 4: Estimated coverages of the optimal point of a 95% bootstrapped CR as obtained by GloptiPolyRegion

for the maximum of a cubic polynomial regression model. In all cases, Ns = 200, B = 1000, m = 15, and σ = 4
were used.

Five factor coverage analysis. Consider again the 5-covariate function in example 6 and
Figure 7:

f(x) = µ(x) + ε = 10− (x1 − 1.5)2 − (x2 − 2)2 − (x3 − 2.5)2 − (x4 − 3)2 − (x5 − 3.5)2

+0.1x31 − 0.1x32 − 0.1x33 − 0.1x34 − 0.1x35 + x2x4 − x3x4 + ε

defined in the region R = {0 ≤ xi ≤ 5 for i = 1, · · · 5}, which has a global maximum at x∗ =
(2.28, 2.44, 1.02, 2.65, 2.54). We simulated realizations of this function with ε ∼ N(0, σ2 = 62).
The CR is computed from a sample of size N = nm, where n is the number of unique locations
generated via a HLS design within R and m = 15 is the number of replicates at each location.
Table 6 shows the coverage analysis under different n = 300, 400, 500 values while m = 15 is fixed.
For each value of n, we computed 200 CRs each based on B = 10000 bootstrapped replications.
As n increases, the estimated coverage converges above the advertised confidence level 95%,
and both the mean and the standard deviation of the CR volumes decrease. Table 7 shows the
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coverage a b c

0.000 1.2 1.0 0.9
0.000 0.2 1.0 0.8
0.000 1.4 1.0 0.7
0.000 0.0 1.0 1.0
0.000 1.0 1.37 1.0
0.000 1.0 0.68 0.3
0.000 1.0 0.34 0.2
0.000 1.0 1.71 1.0

0.955 1.00 1.00 1.00

Table 5: Estimated coverages of non-optimal points (a ·x∗1, b ·x∗2, c ·x∗3) using 95% bootstrapped CRs as obtainted
by GloptiPolyRegion for the maximum of a cubic polynomial regression model. In all cases, Ns = 200, B = 1000,
n = 500, m = 15, and σ = 4 were used. The last case (a = b = c = 1) corresponds to the coverage of the true
optimum point.

n coverage volume sd.(volume) volume
max volume (%) sd(volume)

max volume (%)

300 0.950 3.286e-1 1.679e-1 1.052e-2 5.373e-3
400 0.965 1.337e-1 5.684e-2 4.278e-3 1.819e-3
500 0.970 8.788e-2 4.067e-2 2.812e-3 1.301e-3

Table 6: Estimated coverages of the optimal point of a 95% bootstrapped CR as obtained by GloptiPolyRegion

for the maximum of a cubic polynomial regression model in 5 regressors. In all cases, Ns = 200, B = 10000,
m = 15, and σ = 6 were used.

coverages of some non-optimal points for n = 500, which indicates how the CRs obtained by
GloptiPolyRegion are unbiased.

3) Coverage analysis of the CR on optima from Thin Plate Spline models.

To examine the coverage provided in the case of Thin-Plate Spline model, the simulated function
was:

f(x1, x2) =
(
(x1 − 2)2 + (x2 − 2)2 − (x1 − 2) + 2(x1 − 2)(x2 − 2)

)
exp(−(x1 − 2)2 − (x2 − 2)2)

defined in the region R = {0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 5}, which has a global maximum in this

coverage a b c d e

0.000 1.2 1.0 0.9 1.0 0.7
0.000 0.2 1.0 0.8 0.9 0.8
0.000 1.4 1.0 0.7 0.8 0.9
0.000 0.0 1.0 1.0 0.7 1.0
0.000 1.0 1.37 1.0 0.7 1.0
0.000 1.0 0.68 0.3 0.8 0.9
0.000 1.0 0.34 0.2 0.9 0.8
0.000 1.0 1.71 1.0 1.0 0.7

0.970 1.00 1.00 1.00 1.00 1.00

Table 7: Estimated coverages of non-optimal points (a · x∗
1, b · x∗

2, c · x∗
3, d · x∗

4, e · x∗
5) using 95% bootstrapped

CRs as obtainted by GloptiPolyRegion for the maximum of a cubic polynomial regression model in 5 factors. In
all cases, Ns = 200, B = 10000, n = 500, m = 15, and σ = 6 were used. The last case (a = b = c = d = e = 1)
corresponds to the coverage of the true optimum point.
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n coverage area sd.(area) area
max area (%) sd(area)

max area (%)

100 0.988 12.92 6.00 51.68 24.01
150 0.998 11.76 4.75 47.04 19.00
200 1.000 7.14 2.89 28.56 11.56
250 1.000 6.35 2.42 25.40 9.68
300 0.992 5.25 2.26 21.02 9.05
500 0.998 3.90 1.59 15.61 6.36

Table 8: Estimated coverages of the optimal point of 95% bootstrapped CRs as obtained by OptRegionTPS for
the global maximum of a Thin Plate Spline model. In all cases, Ns = 500, B = 200, λ = 0.04, and σ = 0.5 were
used. Maximum area in the search region is 25 = (0, 5)× (0, 5).

region2 at (x∗1, x
∗
2) = (1.2542, 1.4634). In each Monte Carlo simulation we generate n uniformly

distributed random x values over R with observations f(x) + ε where ε ∼ N(0, σ2) are i.i.d.

Computing a projection bootstrap confidence region for a Thin Plate Spline (TPS) model provides
higher than advertised coverages of the optimum point, almost always close to 100 %, but with
sizes (areas) that decrease rapidly as more experiments are performed (Table 8). These results
were obtained with the OptRegionTps function.

As it can be seen in Table 9, the coverage percentage of non-optimal points is less than the
confidence level 1−α, with coverage that decays as we consider non-optimum points farther than
the optimum (x∗1, x

∗
2). This indicates the projection bootstrapped confidence regions obtained by

OptRegionTps are also unbiased.

Conclusions

The OptimaRegion R package implements useful methods for the computation and display of
confidence regions on the location of the global optima of a fitted response surface subject to
linear bounds, either based on a polynomial or a Thin Plate Spline response surface model.
The functions for 2-covariates include the option of specifying linear constraints that can define
a mixture-amount experiment. The methods are particularly valuable for experimenters who
need to fit and optimize response surface models and guarantee that only global optima are
considered in the confidence regions, a problem that has plagued this field in the past. Given the
inherent difficulties of the underlying global optimization problems, problem size limitations are
up to a cubic polynomial in up to 5 variables/regressors, and up to two regressors for a Thin
Plate Spline. The methods are distribution free as they are based on Tukey’s data depth and
bootstrapping. Coverage analysis demonstrates that the resulting confidence regions are valid
and unbiased, and while the coverage is conservative, the regions are of rapidly diminishing size
in the number of observations. A stand alone implementation in R of the GloptiPoly algorithm
for global optimization of polynomial functions subject to bounds is also provided in the package,
a function not previously available in R.

2Note it has another local maxima and a deep minimum as well within the region of interest.
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coverage a b

0.860 1.20 1.00
0.950 0.20 1.00
0.780 1.40 1.00
0.518 0.00 1.00
0.922 1.00 1.37
0.914 1.00 0.68
0.690 1.00 0.34
0.554 1.00 1.71

0.992 1.00 1.00

Table 9: Estimated coverages of non-optimal points (a · x∗1, b · x∗2) using 95% bootstrapped CRs as obtained by
OptRegionTps for the maximum of a Thin Plate Spline model. In all cases, n = 300, Ns = 500, B = 200, λ = 0.04,
and σ = 0.5. The last case (a = b = 1) corresponds to the coverage of the true optimum point.

Appendix. The GloptiPoly algorithm and the GloptiPolyR function for the
global optimization of polynomial equations subject to bounds

The package OptimaRegion includes an R implementation of the GloptiPoly algorithm for the
global optimization of polynomial models as a stand-alone function. Under certain conditions
discussed next (which hold for the cases allowed by OptimaRegion) the GloptiPoly method
guarantees convergence to a global optimum of a polynomial equation subject to polynomial
constraints.

Let g0(x) : Rn → R be a polynomial of degree d0. The function “gloptipoly” solves the following
optimization problem:

(P ) min
x∈K

g0(x),

where K = {x ∈ Rn : gi(x) ≥ 0, i = 1, ...,m}, and di is the degree of gi, i = 1, ...,m.

Lasserre (2001) provided a method for solving (P ). First, it can be shown that (P ) is equivalent
to

(Q) min
µ

∫
g0(x) dµ(x)

s.t. µ(K) = 1,

where the minimum is taken over all probability measures µ on K. Then, instead of solving
(Q) directly, we can solve a semidefinite relaxation of (Q) of order N , denoted by (QN ), and
increase the order of relaxation until we obtain the solution to (Q) and hence the solution to
(P ). Under a particular assumption, the optimal solutions to (QN ) are guaranteed to converge
monotonically to the optimal solution to (P ). The assumption happens to be satisfied when the
feasible region K is a convex polytope, which is always the case for the problems considered in
OptimaRegion.3

Before we state (QN ), we must first give some preliminaries. If g0 is the coefficient vector
associated with g0(x), then we may write

g0(x) =
∑
α

(g0)αx
α,

where α is an index such that xα = xα1
1 xα2

2 . . . xαnn and
∑n

i=1 αi ≤ d0. Substituting () into the
objective function in (Q) yields a sum of moments. We denote these moments as the variables yα;
that is, yα =

∫
(g0)αx

α dµ(x). Instead of using a probability measure µ as the decision variable,
the relaxed problem uses the moment vector y = {yα}. The theory of moments states that a

3See Lasserre (2001) for the statement of the assumption.
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necessary, but not sufficient, condition for the components of a vector y to correspond to the
values of the moments of some probability measure µ is for certain moment matrices (made up
of the components in y) to be positive semidefinite. Because these conditions are necessary but
not sufficient, the relaxed problem (QN ) will admit more feasible solutions than (Q) itself.

We now describe these moment matrices. Let

{1, x1, x2, ..., xn, x21, x1x2, x1x3, ..., x1xn, x22, x2x3, ..., x2n, ..., xNn }

be a basis for the space of polynomials up to degree N , which has dimension s(N). The moment
matrix MN (y) of order N is a square matrix of dimension s(N) and is formed as follows. Label
the rows and columns of MN (y) with the terms in (). The (i, j)th entry of MN (y) is the moment
yα corresponding to the product of the ith and jth terms in (). For instance, if n = N = 2, then

M2(y) =



1 x1 x2 x21 x1x2 x22

1 1 y1,0 y0,1 y2,0 y1,1 y0,2
x1 y1,0 y2,0 y1,1 y3,0 y2,1 y1,2
x2 y0,1 y1,1 y0,2 y2,1 y1,2 y0,3
x21 y2,0 y3,0 y2,1 y4,0 y3,1 y2,2
x1x2 y1,1 y2,1 y1,2 y3,1 y2,2 y1,3
x22 y0,2 y1,2 y0,3 y2,2 y1,3 y0,4

.

The requirement that MN (y) be positive semidefinite is always a constraint in the relaxed problem
(i.e., even when K = Rn). Each additional constraint (i.e., each gi, i = 1, ...,m) warrants that an
additional moment matrix MN−vi(giy) be positive semidefinite, where vi = ddi2 e, i = 1, ...,m. As
an example to see how these matrices are formed, again take N = n = 2 and g1(x) = 2− x1 ≥ 0.
Since d1 = 1 = v1, the order of the corresponding moment matrix is N − v1 = 1, and we have

M1(y) =

 1 y1,0 y0,1
y1,0 y2,0 y1,1
y0,1 y1,1 y0,2

 .
To get M1(g1y), we multiply the corresponding basis terms in M1(y) (e.g., y1,1 corresponds to
x1x2) by g1(x) = 2− x1 and convert back to the corresponding moments yα:4

M1(y) =

 2− y1,0 2y1,0 − y2,0 2y0,1 − y1,1
2y1,0 − y2,0 2y2,0 − y3,0 2y1,1 − y2,1
2y0,1 − y1,1 2y1,1 − y2, 1 2y0,2 − y1,2

 .
The complete relaxed problem of order N is thus

(QN ) min
y

∑
α

(g0)αyα

s.t. MN (y) � 0

MN−vi(giy) � 0, i = 1, ...,m.

The R package Rdsdp is used to solve (QN ). This package uses a dual-scaling algorithm to solve
semidefinite optimization problems whose dual takes the form (Zhu and Ye (2016)):

sup bT y

s.t. C −Ay � 0.

4The reader is referred to Henrion and Lasserre (2003) for additional details.



Enrique del Castillo, Peng Chen, Adam Meyers, John Hunt, James Rapkin 19

The “gloptipoly” function reshapes (QN ) to have the form of () and then calls Rdsdp to solve
(). The solution is in the form of a vector of moments y∗ = {y∗α} which has length s(2N).
Recall that our goal is to solve (P ) and thus we need the solution in the form of the vector
x. Ordinarily then, we would need a procedure for extracting x from y∗. However, because
the domain considered in OptimaRegion always consists of linear constraints, the n compo-
nents of y∗ corresponding to the terms x1, ..., xn (i.e., y1,0,...,0, y0,1,...,0, ..., y0,...,0,1) will together
always form a feasible solution to (P ) (Henrion and Lasserre (2003)). Let y∗ be the vector
y∗ truncated to only these n components, and let q∗ be the optimal objective value of (QN ).
If y∗ is feasible (which it always will be in our case) and if g0(y∗) − q∗ < ε, where ε is some
tolerance, then the function “gloptipoly” reports that the optimum has been reached. Other-
wise, “gloptipoly” increases N by one and repeats the procedure until the tolerance level is satisfied.

The gloptipoly algorithm has been implemented in function GloptiPolyR. To illustrate its use,
consider the following quadratic function in 3 variables:

f(x) = −1.5x1 + 2.13x2 − 1.81x3 + 7.13x1x2 + 3.27x1x3 + 2.73x2x3 + 4.69x21 + 6.27x22 + 5.21x23.

The minimum of f(x) over the region R = {−2 ≤ xi ≤ 2, i = 1, 2, 3} is x∗ = (0.46, -0.46, 0.15).
The optimization problem can be formally written as:

min f(x)

subject to: g1(x) = x1 + 2 ≥ 0

g2(x) = x1 − 2 ≤ 0

g3(x) = x2 + 2 ≥ 0

g4(x) = x2 − 2 ≤ 0

g5(x) = x3 + 2 ≥ 0

g6(x) = x3 − 2 ≤ 0

For this problem, the input for GloptiPolyR is the specification of problem (P ), which needs to
be a list of 7 sub-lists, corresponding to f(x), g1(x), g2(x), ..., g6(x), respectively:

P <- list()

p_f <- list()

p_g_1 <- list(); p_g_2 <- list(); p_g_3 <- list()

p_g_4 <- list(); p_g_5 <- list(); p_g_6 <- list()

Each of these 7 sub-lists has two elements: (1) a multi-dimensional array, denoted by ’c’, and
(2) an attribute, denoted by ’t’. The multi-dimensional array is generated from the monomial
coefficients of the corresponding polynomial function. The rule is to put the coefficient of the
xi1x

j
2x
k
3 term in the [i+ 1, j + 1, k + 1] position of the array, and place zeroes in other positions:

p_f$c <- array(0, dim = c(3, 3, 3))

p_f$c[2, 1, 1] <- -1.5; p_f$c[1, 2, 1] <- 2.13; p_f$c[1, 1, 2] <- -1.81

p_f$c[2, 2, 1] <- 7.13; p_f$c[2, 1, 2] <- 3.27; p_f$c[1, 2, 2] <- 2.73

p_f$c[3, 1, 1] <- 4.69; p_f$c[1, 3, 1] <- 6.27; p_f$c[1, 1, 3] <- 5.21

p_g_1$c <- array(0, dim = c(3, 3, 3))

p_g_1$c[1, 1, 1] <- 2; p_g_1$c[2, 1, 1] <- 1

p_g_2$c <- array(0, dim = c(3, 3, 3))
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p_g_2$c[1, 1, 1] <- -2; p_g_2$c[2, 1, 1] <- 1

p_g_3$c <- array(0, dim = c(3, 3, 3))

p_g_3$c[1, 1, 1] <- 2; p_g_3$c[1, 2, 1] <- 1

p_g_4$c <- array(0, dim = c(3, 3, 3))

p_g_4$c[1, 1, 1] <- -2; p_g_4$c[1, 2, 1] <- 1

p_g_5$c <- array(0, dim = c(3, 3, 3))

p_g_5$c[1, 1, 1] <- 2; p_g_5$c[1, 1, 2] <- 1

p_g_6$c <- array(0, dim = c(3, 3, 3))

p_g_6$c[1, 1, 1] <- -2; p_g_6$c[1, 1, 2] <- 1

Next set the attribute for the objective function as either “min” or “max”:

p_f$t <- "min"

Then set the attributes for the constraint functions as either “>=” or “<=”:

p_g_1$t <- ">="; p_g_2$t <- "<="

p_g_3$t <- ">="; p_g_4$t <- "<="

p_g_5$t <- ">="; p_g_6$t <- "<="

Finally, we construct problem (P ) from the 7 sub-lists and use it to call GloptiPolyR:

P <- list(p_f, p_g_1, p_g_2, p_g_3, p_g_4, p_g_5, p_g_6)

result <- GloptiPolyR(P)

GloptiPolyR returns the global optimal solution and corresponding objective value:

> result

$solution

[1] 0.4603 -0.4645 0.1509

$objective

[1] -0.9765
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