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ABSTRACT. This paper describes our studies on non-parametric maximum-likelihood estimators
in a semiparametric mixture model for competing-risks data, in which proportional hazards models
are specified for failure time models conditional on cause and a multinomial model is specified for
the marginal distribution of cause conditional on covariates. We provide a verifiable identifiabil-
ity condition and, based on it, establish an asymptotic profile likelihood theory for this model. We
also provide efficient algorithms for the computation of the non-parametric maximum-likelihood
estimate and its asymptotic variance. The success of this method is demonstrated in simulation
studies and in the analysis of Taiwan severe acute respiratory syndrome data.
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1. Introduction

This paper provides an asymptotic theory and efficient algorithms for the non-parametric
maximum-likelihood estimate (NPMLE) in a semiparametric mixture model for competing-
risks data, in which proportional hazards models are specified for failure time models
conditional on cause type and a multinomial model is specified for the marginal distribution
of cause type conditional on covariates.

This model appeared in Fine (1999) and is useful in the study of covariate-specific prob-
ability of failure over time from a given cause. A recent example is provided by the epi-
demiology of severe acute respiratory syndrome (SARS), an epidemic that affected the Asian
Pacific region severely in 2003. Because of its high transmissibility and lethality, a patient
suspected of having SARS is admitted to a SARS-dedicated hospital and kept in isolation
immediately. There he/she may either get well and discharged after certain period of time or
die with death attributed to SARS or other underlying diseases, and it is hard to know in



Scand J Statist 34 Competing-risks model 871

advance which one of these would eventually happen, because of no specific cure. To study
transmission dynamics and to have good planning of patient-care capacity, it is necessary
to get good estimates of the case fatality rate, the distribution of the admission-to-discharge
and that of the admission-to-death. In fact, assessing the case fatality rate of SARS patients
has been a concern since the outbreak of the disease, and was studied by Donnelly et al.
(2003) during the epidemic. We will fit Taiwan SARS data to the competing-risks model so
that these epidemiologically important quantities can be studied directly.

Let Ti , Ci , Zi and Wi be the time-to-event, the censoring time, the covariate and the cur-
ability of the ith individual. Let Wi ∈{1, 2} with Wi =1 indicating the ith individual being
incurable and Wi =2, curable. We assume Ti ≥ 0, Ci ≥ 0 and Zi in �d . We assume that, for
j =1, 2 and z in �d , the conditional hazard of Ti at t, given Wi = j and Zi = z, exists and is

�j(t) e�T
j z, (1)

where �j(·) is a non-negative deterministic baseline function, �j is in �d and �T
j is the trans-

pose of �j . In competing-risks problems, Wi is usually referred to as the cause of failure or
failure type variable. In this paper, we may refer to Ti as the death time if Wi =1 and the
cure time if Wi =2.

Assume (Ti , Wi) and Ci are conditionally independent, given Zi . Denoted by Fj(t, z), the
conditional distribution of Ti at t, given Wi = j and Zi = z. Denoted by G(·, z), the conditional
distribution of Ci , given Zi = z. Let [�i =1]= [Ti ≤ Ci , Wi =1], [�i =2]= [Ti ≤ Ci , Wi =2],
and [�i =3]= [Ti > Ci ]. Assume that, for some �1 ∈�1 and �2 ∈�d ,

P(Wi =1 |Zi = z)= e�1 +�T
2 z

1+ e�1 +�T
2 z

, (2)

which will be denoted by �(z). Let Xi =Ti ∧Ci . Then the likelihood for (Xi , �i)= (x, �) given
Zi = z is

{�(z)(1−G(x, z))f1(x, z)}[�=1]{(1−�(z))(1−G(x, z))f2(x, z)}[�=2]

×{�(z)(1−F1(x, z))g(x, z)+ (1−�(z))(1−F2(x, z))g(x, z)}[�=3], (3)

where g(x, z)≡ ∂G
∂x (x, z) and fj(x, z)≡ ∂Fj

∂x (x, z), which are assumed to exist.
Let �c ≡ (�1, �T

2 )T and �j(t)=
∫ t

0 �j(s) ds. We will study the NPMLE of �= (�T
c , �T

1 , �T
2 , �1, �2)

based on {Xi , �i , Zi | i =1, . . ., n} and apply it to Taiwan SARS data, assuming that (Ti , Ci , Zi ,
Wi) is an independent and identically distributed sequence for i =1, . . ., n.

We note that Fine (1999) studied the above model under the additional assumption that C1

is independent of (T1, W1, Z1) and, among other things, provided robust estimates for �c, �1

and �2 by first obtaining an estimate of the distribution of C1.
Other works for competing-risks data having an explicit cumulative incidence function like

(2) include the parametric mixture model of Larson & Dinse (1985) and the non-parametric
mixture model of Betensky & Schoenfeld (2001); Maller & Zhou (2002) and Choi & Zhou
(2002) systematically studied the models of Larson & Dinse (1985); Betensky & Schoenfeld
(2001) examined non-parametric estimation in their mixture model.

An alternative approach is provided by Fine & Gray (1999) and Fine (2001); see also
Andersen (2002) for a multi-state formulation of competing risks model. They modelled
directly the crude failure probability, or cumulative incidence function P(T1 ≤ t, W1 =1 |Z1)
and developed estimation procedures in their semiparametric models. In particular, an
inverse probability of censoring weighting technique (Robins & Rotnitzky, 1992) is employed
for analyzing right-censored competing-risks data, in which a consistent estimate of the
distribution G of C1 conditional on Z1 is needed.
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As mentioned in Fine (1999), the approach with explicit specification such as (2) has pre-
cedent in the cure-rate model; see Farewell (1977). Readers are referred to Kuk (1992), Kuk
& Chen (1992), Sy & Taylor (2000), Peng & Dear (2000), Peng (2003) and references therein
for semiparametric cure-rate models. We would like to point out that Taylor (1995) and Li
et al. (2001) made a thorough study of identifiability in these cure-rate models.

The results of this paper rest on an identifiability assumption, which says roughly that iden-
tifiability is guaranteed if there are enough score functions. We provide a method to verify
this assumption and illustrate this method by showing that the model is identifiable if d =1,
Z1 takes at least three different values and there exists covariate effect.

For the consistency, we first present integral equations, derived from score functions, for
the NPMLE and then apply empirical process theory to establish it, following the approaches
and techniques developed in Murphy (1994), Murphy et al. (1997), Parner (1998), Kosorok
et al. (2004) and Chang et al. (2005), among others. With the consistency, we then treat the
NPMLE as an Z-estimator and prove its asymptotic normality. Finally, we provide estimates
of the asymptotic variance for the NPMLE of �c, �1 and �2 by the observed profile infor-
mation developed in Murphy & van der Vaart (1999). In fact, we followed Murphy & van
der Vaart (2000) for developing a profile likelihood theory.

The simulation studies use the algorithms based on the integral equations and the profile
likelihood theory. We find that when C1 and (T1, W1, Z1) are independent, both the method
in Fine (1999) and ours work nicely, although our method seems to be a little better in terms
of mean-squared error; when C1 and (T1, W1, Z1) are not independent but satisfy the assump-
tions in this paper, our method still works but the method in Fine (1999) may fail.

This paper is organized as follows. Section 2 presents the likelihood function, discusses
the identifiability assumption, establishes the existence of NPMLE, derives the score func-
tions and the integral equations for the NPMLE, and presents the algorithm based on the
integral equations. Sections 3, 4 and 5, respectively, establish the consistency, the asymptot-
ical normality and the profile likelihood theory. Section 6 illustrates the method in simulation
studies. Section 7 applies the method to analyze Taiwan SARS data. Section 8 gives
concluding remarks. The Appendix contains the proofs concerning model identifiability and
the more technical proofs used in establishing the consistency.

2. Identifiability and the score functions

2.1. Identifiability

The parameter space we consider is

�={�= (�T
c , �T

1 , �T
2 , �1, �2) |�c ∈A, �1 ∈B, �2 ∈B, �1 ∈L, �2 ∈L}.

Here, A is a compact subset of �d +1 with non-empty interior, B is a compact subset of �d

with non-empty interior, and

L={� : [0, �]→ [0, ∞) |�(0)=0, � is non-decreasing and right continuous}

for some � > 0. The analysis of Ti in this paper is restricted to the interval [0, �]. Denote the
true parameter (�T

c0, �T
10, �T

20, �10, �20) by �0. Here �c0, �10, and �20 are assumed to be interior
points of A, B, and B, respectively; and �10 and �20 have positive and bounded derivatives
on [0, �]; the assumption that �10 and �20 have positive derivative on [0, �] is made to simplify
the presentation and some extension is possible. We assume P(Ti > �, Wi =1 |Zi) > 0 a.s.,
P(Ti > �, Wi =2 |Zi) > 0 a.s., and P(Ci ≥ � |Zi) > 0 a.s. We further assume that the support
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of Zi is bounded and non-degenerate. We note that it loses no generality and simplifies the
presentation to assume P(Ci ≤ � |Zi)=1 a.s. Assume further that the distribution of (Ci , Zi)
has nothing to do with �.

It follows from (3) that the likelihood for the ith individual is

L̃(i), � ≡{�(Zi)�1(Xi) exp(�T
1 Zi −�1(Xi) e�T

1 Zi )}[�i =1]

×{[1−�(Zi)]�2(Xi) exp(�T
2 Zi −�2(Xi) e�T

2 Zi )}[�i =2]

×{�(Zi) exp(−�1(Xi) e�T
1 Zi )+ [1−�(Zi)] exp(−�2(Xi) e�T

2 Zi )}[�i =3],

where �1 and �2 are, respectively, the derivatives of �1 and �2.
In this paper, we need the following.

Assumption 1 (Identifiability)
If �1 is absolutely continuous relative to �10 and �2 is absolutely continuous relative to �20,
then L̃(1), � = L̃(1), �0 a.s. implies �=�0.

The condition L̃(1), � = L̃(1), �0 a.s. in assumption 1 implies that

{�(Z1)
d�1

d�10
(X1) exp(�T

1 Z1 −�1(X1) e�T
1 Z1 )}[�1 =1]

×{[1−�(Z1)]
d�2

d�20
(X1) exp(�T

2 Z1 −�2(X1) e�T
2 Z1 )}[�1 =2]

×{�(Z1) exp(−�1(X1) e�T
1 Z1 )+ [1−�(Z1)] exp(−�2(X1) e�T

2 Z1 )}[�1 =3]

={[�0(Z1)] exp(�T
10Z1 −�10(X1) e�T

10Z1 )}[�1 =1]

×{[1−�0(Z1)] exp(�T
20Z1 −�20(X1) e�T

20Z1 )}[�1 =2]

×{�0(Z1) exp(−�10(X1) e�T
10Z1 )+ [1−�0(Z1)] exp(−�20(X1) e�T

20Z1 )}[�1 =3], a.s. (4)

In view of the left-hand side of (4), we define

L̃(1), (�c , �1, �2, y10, y20, y1, y2)(�1, Z1)

=
{

�(Z1)y1 exp(�T
1 Z1 −y10e�T

1 Z1 )
}[�1 =1] {

[1−�(Z1)]y2 exp(�T
2 Z1 −y20e�T

2 Z1 )
}[�1 =2]

{
�(Z1) exp(−y10e�T

1 Z1 )+ [1−�(Z1)] exp(−y20e�T
2 Z1 )

}[�1 =3]
,

and consider the following.

Assumption 2
There exists t∗ in the support of the conditional distribution of C1 given Z1 such that

L̃(1), (�c , �1, �2, y10, y20, y1, y2)(�1, Z1)= L̃(1), (�c0, �10, �20, �10(t∗), �20(t∗), 1, 1)(�1, Z1), a.s.

implies �c =�c0, �1 =�10, �2 =�20, y10 =�10(t∗), y20 =�20(t∗), y1 =1, y2 =1.

We will show, in the Appendix, that assumption 1 is implied by assumption 2, which
involves only ‘parameters’ in finite dimensional space. The following assumption 2′ implies
assumption 2 locally, by the inverse function theorem, and can be verified numerically.
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Assumption 2′

There exists t∗ in the support of the conditional distribution of C1 given Z1 such that if

(
aT

1
∂

∂�c
+aT

2
∂

∂�1
+aT

3
∂

∂�2
+a4

∂
∂y10

+a5
∂

∂y20
+a6

∂
∂y1

+a7
∂

∂y2

)
log

{
L̃(1), (�c , �1, �2, y10, y20, y1, y2)(�1,Z 1)

}=0

when evaluated at

(�c, �1, �2, y10, y20, y1, y2)= (�c0, �10, �20, �10(t∗), �20(t∗), 1, 1)

for every possible values of (�1, Z1), then a1 =0 in �d +1, a2 =a3 =0 in �d , and a4 =a5 =
a6 =a7 =0 in �.

We now illustrate the use of assumption 2′ by assuming d =1, P(Z1 =0) > 0, P(Z1 =
0.5) > 0, and P(Z1 =1) > 0.

Let F :N 
→�8 be the function whose components are of the form

(�c, �1, �2, y10, y20, y1, y2) 
→ log
{

L̃(1), (�c , �1, �2, y10, y20, y1, y2)(�1, Z1)
}

,

with the components defined by (�1, Z1) ∈ {(1, 0), (1, 0.5), (1, 1), (2, 0), (2, 0.5), (2, 1), (3, 0),
(3, 1)}. Here N is a neighbourhood of (�c0, �10, �20, �10(t∗), �20(t∗), 1, 1) in �8. We can
validate assumption 2′ by showing that the determinant of the Jacobian of F , det(JF ), at
(�c0, �10, �20, �10(t∗), �20(t∗), 1, 1) is not zero for some 0≤ t∗ ≤ � in the support of the condi-
tional distribution of C1 given Z1. Suppose �c0 = (�10, �20)T = (−2, 5)T , �10 =0.5, �20 =−0.5,
�10(t)= t/4, �20(t)= t/5, t∗ =1, then computer calculation gives det(JF )=0.0085. This shows
that assumption 2′ is satisfied for �c0 = (−2, 5)T , �10 =0.5, �20 =−0.5, �10(t)= t/4, �20(t)= t/5.

In fact, we computed det(JF ) for many values of (�c0, �10, �20, �10(t∗), �20(t∗)). Based on
these calculations, we wish to conjecture that, in the case d =1 and Z1 can take three differ-
ent values, assumption 2′ holds if and only if at least one of �20, �10, �20 is not zero. This
conjecture seems to be in line with the theorems 1 and 2 in Li et al. (2001).

We note that a referee pointed out that when �20 =�10 =�20 =0, the model is not identi-
fiable. The argument provided by the referee is as follows. Suppose that covariates have no
effect at all and C = �. Then the likelihood function becomes

(�1�1(Xi) exp{−�1(Xi)})[�i =1]((1−�1)�2(Xi) exp{−�2(Xi)})[�i =2]

{�1 exp{−�1(�)}+ (1−�1) exp{−�2(�)}}[�i =3];

and for any 1− exp{−�1(�)}< �< 1, it is easy to check that

�̃1 = ��1, �̃1 =− log{exp{−�1}+ �−1}+ log �,

�̃2 =− log{exp{−�2}+ (1− ��1)/(1−�1)−1}+ log((1− ��1)/(1−�1))

give the same likelihood function. This shows the non-identifiability. This also indicates that
the method of this paper cannot be used to test the hypothesis that there exists convariate
effects.

We also computed det(JF ) when d =2. The results seem to suggest that the above conjec-
ture remains valid; namely, assumption 2′ holds if and only if at least one of �20, �10, �20 is
not zero as a vector in �2. We are interested in knowing if this conjecture can be confirmed
and how general it is. Since assumption 2′ is local in nature, it is important in practice to
know how large � can be to still make assumption 1 valid.

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.
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2.2. Score functions

Because L̃(i), � could become arbitrarily large within the class of absolutely continuous �1 and
�2, we consider the likelihood

Ln(�)≡
n∏

i =1

L̄(i), � (5)

with

L̄(i), � ={�(Zi)��1(Xi) exp(�T
1 Zi −�1(Xi) e�T

1 Zi )}[�i =1]

×{[1−�(Zi)]��2(Xi) exp(�T
2 Zi −�2(Xi) e�T

2 Zi )}[�i =2]

×{�(Zi) exp(−�1(Xi) e�T
1 Zi )+ [1−�(Zi)] exp(−�2(Xi) e�T

2 Zi }[�i =3]

and ��1(t)=�1(t)−�1(t−) and ��2(t)=�2(t)−�2(t−).

The NPMLE �̂n ≡ (�̂T
cn, �̂

T
1n, �̂

T
2n, �̂1n, �̂2n) we propose is the maximizer of (5) over A×B ×

B ×L∗ ×L∗, where L∗ ⊂L comprises step functions. In fact, �̂1n has positive jumps only at
Xi with �i =1 and �̂2n has positive jumps only at Xi with �i =2.

We assume all the random variables are defined on a sample space � with a specific 	-field.
Let 
∈� and n be fixed. Using the compactness of A×B×B and the fact that limy→∞ ye−y =
0, we conclude immediately from

|Ln(�)|≤
n∏

i =1

{�(Zi)�1(Xi) exp(�T
1 Zi −�1(Xi) e�T

1 Zi )}[�i =1]

×{[1−�(Zi)]�2(Xi) exp(�T
2 Zi −�2(Xi) e�T

2 Zi )}[�i =2]

×{�(Zi) exp(−�1(Xi) e�T
1 Zi )+ [1−�(Zi)] exp(−�2(Xi) e�T

2 Zi )}[�i =3]

that the following theorem holds.

Theorem 1
The NPMLE �̂n exists, and for every n=1, 2, . . ., there is a constant Mn such that �̂1n(�) < Mn

and �̂2n(�) < Mn.

Let BV [0, �] denote the set of all real-valued functions on [0, �] with finite variation.
For h1 ∈�d +1, h2, h3 ∈�d , and h4, h5 ∈BV [0, �], denote by `1, �[h1], `2, �[h2], `3, �[h3], `4, �[h4], and
`5, �[h5], respectively, the score functions for the submodels specified by �c + �h1, �1 + �h2, �2 +
�h3, �1�(·)=

∫ ·
0 (1+ �h4) d�1 and �2�(·)=

∫ ·
0 (1+ �h5) d�2, with � near 0. Let

V1i(�)= �(Zi) exp(−e�T
1 Zi �1(Xi))

�(Zi) exp(−e�T
1 Zi �1(Xi))+ [1−�(Zi)] exp(−e�T

2 Zi �2(Xi))
,

and V2i(�)=1−V1i(�). Then straightforward computation gives

`1, �[h1](X1, �1, Z1)

=hT
1 �′(Z1)

{
[�1 =1]
�(Z1)

− [�1 =2]
1−�(Z1)

+ [�1 =3]
(

V11(�)
�(Z1)

− V21(�)
1−�(Z1)

)}
, (6)

where �′(Z1) is the derivative of � and is equal to �(Z1)(1−�(Z1))[1, ZT
1 ]T ;

`2,�[h2](X1, �1, Z1)

=hT
2 Z1

{
[�1 =1](1−�1(X1) e�T

1 Z1 )− [�1 =3](�1(X1) e�T
1 Z1 V11(�))

}
; (7)

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.
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`3, �[h3](X1, �1, Z1)

=hT
3 Z1

{
[�1 =2](1−�2(X1) e�T

2 Z1 )− [�1 =3](�2(X1) e�T
2 Z1 V21(�))

}
; (8)

`4, �[h4](X1, �1, Z1)

= [�1 =1]
{

h4(X1)− e�T
1 Z1

∫ X1

0
h4 d�1

}
− [�1 =3]

{
V11(�) e�T

1 Z1

∫ X1

0
h4 d�1

}
; (9)

`5,�[h5](X1, �1, Z1)

= [�1 =2]
{

h5(X1)− e�T
2 Z1

∫ X1

0
h5 d�2

}
− [�1 =3]

{
V21(�) e�T

2 Z1

∫ X1

0
h5 d�2

}
. (10)

By theorem 1 it is clear that a necessary condition for �̂n to be the NPMLE is Pn`j, �̂n
[hj ]=0

for j =4 and 5. Here, Pn means taking expectation relative to the empirical distribution for
the data {(Xi , �i , Zi) | i =1, . . ., n}; i.e., Png ≡ 1

n

∑n
i =1 g(Xi , �i , Zi), for a function g on the

range of (Xi , �i , Zi). In fact, we will show that the NPMLE converges to the true value
almost surely, and hence �̂cn, �̂1n, and �̂2n are interior points of A, B, and B, respectively, for
large n. This shows that

Pn`j, �̂n
[hj ]=0, (11)

for all large n and j =1, . . ., 5.
The statements (i), (iii), (vii), (viii) and (ix) in the following lemma are consequences of (11),

and form the basis of our algorithm for computing the NPMLE.
Let �= (�T

c , �T
1 , �T

2 ) denote a point in A×B×B. Let �̂1n, � and �̂2n, � be the elements in L∗
so that (�T

c , �T
1 , �T

2 , �̂1n, �, �̂2n, �) maximizes (5) with � being fixed; namely Ln(�, �̂1n, �, �̂2n, �)≥
Ln(�, �1, �2) for every �1 and �2 in L∗. Both �1n, � and �2n, � play important roles in the
asymptotic theory in this paper.

Let

W1n(�; u)= 1
n

n∑
i =1

{
[�i =1]+ [�i =3]V1i(�)

}
e�T

1 Zi I(0, Xi ](u),

W2n(�; u)= 1
n

n∑
i =1

{
[�i =2]+ [�i =3]V2i(�)

}
e�T

2 Zi I(0, Xi ](u),

G1n(u)= 1
n

n∑
i =1

[�i =1]I(0, u](Xi), G2n(u)= 1
n

n∑
i =1

[�i =2]I(0, u](Xi),

W10(�; u)=EW11(�; u), W20(�; u)=EW21(�; u),

G10(u)=EG11(u), G20(u)=EG21(u).

Then we have

Lemma 1

(i) �̂1n(t)=
∫ t

0

1

W1n(�̂n; u)
dG1n(u),

(ii) �10(t)=
∫ t

0

1
W10(�0; u)

dG10(u),

(iii) �̂2n(t)=
∫ t

0

1

W2n(�̂n; u)
dG2n(u),

(iv) �20(t)=
∫ t

0

1
W20(�0; u)

dG20(u),

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.
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(v) �̂1n, �(t)=
∫ t

0

1

W1n(�, �̂1n, �, �̂2n, �; u)
dG1n(u),

(vi) �̂2n, �(t)=
∫ t

0

1

W2n(�, �̂1n, �, �̂2n, �; u)
dG2n(u),

(vii) (�̂cn)j = log

⎛
⎝e(�̂cn)j

n∑

i =1
(1−�̂n(Zi ))([1, ZT

i ]T )j ([�i =1]+ [�i =3]V1i (�̂n))

n∑

i =1
�̂n(Zi )([1, ZT

i ]T )j ([�i =2]+ [�i =3]V2i (�̂n))

⎞
⎠, for j =1, . . ., d +1,

(viii) (�̂1n)j = log

⎛
⎝e(�̂1n)j

n∑

i =1
(Zi )j [�i =1]

n∑

i =1
(Zi )j �̂1n(Xi ) e�̂

T
1nZi {[�i =1]+ [�i =3]V1i (�̂n)}

⎞
⎠, for j =1, . . ., d,

(ix) (�̂2n)j = log

⎛
⎝e(�̂2n)j

n∑

i =1
(Zi )j [�i =2]

n∑

i =1
(Zi )j �̂2n(Xi ) e�̂

T
2nZi {[�i =2]+ [�i =3]V1i (�̂n)}

⎞
⎠, for j =1, . . ., d;

where (·)j is the jth coodinate of the vector.

Proof. The proofs for (iii), (v) and (vi) are similar to that for (i), and that for (iv) is simi-
lar to (ii); thus they are omitted. The proofs for (vii), (viii) and (ix) are straightforward and
hence also omitted, but we will provide some heuristics that motivates them at the end of
this section. We first give a detailed proof for (i).

Since Pn`4, �̂n
[h4]=0 for every h4 ∈BV [0, �], we set h4(t)= I(0, u](t) in (9) and get, for every u,

n∑
i =1

[�i =1]I(0, u](Xi)=
n∑

i =1

({
[�i =1]+ [�i =3]V1i(�̂n)

}
e�̂

T
1nZi

∫ u

0
I(0, Xi ](t) d�̂1n(t)

)
.

This leads to G1n(u)=∫ u
0 W1n(�̂n; t) d�̂1n(t), which in turn immediately gives (i).

Since (ii) can be proved similarly by using E`4, �0 [h4](X1, �1, Z1)=0, for every h4 ∈BV [0, �],
the proof is complete.

Making use of lemma 1, we now present the algorithm for computing the NPMLE. Let
�1(�̂n)(t), �2(�̂n)(t), A(�̂n), B1(�̂n), and B2(�̂n) denote respectively the right-hand side of (i),
(iii), (vii), (viii) and (ix) in lemma 1. The algorithm is given as follows.

(1) Choose starting values �(1)
c , �(1)

1 , �(1)
2 , �(1)

1 , and �(1)
2 .

(2) Set K =1.
(3) �(K +1)

c =A(�(K )
c , �(K )

1 , �(K )
2 , �(K )

1 , �(K )
2 ).

(4) �(K +1)
1 =B1(�(K +1)

c , �(K )
1 , �(K )

2 , �(K )
1 , �(K )

2 ).
(5) �(K +1)

2 =B2(�(K +1)
c , �(K +1)

1 , �(K )
2 , �(K )

1 , �(K )
2 ).

(6) �(K +1)
1 (t)=�1(�(K +1)

c , �(K +1)
1 , �(K +1)

2 , �(K )
1 , �(K )

2 )(t).
(7) �(K +1)

2 (t)=�2(�(K +1)
c , �(K +1)

1 , �(K +1)
2 , �(K +1)

1 , �(K )
2 )(t).

(8) K =K +1.
(9) Repeat (3)–(8) for a suitable number M of iterations until there is evidence of con-

vergence.
(10) The estimate of � is given by �̂n = (�(M)

c , �(M)
1 , �(M)

2 �(M)
1 , �(M)

2 ).

Here are some heuristics for using (vii), (viii) and (ix) in the algorithm. Suppose the score
function is the derivative 
′

1 of a function 
1, and 
′
1(�0)=0 with �0 > 0 being the NPMLE

of certain parameter. If 
′
1 =
2 −
3 for two positive functions 
2 and 
3, �(1) is in a suitable

neighbourhood of �0, and �(K +1) = �(K ) 
2(�(K ))

3(�(K ))

, then �(K ) converges to �0 in view of the propo-
sition 3 in Chang et al. (2006), given below. With suitably chosen 
2 and 
3, we can get (vii),
(viii) and (ix). Consider (viii), for example. We set
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2 =
n∑

i =1

(Zi)j [�i =1],

and


3 =
n∑

i =1

(Zi)j�̂1(Xi) e�̂
T
1 Zi

{
[�i =1]+ [�i =3]V1i(�̂n)

}
.

Then 
2 − 
3 is the score (7) and the step (4) in the algorithm is an implementation of

�(K +1) = �(K ) 
2(�(K ))

3(�(K ))

.

Proposition (Chang et al., 2006)
Let 
1 : (a, b)→� be a function possessing bounded continuous second derivative. Let �0 > 0 be
an isolated local maximum of 
1 and 
′′

1(�0) < 0. Let 
2 and 
3 be two positive and continuously
differentiable functions satisfying 
′

1 =
2 − 
3. Then there exist � > 0 and n0 > 0 such that if
|�1 − �0| < �, and �J +1 = �J


2(�J )+n0

3(�J )+n0

for J =1, 2, . . ., then �J converges to �0.

The idea behind this proposition is simple and goes as follows. If 0 < �J < �0, then we would
like to have �J +1 > �J . If �J is in a suitable neighbourhood of �0, then 
2(�J )−
3(�J )=
′

1(�J ) > 0,
and hence �J +1 > �J . Similar comments hold when �J > �0.

3. Consistency of NPMLE

The purpose of this section is to establish the following theorem 2 and theorem 2′. As much
as theorem 2 is an indispensable part of the asymptotic theory, theorem 2′ concerns a useful
consistency condition for the profile likelihood theory, discussed in Murphy & van der Vaart
(2000). Since the proof for theorem 2 is similar to that for theorem 2′, we prove only the
latter.

Theorem 2 (Consistency)
||�̂cn − �c0||, ||�̂1n − �10||, ||�̂2n − �20||, supt∈[0, �] |�̂1n(t) − �10(t)|, and supt∈[0, �] |�̂2n(t) − �20(t)|
converge to 0 almost surely, as n tends to infinity, where || · || is the Euclidean norm.

Theorem 2′

For n=1, 2, . . ., let �n = (�cn, �1n, �2n) be a random element in A×B×B that converges in proba-
bility to �0 = (�c0, �10, �20). Then both supt∈[0, �] |�̂1n, �n (t)−�10(t)| and supt∈[0, �] |�̂2n, �n (t)−�20(t)|
converge to 0 almost surely as n goes to infinity.

We need a few lemmas, before presenting the proof.

Lemma 2
Let �c =A×B ×B ×Lc ×Lc, where Lc ={�∈L |�(�)≤ c} for some c ∈ (0, ∞). Then

sup
u∈[0, �], �∈�c

|W1n(�; u)−W10(�; u)| and sup
u∈[0, �], �∈�c

|W2n(�; u)−W20(�; u)|

converge to 0 almost surely, as n goes to infinity.

Proof. We will prove the first part of lemma 2, the other goes the same way. Let

g1(�, u, X1, �1, Z1)={[�1 =1]+ [�1 =3]V11(�)}e�T
1 Z1 I(0, X1](u).
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Then W1n(�; u) − W10(�; u)=Png1(�, u, · , · , ·) − Eg1(�, u, X1, �1, Z1). By repeatedly using the
theorem 2.10.6 and examples 2.10.4, 2.10.7, 2.10.8, 2.10.9, and 2.10.27 in van der Vaart &
Wellner (1996), we know G1 ={g1(�, u, · , · , ·) |�∈�c, u∈ [0, �]} is a Donsker class. This implies
that

√
n(Png1(�, u, · , · , ·)−Eg1(�, u, X1, �1, Z1)) converges weakly to a tight Borel measurable

Gaussian element in `∞(G1) as n goes to infinity. Thus Png1(�, u, · , · , ·)−Eg1(�, u, X1, �1, Z1)
converges weakly to zero as a random element in `∞(G1). This completes the proof.

Lemma 3
Let �∈�c be given. Then

sup
t∈[0, �]

∣∣∣∣
∫ t

0

1
W1n(�; u)

d(G1n(u)−G10(u))

∣∣∣∣ and sup
t∈[0, �]

∣∣∣∣
∫ t

0

1
W2n(�; u)

d(G2n(u)−G20(u))

∣∣∣∣
converge to 0 almost surely, as n goes to infinity.

Proof. It follows from the permanence of the Donsker property and the fact that the class
of non-negative increasing functions with a common upper bound is Donsker that the class
of functions [�i =1]I(0, u](Xi), indexed by u, is Donsker and hence Glivenko-Cantelli (van der
Vaart & Wellner, 1996, examples 2.10.4, 2.10.7, and 2.10.8). This shows that supt∈[0, �] |G1n(t)−
G10(t)| goes to zero almost surely. Combining (13), the uniform convergence of G1n, mono-
tonicity of W1n(�; ·), and the following integration by parts equation∫ t

0

1
W1n(�; u)

d(G1n(u)−G10(u))= G1n(u)−G10(u)
W1n(�; u)

∣∣∣∣
t

0

−
∫ t

0
(G1n(u)−G10(u)) d

1
W1n(�; u)

,

we get the desired result immediately.

Using lemmas 2 and 3, we show the following.

Lemma 4
Both

(i) sup
t∈[0, �]

∣∣∣∣
∫ t

0

1
W1n(�; u)

dG1n(u)−
∫ t

0

1
W10(�; u)

dG10(u)

∣∣∣∣ ,

and

(ii) sup
t∈[0, �]

∣∣∣∣
∫ t

0

1
W2n(�; u)

dG2n(u)−
∫ t

0

1
W20(�; u)

dG20(u)

∣∣∣∣
converge to 0 almost surely as n goes to infinity.

Proof. We prove (i) only, because (ii) is similar. Consider

sup
t∈[0, �]

∣∣∣∣
∫ t

0

1
W1n(�; u)

dG1n(u)−
∫ t

0

1
W10(�; u)

dG10(u)

∣∣∣∣
≤ sup

t∈[0, �]

∣∣∣∣
∫ t

0

1
W1n(�; u)

d(G1n −G10)(u)

∣∣∣∣
+ sup

t∈[0, �]

∣∣∣∣
∫ t

0

(
1

W1n(�; u)
− 1

W10(�; u)

)
dG10(u)

∣∣∣∣ . (12)
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From the definition of W1n, there exist c2 > 0 and c3 > 0 such that

c3

n

n∑
i =1

(I(0, Xi ](�)I[�i =1])≤W1n(�; u)≤ c2

n

n∑
i =1

(I(0, Xi ](u)I[�i =1 or 3])≤ c2,

for every (�, u) in �× [0, �]; we know from the condition P(T1 ≥ �, W1 =1) > 0 and the Law
of Large Numbers that

0 < c1 ≤W1n(�; u)≤ c2, (13)

almost surely for large n. Here c1 = c3P(T1 ≥�, W1 =1). Using (12), lemmas 2, 3 and (13), we
get (i) immediately. This completes the proof.

Lemma 5

lim sup
n→∞

�̂1n(�) <∞, a.s. and lim sup
n→∞

�̂2n(�) <∞, a.s.

Lemma 5′

lim sup
n→∞

�̂1n, �n (�) <∞, a.s. and lim sup
n→∞

�̂2n, �n (�) <∞, a.s.

We note that lemma 5 and lemma 5′ are, respectively, important steps in proving theorem
2 and theorem 2′, and since their proofs are similar, we prove only lemma 5′.

Proof. We prove only lim supn→∞ �̂1n, �n (�) <∞, a.s., because the other is similar. Let

�̃1n, �n (t)=
∫ t

0

1
W1n(�n, �10, �20; u)

dG1n(u) (14)

and

�̃2n, �n (t)=
∫ t

0

1
W2n(�n, �10, �20; u)

dG2n(u). (15)

It follows from lemma 4, (ii) and (iv) of lemma 1 and 2 and the condition �n converging to �0

in probability that both supt∈[0, �]

∣∣∣�̃1n, �n (t)−�10(t)
∣∣∣ and supt∈[0, �]

∣∣∣�̃2n, �n (t)−�20(t)
∣∣∣ converge

to 0 almost surely. Let Ai = [Xi = �]. Since
∑

i P(Ai)=∞ and {Ai} are independent, we have
P(Ai i.o.)=1, by the Borel-Cantelli lemma. Here, the abbreviation ‘i.o.’ stands for ‘infinitely
often’.

Suppose lim supn→∞ �̂1n, �n (�)=∞ with positive probability, then there exists an 
 ∈
[Ai i.o.] satisfying supt∈[0, �] |�̃1n, �n (t) − �10(t)| → 0, supt∈[0, �] |�̃2n, �n (t) − �20(t)| → 0, and

lim supn→∞�̂1n, �n (�)=∞. Let {nj} be a subsequence such that �̂1nj , �nj
(�)→∞ for this 
.

Let �̃n = (�n, �̃1n, �n , �̃2n, �n ) and �̄n = (�n, �̂1n, �n , �̂2n, �n ). Because (�̂1n, �n , �̂2n, �n ) maximizes
Lnj (�n, · , ·), we know

0≤ 1
nj

log Lnj (�̄nj )−
1
nj

log Lnj (�̃nj )

= 1
nj

nj∑
i =1

(IAi + IAc
i
) log

⎧⎨
⎩

L̄(i), �̄nj

L̄(i), �̃nj

⎫⎬
⎭

≤ log

⎧⎨
⎩ 1

nj

nj∑
i =1

L̄(i), �̄nj

L̄(i), �̃nj

1Ai

⎫⎬
⎭+ log

⎧⎨
⎩ 1

nj

nj∑
i =1

L̄(i), �̄nj

L̄(i), �̃nj

1Ac
i

⎫⎬
⎭. (16)

We note that the last inequality of (16) follows from the Jensen’s inequality.
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Using lemma 1 and (14), we know that

��̂1nj , �nj
(Xi)

��̃1nj , �nj
(Xi)

= W1nj (�nj
, �10, �20; Xi)

W1nj (�nj
, �̂1nj , �nj

, �̂2nj , �nj
; Xi)

. (17)

It follows from (13) and (17) that

0 <
c1

c2
≤ lim

j→∞

��̂1nj , �nj
(Xi)

��̃1nj , �nj
(Xi)

≤ lim
j→∞

��̂1nj , �nj
(Xi)

��̃nj , �nj
(Xi)

≤ c2

c1
. (18)

Similarly, there exist b1 > 0 and b2 > 0 such that

b1 ≤ lim
j→∞

��̂2nj , �nj
(Xi)

��̃2nj , �nj
(Xi)

≤ lim
j→∞

��̂2nj , �nj
(Xi)

��̃nj , �nj
(Xi)

≤b2. (19)

Using (18), (19), and the facts that (�cnj , �1nj
, �2nj

) → (�c0, �10, �20), that �̃1nj , �nj
→ �10,

�̃2nj , �nj
→ �20 on [0, �], and that n−1

j

∑nj
i =1 exp(−�̂1nj , �nj

(Xi))IAi → 0 as j → ∞, we can show
that the right hand of (16) at that 
 goes to −∞ as j →∞. This leads to a contradiction,
hence lim supn→∞ �̂1n, �n (�) <∞ a.s. This completes the proof.

Proof of theorem 2′. It follows from lemma 5′, arguments in the proof of lemma 5′ and the
Law of Large Numbers that there exists 
∈� for which lim supn→∞ �̂1n, �n (�) <∞, lim supn→∞
�̂2n, �n (�) <∞, supt∈[0, �] |G1n(t)−G10(t)|→0, supt∈[0, �] |G2n(t)−G20(t)|→0, supt∈[0, �] |�̃1n, �n (t)−
�10(t)| → 0, and supt∈[0, �] |�̃2n, �n (t) − �20(t)| → 0. Here �̃1n, �n is given by (14), and �̃2n, �n is
given by (15). Using lemma 1, (13), and the Law of Large Numbers, we know that

|�̂1n, �n (s)− �̂1n, �n (t)|≤O(1)|G1n(s)−G1n(t)|≤O(1)|G10(s)−G10(t)|+o(1)

for s, t ∈ [0, �]. This together with the compactness of A×B ×B and the arguments in prov-
ing the Arzela–Ascoli theorem (see, for example, theorem 7.25 in Rudin, 1976) implies that
there exists a subsequence {nj} for which (�T

cnj
, �T

1nj
, �T

2nj
, �̂1nj , �nj

, �̂2nj , �nj
) converges uniformly

to some �∗ = (�T
c0, �T

10, �T
20, �∗

1, �∗
2). We will show that �∗ =�0.

We now explain that

�̂1nj , �nj
(t)=

∫ t

0

1

W1nj (�nj
, �̂1nj , �nj

, �̂2nj , �nj
; u)

dG1nj (u)

=
∫ t

0

1

W1nj (�nj
, �̂1nj , �nj

, �̂2nj , �nj
; u)

dG10(u)+o(1)

=
∫ t

0

1

W10(�nj
, �̂1nj , �nj

, �̂2nj , �nj
; u)

dG10(u)+o(1)

=
∫ t

0

1
W10(�∗; u)

dG10(u)+o(1).

The first equality follows from lemma 1, the second equality can be proved by using lemma
2 and the arguments in proving lemma 3, the third equality follows from lemma 2, and the
last equality follows from the uniform convergence of (�nj

, �̂1nj , �nj
, �̂2nj , �nj

) and the lebesgue

dominated convergence theorem. Thus, �∗
1(t)=∫ t

0
1

W10(�∗ ;u) dG10(u). This, together with lemmas
1 and 2, implies, uniformly in t, that
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d�̂1nj , �nj

d�̃1nj , �nj

(t)= W1nj (�nj
, �10, �20; t)

W1nj (�nj
, �̂1nj , �nj

, �̂2nj , �nj
; t)

→ W10(�0, t)
W10(�∗; t)

= d�∗
1

d�10
(t),

which is bounded and bounded away from 0 by (13).

Considering
[

d�̂1nj , �nj

d�̃1nj , �nj

(x)
][�=1]

as a function in (x, �) with 
 fixed, we can use the argument

in the proof of lemma 3 and properties concerning random functions and Glivenko–Cantelli
class (see, for example, van der Vaart, 1998, p. 279) to obtain

1
nj

nj∑
i =1

log

{[d�̂1nj , �nj

d�̃1nj , �nj

(Xi)
][�i =1]

}
−E log

{[d�̂1nj , �nj

d�̃1nj , �nj

(X1)
][�1 =1]

}

=
∫ �

0
log

d�̂1nj , �nj

d�̃1nj , �nj

(t) d
(

G1nj (t)−G10(t)
)

=o(1), a.s. (20)

Similarly,

1
nj

nj∑
i =1

log

{[d�̂2nj , �nj

d�̃2nj , �nj

(Xi)
][�i =2]

}
−E log

{[d�̂2nj , �nj

d�̃2nj , �nj

(X1)
][�1 =2]

}
=o(1), a.s. (21)

In fact, the expectations in (20) and (21) are taken only over (X1, �1) with parameter esti-
mators �̂1nj , �nj

and �̂2nj , �nj
substituted after taking the expectation.

Because the set of functions

g(�; X1, �1, Z1)

≡ log
{

{�(Z1) e�T
1 Z1−�1(X1)e�T

1 Z1 }[�1 =1]{[1−�(Z1)] e�T
2 Z1−�2(X1)e�T

2 Z1 }[�1 =2]

×{�(Z1) e−�1(X1)e�T
1 Z1 + [1−�(Z1)] e−�2(X1)e�T

2 Z1 }[�1 =3]

}
,

indexed by �∈�c, is Glivenko–Cantelli, we can conclude that∣∣∣Pnj

(
g(�nj

, �̂1nj , �nj
, �̂2nj , �nj

; ·, · , ·)−g(�nj
, �̃1nj , �nj

, �̃2nj , �nj
; ·, · , ·)

)

−E
(
g(�nj

, �̂1nj , �nj
, �̂2nj , �nj

; X1, �1, Z1)−g(�nj
, �̃1nj , �nj

, �̃2nj , �nj
; X1, �1, Z1)

)∣∣∣=o(1), a.s. (22)

Here we use the same arguments concerning random functions in deriving (20). In particular,
the expectation in (22) is taken only over (X1, �1, Z1) with parameter estimators �̂nj substi-
tuted after taking the expectation. The expectation in (23) below is to be understood in the
same manner.

Using (20), (21) and (22), we get

0≤ 1
nj

log Lnj (�nj
, �̂1nj , �nj

, �̂2nj , �nj
)− 1

nj
log Lnj (�nj

, �̃1nj , �nj
, �̃2nj , �nj

)

= 1
nj

nj∑
i =1

log

⎛
⎝d�̂1nj , �nj

d�̃1nj , �nj

(Xi)

⎞
⎠

[�i =1]

+ 1
nj

nj∑
i =1

log

⎛
⎝d�̂2nj , �nj

d�̃2nj , �nj

(Xi)

⎞
⎠

[�i =2]

+Pnj {g(�nj
, �̂1nj , �nj

, �̂2nj , �nj
; ·, · , ·)−g(�nj

, �̃1nj , �nj
, �̃2nj , �nj

; ·, · , ·)}

=E log
L̃(1), (�nj , �̂1nj , �nj

, �̂2nj , �nj
)

L̃(1), (�nj , �̃1nj , �nj
, �̃2nj , �nj

)

+o(1), a.s. (23)
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Considering the 
 chosen at the beginning of the proof for the which (23) is also satisfied,
using the Jensen’s inequality and the Kullback–Leibler divergence theorem (see, for example,
van der Vaart, 1998, p. 62), we get L̃(1), �∗ = L̃(1), �0 . Since �∗

1 is absolutely continuous relative
to G10 and thus also to �10 by (ii) of lemma 1. Similarly, �∗

2 is absolutely continuous rela-
tive to �20. We can now use the identifiability assumption 1 to conclude that �∗ =�0. This
completes the proof.

4. Asymptotic normality and rate of convergence

We will prove the asymptotic normality of the NPMLE and the rate of convergence of the
non-parameteric part by verifying the conditions in theorem 3.3.1 and lemma 3.3.5 of van der
Vaart & Wellner (1996) and in theorem 3.1 of Murphy & van der Vaart (1999). For this, a few
lemmas are needed. Let H=�d +1 ×�d ×�d ×BV [0, �]×BV [0, �]. For h= (h1, h2, h3, h4, h5)∈
H, we introduce the norm ||h||H = ||h1||+ ||h2||+ ||h3||+ ||h4||V + ||h5||V . Here ||h||V denotes
the sum of the absolute value of h(0) and the total variation of h on [0, �] for every
h ∈ BV [0, �]. Let Hp be the subset of H with ||h||H ≤ p if p < ∞. If p=∞, then the previ-
ous inequality is strict. Define �(h)=hT

1 �c +hT
2 �1 +hT

3 �2 +∫ �
0 h4 d�1 +∫ �

0 h5 d�2 and consider
the parameter space � a subset of `∞(Hp), the space of all bounded real-valued functions
on Hp under the supremum norm ||�||`∞

(Hp)
= suph∈Hp

|�(h)|. We note that (p/
√

d +1)(||�c −
�c0|| ∨ ||�1 −�10|| ∨ ||�2 −�20|| ∨ ||�1 −�10||∗ ∨ ||�2 −�20||∗) ≤ ||�− �0||`∞

(Hp) ≤ 5p(||�c − �c0|| ∨
||�1 −�10|| ∨ ||�2 −�20|| ∨ ||�1 −�10||∗ ∨ ||�2 −�20||∗), where ||�||∗ = sup||h||V ≤1 |∫ �

0 h d�| is the
natural norm for a bounded linear operator on the normed space BV [0, �].

Let ��, h =∑5
j =1 `j, �[hj ], Define �n, � :�→`∞(Hp) by

�n(�)(h)=Pn��, h = 1
n

n∑
i =1

5∑
j =1

`j, �[hj ](Xi , �i , Zi),

�(�)(h)=E�1(�)(h).

Lemma 6√
n
(
�n(�0)−�(�0)

)
converges weakly to a Gaussian process W in `∞(Hp) for every 0 < p < ∞.

Proof. According to empirical process theory, it is sufficient to show that {��0,h |h∈Hp}
is a Donsker class. Since the fact that {��0,h |h∈Hp} is Donsker can be shown in exactly the
same way as that for lemma 7, we omit it. This completes the proof.

Lemma 7
{��,h −��0,h | ||�−�0||`∞

(Hp) <�, h∈Hp} is Donsker.

Proof. Because the class of functions with a common upper bound of their total
variations is Donsker (see, for example, van der Vaart, 1998, example 19.11), we know
{h |h ∈ BV [0, �], ||h||V < p}, {∫ ·

0 h d�10 |h ∈ BV [0, �], ||h||V < p}, and {∫ ·
0 h d�20 |h ∈ BV [0, �],

||h||V < p} are Donsker classes. In fact, they are uniformly bounded Donsker classes. Using
this, (6)–(10), and the fact that product and sum of uniformly bounded Donsker classes are
again Donsker classes (see, for example, theorem 2.10.6 in van der Vaart & Wellner, 1996),
we get the lemma. This completes the proof.
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Lemma 8
lim�→�0 suph∈Hp

E(��,h −��0,h)2 =0.

Proof. Using (6)–(10), we have

��, h(X1, �1, Z1)−��0, h(X1, �1, Z1)

=


(
�c −�c0, �1 −�10, �2 −�20, h1, h2, h3, (�1 −�10)(X1),

∫ X1

0
h4 d(�1 −�10),

(�2 −�20)(X1),
∫ X1

0
h5 d(�2 −�20)

)
+O

(
||�c −�c0||2 +

2∑
i =1

||�i −�i0||2

+
2∑

i =1

|(�i −�i0)(X1)|2 +
∣∣∣∣
∫ X1

0
h4 d(�1 −�10)

∣∣∣∣
2

+
∣∣∣∣
∫ X1

0
h5 d(�2 −�20)

∣∣∣∣
2
)

=


(
�c −�c0, �1 −�10, �2 −�20, h1, h2, h3, (�1 −�10)(X1),

∫ X1

0
h4 d(�1 −�10) ,

(�2 −�20)(X1),
∫ X1

0
h5 d(�2 −�20)

)
+◦

(
||�−�0||`∞

(Hp)

)
, (24)

for some multi-linear function 
, as � gets close to �0. We note that the first equality is
the first-order Taylor expansion of ��, h(X1, �1, Z1), as a function of (�c, �1, �2, �1(X1), �2(X1),∫ X1

0 h4 d�1,
∫ X1

0 h5 d�2); the second follows from the inequality in the first paragraph of this
section. Thus lemma 8 follows from (24) immediately.

Let lin� denote the set of all finite linear combinations of �−�0, for �∈�.

Lemma 9
Let p < ∞. There is a continuous linear map �̇�0 : lin�→`∞(Hp) satisfying

||�(�)−�(�0)− �̇�0 (�−�0)||`∞
(Hp)

=◦(||�−�0||`∞
(Hp)).

In addition, �̇�0 has a continuous inverse on its range.

Proof. We first prove the existence of �̇�0 . It follows from (24) that

�(�)(h)−�(�0)(h)=E
[
��, h(X1, �1, Z1)−��0, h(X1, �1, Z1)

]
=− [

	1(h)T (�c −�c0)+	2(h)T (�1 −�10)+	3(h)T (�2 −�20)

+
∫ �

0
	4(h) d(�1 −�10) +

∫ �

0
	5(h) d(�2 −�20)

]
+R(�)(h),

for some continuous linear operator �= (	1, 	2, 	3, 	4, 	5) from H∞ to H∞, and remainder
term R(�) satisfying

lim
�→�0

suph∈Hp
|R(�)(h)|

||�−�0||`∞
(Hp)

=0.

In fact,

�̇�0 (�−�0)(h)=− [
	1(h)T (�c −�c0)+	2(h)T (�1 −�10)+	3(h)T (�2 −�20)

+
∫ �

0
	4(h) d(�1 −�10)+

∫ �

0
	5(h) d(�2 −�20)

]
. (25)
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With the existence of �̇�0 , we can prove its invertibility by the arguments in the lemma
4.4 of Chang et al. (2005), using the following lemmas 10 and 11 on 	. This completes the
proof.

We note that 	 is called the information operator. Considering (25) and the negative second
directional derivative of the log-likelihood of the parametric submodel

(�1, �2) 
→ (�c0 + �1h1 + �2h∗
1, �10 + �1h2 + �2h∗

2, �20 + �1h3 + �2h∗
3,

�10 + �1

∫ ·

0
h4 d�10 + �2

∫ ·

0
h∗

4 d�10, �20 + �1

∫ ·

0
h5 d�20 + �2

∫ ·

0
h∗

5 d�20)

for �1, �2 near 0, we get the following equation connecting the information and the score:

h∗T
1 	1(h)+h∗T

2 	2(h)+h∗T
3 	3(h)+

∫ �

0
	4(h)(u)h∗

4(u) d�10(u)+
∫ �

0
	5(h)(u)h∗

5(u) d�20(u)

=E

⎡
⎣ 5∑

j =1

`j, �0 [hj ](X1, �1, Z1)

⎤
⎦
⎡
⎣ 5∑

j =1

`j, �0 [h∗
j ](X1, �1, Z1)

⎤
⎦, (26)

for (h1, h2, h3, h4, h5) and (h∗
1, h∗

2, h∗
3, h∗

4, h∗
5) in H∞.

Lemma 10
	 is one to one.

Proof. Assume 	(h)=0. Using (26), we know

5∑
j =1

`j, �0 [hj ] (X1, �1, Z1)=0, a.s. (27)

Considering X1 near t∗ from the right in (27) and assumption 2′ with (a1, a2, a3, a4, a5, a6, a7)=
(h1, h2, h3,

∫ t∗
0 h4 d�10,

∫ t∗
0 h5 d�20, h4(t∗), h5(t∗)), we know h1 =0, h2 =h3 =0, and

∫ t∗
0 h4 d�10 =∫ t∗

0 h5 d�20 =h4(t∗)=h5(t∗)=0.
Putting h1 =0, h2 =h3 =0 in (27) and considering �1 =1, we get

h4(X1)= e�T
10Z1

∫ X1

0
h4 d�10

for almost every (X1, Z1). Let z be any point in the support of the distribution of Z1. Define
g(t)= e�T

10z
∫ t

0 h4 d�10, then g =h4 a.s. [�10]. It’s easy to show that g(t)=b e�T
10z exp(�10(t) e�T

10z)
for some constant b. By g(0)=0, we have g =0 identically and hence h4 =0 a.s. [�10]. Simi-
larly, we have h5 =0 a.s. [�20].

Putting h1 =0, h2 =h3 =0, h4 =0 a.s. [�10], and h5 =0 a.s. [�20] in 	4(h)=0, we obtain from
(28) below that h4(u)W10(�0; u)=0 for u ∈ [0, �]. Since W10(�0; ·) is uniformly bounded away
from zero, h4 =0 identically. A similar argument gives h5 =0 identically. This completes the
proof.

Lemma 11
	 is continuously invertible.

Proof. Define A : H∞ →H∞ by

A(h1, h2, h3, h4, h5)= (h1, h2, h3, h4(·)W10(�0; ·), h5(·)W20(�0; ·)).
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Since W10(�0, ·) and W20(�0, ·) are uniformly bounded and bounded away from 0 on [0, �], A
is continuous, linear, and invertible.

Let K=	 − A. Hence 	=A(I +A−1K). It is sufficient to show that I +A−1K is contin-
uously invertible. According to lemma 10, I +A−1K is one to one. This, together with the
theorem 4.25 in Rudin (1973), implies that I +A−1K is invertible, if A−1K is compact. For
this, we need to show that K is compact.

Let A= (A1, A2, A3, A4, A5) and K= (K1, K2, K3, K4, K5). We only show K4 is compact, since
the compactness of K1, K2, K3, and K5 can be shown similarly. Since a bounded linear oper-
ator with finite-dimensional range is compact, we need only show that K4 is compact on
{(0, 0, 0, h4, h5) |h4, h5 ∈BV [0, �]}.

Observing from (25) that

−
∫ �

0
	4(0, 0, 0, h4, h5) d (�1 −�10)

= �̇�0 (0, 0, 0, �1 −�10, 0) (0, 0, 0, h4, h5)

= d
d�

∣∣∣∣
�=0

�(�c0, �10, �20, �10 + � (�1 −�10), �20)(0, 0, 0, h4, h5),

we can show that

	4(0, 0, 0, h4, h5)(u)

=h4(u)W10(�0; u)−E[�1 =3]
{

V11(�0) e2�T
10Z1

∫ X1

0
h4 d�10I[u≤X1]

−
[
V11(�0) e�T

10Z1 I[u≤X1]

][
V11(�0) e�T

10Z1

∫ X1

0
h4 d�10 +V21(�0) e�T

20Z1

∫ X1

0
h5 d�20

]}
, (28)

which implies immediately

||K4(0, 0, 0, h4, h5)||V = ||(	4 −A4)(0, 0, 0, h4, h5)||V
≤ c

(∫ �

0
|h4|d�10(t)+

∫ �

0
|h5|d�20(t)

)
,

for some constant c. This shows K4 is compact on {(0, 0, 0, h4, h5) |h4, h5 ∈BV [0, �]} by Helly’s
lemma. This completes the proof.

Theorem 3√
n(�̂n −�0) converges weakly to a tight Gaussian process G ≡−�̇

−1
�0

W on `∞(Hp) with mean
zero and covariance process

Cov(G(h), G(h̃))=hT
1 	̃1(h̃)+hT

2 	̃2(h̃)+hT
3 	̃3(h̃)+

∫ �

0
h4	̃4(h̃) d�10 +

∫ �

0
h5	̃5(h̃) d�20, (29)

where (	̃1, 	̃2, 	̃3, 	̃4, 	̃5)= 	̃ : H∞ 
→H∞ is the inverse of 	.

Proof of theorem 3. Since lemmas 6, 7, 8 and 9 combined indicate that the conditions in
the theorem 3.3.1 and lemma 3.3.5 in van der Vaart & Wellner (1996) are satisfied, we obtain
the weak convergence of

√
n(�̂n −�0).

We will now calculate its asymptotic variance. It follows from �(�0)=0, lemma 6, and (26)
that

√
n�n(�0) converges weakly to a tight Gaussian process W in `∞(Hp) with

Var(W(h))=hT
1 	1(h)+hT

2 	2(h)+hT
3 	3(h)+

∫ �

0
	4(h)h4 d�10 +

∫ �

0
	5(h)h5 d�20. (30)
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It follows from (25) and theorem 3.3.1 of van der Vaart & Wellner (1996) that

	T
1 (h)(

√
n(�̂cn −�c0))+	T

2 (h)(
√

n(�̂1n −�10))+	T
3 (h)(

√
n(�̂2n −�20))

+
∫ �

0
	4(h) d(

√
n(�̂1n −�10))+

∫ �

0
	5(h) d(

√
n(�̂2n −�20))

=−�̇�0 (
√

n(�̂n − (�0))(h)

=√
n(�n(�0)−�(�0))(h)+op∗ (1). (31)

Setting g=	(h) in (31) and using (30), we know that

gT
1 (

√
n(�̂cn −�c0))+gT

2 (
√

n(�̂1n −�10))+gT
3 (

√
n(�̂2n −�20))

+
∫ �

0
g4 d(

√
n(�̂1n −�10))+

∫ �

0
g5 d(

√
n(�̂2n −�20))

is asymptotically normal with mean 0 and variance

gT
1 	̃1(g)+gT

2 	̃2(g)+gT
3 	̃3(g) +

∫ �

0
g4	̃4(g) d�10 +

∫ �

0
g5	̃5(g) d�20. (32)

Using (32), we get (29) immediately. This completes the proof.

It follows from lemmas 7, 8 and 9 that the conditions of the theorem 3.1, on rate of con-
vergence, in Murphy & van der Vaart (1999) are satisfied. This together with theorem 2′, we
get

Theorem 3′ (Rate of Convergence)

||�̂1n, �n −�10||V + ||�̂2n, �n −�20||V =O∗
p(||�n − �0||+n−1/2).

5. Profile likelihood theory

In this section, we focus our attention on the estimation of (�c, �1, �2), and present the effi-
cient score function, the least favorable submodel, and finally the profile likelihood theory.

For h∈H∞, let 	̃T
123(h)= (	̃1(h)T , 	̃2(h)T , 	̃3(h)T ). Let ei be the D(≡3d +1)-dimensional row

vector with a 1 in the ith component and zeros elsewhere, for every i =1, . . ., D. Define the
D×D matrix � by �−1 =(

	̃123(e1, 0, 0), . . ., 	̃123(eD, 0, 0)
)T

. We note that � is positive definite
and symmetric.

We define

`123, �[(hT
1 , hT

2 , hT
3 )](X1, �1, Z1)=`1, �[h1](X1, �1, Z1)+`2, �[h2](X1, �1, Z1)+`3, �[h3](X1, �1, Z1),

for h1 ∈�d +1, h2 ∈�d , and h3 ∈�d . Viewing (hT
1 , hT

2 , hT
3 ) as a D-dimensional row vector, we

can consider `123, �[·](X1, �1, Z1) a D-dimensional column vector. `123, �[·](X1, �1, Z1) will be
abbreviated as `123, �.

We also define

g∗
4 =−�

⎛
⎜⎝

	̃4(e1, 0, 0)
...

	̃4(eD, 0, 0)

⎞
⎟⎠ and g∗

5 =−�

⎛
⎜⎝

	̃5(e1, 0, 0)
...

	̃5(eD, 0, 0)

⎞
⎟⎠.

Let

˜̀0 =`123, �0 −`4, �0 [g∗
4 ]−`5, �0 [g∗

5 ]. (33)

Using (26), we can prove ei�
−1E( ˜̀0(`4, �0 [g4]+`5, �0 [g5]))=0, for every g4 and g5 in BV [0, �].

This shows that ˜̀0 is the efficient score function for the estimation of (�c, �1, �2). Similarly,

we can also obtain �=E ˜̀0 ˜̀0T
.
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Now we introduce the least favourable submodel. For �∈�1×D, the space of D-dimensional
row vectors, we define

�1(�, �; t)=
∫ t

0
(1+ (�− �)g∗

4)(s) d�1(s),

�2(�, �; t)=
∫ t

0
(1+ (�− �)g∗

5)(s) d�2(s),

where �= (�, �1, �2)∈�. Given �, the path � 
→ (
�, �1(�, �; ·), �2(�, �; ·)) defines a parametric

submodel, referred to as the submodel indexed by �. Its log-likelihood for the data (X1, �1, Z1),
denoted by `(�, �; X1, �1, Z1)≡`(�, �, �1, �2; X1, �1, Z1), equals to log L1(�, �1(�, �; ·), �2(�, �; ·);
X1, �1, Z1). We denote by ˙̀ and ῭ the first and second derivatives of ` in �, respectively.

Thus, the score function at � of the submodel indexed by �, denoted by ˙̀(�, �), is equal to
`123, (�, �1(�, �;·), �2(�, �;·)) −`4, (�, �1(�, �;·), �2(�, �;·))[g∗

4 ]−`5, (�, �1(�, �;·), �2(�, �;·))[g∗
5 ]. Hence

˙̀(�0, �0)= ˜̀0, (34)

which says the score function at �= �0 of the submodel indexed by �0 = (�0, �10, �20), is equal
to the efficient score function ˜̀0. Denote by I0(�, �) the Fisher information at � of the sub-
model �. Then

I0(�0, �0)=−E ῭(�0, �0)=E ˙̀(�0, �0) ˙̀T
(�0, �0)=E ˜̀0 ˜̀T

0 =�. (35)

Lemma 12 below is needed in establishing the profile likelihood theory and we omit its
proof because it is technical and involves mainly arguments already used in proving lemmas
2, 3 and 7.

Lemma 12
The functions (�, �) 
→ ˙̀(�, �)(X1, �1, Z1) and (�, �) 
→ ῭(�, �)(X1, �1, Z1) are continuous at (�0, �0,
�1, �2) for almost every (X1, �1, Z1), relative to the probability specified by �0. There exists a
neighbourhood V of (�0, �0) such that { ˙̀(�, �, �1, �2)|(�, �, �1, �2)∈V} is a uniformly bounded
Donsker class, and { ῭(�, �, �1, �2)|(�, �, �1, �2)∈V} is a uniformly bounded Glivenko–Cantelli
class.

Lemma 13 (No bias)
For every random sequence �̃n converging to �0 in probability,

E�0
˙̀(�0, �̃n, �̂1n, �̃n

, �̂2n, �̃n
)=op(||�̃n − �0||+n−1/2).

Proof. Since ˙̀(�, �, �1, �2) is a score function for the submodel indexed by �= (�, �1, �2),
we know E(�, �1, �2) ˙̀(�, �, �1, �2)=0 for every (�, �1, �2). Differentiating this identity relative
to � yields

E(�, �1, �2)`123, � ˙̀T
(�, �, �1, �2)+E(�, �1, �2) ῭(�, �, �1, �2)+ ∂

∂v

∣∣∣∣
v= �

E(�, �1, �2) ˙̀(�, v, �1, �2)=0;
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evaluating this at (�, �1, �2)= (�0, �10, �20) and using the fact that ˙̀(�0, �0) equals to the effi-
cient score give

− ∂

∂v

∣∣∣∣
v= �0

E�0
˙̀(�0, v, �10, �20)

=E�0 `123(�0, �10, �20) ˙̀T
(�0, �0, �10, �20)+E�0

῭(�0, �0, �10, �20)

=0.

Thus

E�0

( ˙̀(�0, �, �1, �2)− ˙̀(�0, �0, �1, �2)
)

=E�0

(
∂

∂v

∣∣∣∣
v= �∗

˙̀(�0, v, �1, �2)− ∂

∂v

∣∣∣∣
v= �0

˙̀(�0, v, �10, �20)

)
(�− �0)T ,

for an intermediate point �∗ between � and �0. This implies

E�0

( ˙̀(�0, �, �1, �2)− ˙̀(�0, �0, �1, �2)
)=op(||�− �0||). (36)

Since E(�0, �1, �2) ˙̀(�0, �0, �1, �2)=0, we know

E�0
˙̀(�0, �0, �1, �2)= (E�0 −E(�0, �1, �2))( ˙̀(�0, �0, �1, �2)− ˙̀(�0, �0))

+ (E�0 −E(�0, �1, �2)) ˙̀(�0, �0), (37)

which is bounded by a multiple of ||�1 −�10||V + ||�2 −�20||V .
It follows from (36), (37) and theorem 3′ that the proof of this lemma is complete.

Let the profile likelihood for � be denoted by pLn(�), which is equal to sup
�1∈L∗
�2∈L∗

Ln(�, �1, �2).

It follows from theorem 2′, lemmas 12, 13 and (34) that all the conditions in theorem 1 of
Murphy & van der Vaart (2000) are satisfied. Thus, we have

Theorem 4
For every random sequence �̃n that converges to �0 in probability,

log pLn(�̃n)− log pLn(�0)= (�̃n − �0)T
n∑

i =1

˜̀0(Xi , �i , Zi)− 1
2

n(�̃n − �0)T �(�̃n − �0)

+op�0
(
√

n||(�̃n − �0)T ||+1)2. (38)

Here � appeared in (35).
Using the consistency of �̂n given in theorem 2, the invertibility of the efficient Fisher infor-

mation matrix �, and the second order expansion of the profile likelihood (38), we obtain
the following three theorems immediately from the profile likelihood theory of Murphy &
van der Vaart (2000).

Theorem 5
The NPMLE �̂n is asymptotically normal and asymptotically efficient at (�0, �0); that is

√
n(�̃n − �0)=�−1√nPn ˜̀T

0 +op0 (1) d→N(0, �−1).

Theorem 6
Under the null hypothesis H0 : �= �0, the profile likelihood ratio statistic

lrtn(�0)≡2 log
pLn(�̂n)
pLn(�0)

is asymptotically chi-squared with D degrees of freedom.
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Theorem 7
For all sequences vn

p→ v∈�D and �n
p→0 such that (

√
n�n)−1 =Op(1),

−2
log pLn(�̂n +�nvn)− log pLn(�̂n)

n�2
n

p→ vT �v. (39)

Using (39), we can show that

−
[
log pLn(�̂n +�nei +�nej)− log pLn(�̂n +�nei)

− log pLn(�̂n +�nej)+ log pLn(�̂n)
]

/(n�2
n)

converges in probability to the (i, j) entry of �.

6. Simulation studies

There are two studies in this section. In the first study, we set d =1; �c0
= (−2, 5), �10 =0.5,

�20 =−0.5, �10(t)=1/4 and �20(t)=1/5; the conditional distribution of the censoring variable
Ci given Zi = z is exponential with parameter 50(1− z); the distribution of the covariance Zi

is uniform(0, 1).
There are 1000 replicates in this study and each replicate is a random sample with sample

size 300. The number of iteration in using the algorithm in Section 2 is set at 300, and the
starting values are set as �c = (0, 0), �1 =�2 =0, and �1(t)=�2(t)= t.

Based on the data from these 1000 replicates, about 52% of the individuals died, 33% of
them were cured and 14% were censored. All the computations are done on an ordinary PC;
average computing time needed for one replicate is 9 seconds for our method and 15 seconds
for the method of Fine (1999).

Table 1 summarizes the results of this simulation study. The second column of Table 1
lists the true values of the parameters. The third, fourth, fifth, and sixth columns report
respectively the sample mean, sample standard deviation (SD) and sample mean-squared
error (MSE) of the 1,000 estimates, and the average of the 1,000 standard deviations com-
puted by profile likelihood (SDprof ). The final column gives the 95% coverage probability
based on the normal approximation.

The numbers in the brackets in the third, fourth and fifth columns are the corresponding
results obtained using the method in Fine (1999). Table 1 indicates clearly that our method
works quite nicely and the method in Fine (1999) seems to fail. Among other things, the
averages of the standard deviations obtained by profile likelihood (column 6) are quite close
to the sample standard deviations of the 1,000 estimates (column 4).

The only difference between the first study and the second study is that in the second
study, the censoring variable C1 and covariate Z1 are independent and C1 has exponential

Table 1. Simulation study with censoring variable dependent on covariate

Parameter True value mean SD MSE SDprof CI(%)

�1 −2 −2.0437 0.3343 0.1140 0.3345 95.3
[−1.0511] [0.2834] [0.9807]

�2 5 5.1444 0.7251 0.5466 0.7395 95.6
[2.4802] [0.5060] [6.6052]

�1 0.5 0.4982 0.4341 0.1885 0.4063 92.9
[1.0948] [0.4300] [0.5386]

�2 −0.5 −0.4441 0.5456 0.3008 0.5405 93.8
[−0.0579] [0.6055] [0.5621]

Numbers in brackets are obtained by the method in Fine (1999), and others
are obtained by our method.
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Table 2. Simulation study with censoring variable and covariate being independent

Parameter True value mean SD MSE SDprof CI(%)

�1 −2 −2.0317 0.3190 0.1028 0.3280 95.9
[−2.0500] [0.3688] [0.1385]

�2 5 5.0955 0.6385 0.4168 0.6654 96.6
[5.1117] [0.8072] [0.6641]

�1 0.5 0.5036 0.3822 0.1461 0.3649 94.1
[0.4962] [0.4054] [0.1643]

�2 −0.5 −0.4657 0.4868 0.2381 0.4876 93.9
[−0.4988] [0.5737] [0.3291]

Numbers in brackets are obtained by the method in Fine (1999), and others are
obtained by our method.

distribution with parameter 25. The results of the second study is reported in Table 2;
entries in Table 2 bear the same meaning as those in Table 1. It is clear from Table 2 that both
methods work nicely and our method seems to perform a little better in terms of mean-
squared error.

7. Application to Taiwan SARS data

We now illustrate our method by analyzing Taiwan SARS data. To keep the discussion brief,
we only consider the covariate age. A more complete survival analysis of Taiwan SARS data
will be reported elsewhere. On 5 July 2003, Taiwan was removed from the World Health Or-
ganization (WHO) list of SARS-affected countries. Among the 664 reported probable cases
of SARS, 345 were positive for PCR test of SARS-CoV infection or with sero-conversion
ELISA test. The following analysis is based on data for these 345 confirmed cases. Among
these 345 cases, 73 of them had died as of October 12, 2003; among these 73 deaths, 37 of
them have deaths attributed directly to SARS. Readers are referred to Su (2003) for more
information about SARS in Taiwan. In this illustration, we treat deaths not directly attrib-
uted to SARS as censored cases. Because the time from onset of symptom to admission
became shorter when infection-control measures became stricter and also because of no
known treatment, we decide to study distribution of onset-to-death and onset-to-discharge,
rather than that of admission-to-death and admission-to-discharge. In the implementation,
we set the same number of iterations and the same starting values as those in Section 6.

The results are reported in Table 3 and Figures 1, 2 and 3. The second column of Table
3 reports the estimates; the third and fourth column, respectively, report the 95% confidence
intervals and the standard deviation (SD) based on normal approximation. Figure 1 is the
plot of case fatality rate against age. Since 95% confidence interval for �2 is (4.7437, 9.5796),
we may conclude with confidence that case fatality rate increases with age. Figures 2 and
3 give the age-specific expected onset-to-death and onset-to-discharge, respectively. We can
see that onset-to-death is a decreasing function of age, and onset-to-discharge is an increas-
ing function of age. Because the 95% of �2 is (−2.6491, −0.6144), it seems that age is an
important covariate for onset-to-discharge.

The numbers in the brackets are obtained with the method in Fine (1999). Although the
results using Fine (1999) and those using our method are not markedly different, we still
prefer our method because it is a more general and systematic approach.

8. Concluding remarks

We have provided a profile likelihood theory and an efficient computational methods for
a semiparametric mixture model for competing-risks data, in which proportional hazards
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Table 3. Parameter estimation for Taiwan SARS data

Parameter Estimate 95% confidence interval SD

�1 −5.3554 (−6.7901,−3.9207) 0.7320
[−5.1539]

�2 7.1617 (4.7437, 9.5796) 1.2337
[6.3673]

�1 0.9988 (−1.7824, 3.7800) 1.4190
[0.8488]

�2 −1.6818 (−2.6491, −0.7144) 0.4936
[−1.0989]

Numbers in brackets are obtained by the method in Fine (1999),
and others are obtained by our method.
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Fig. 1. Age-specific case fatality rate.
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Fig. 2. Age-specific expected onset-to-death.
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Fig. 3. Age-specific expected onset-to-discharge.

models are specified for failure time models conditional on cause and a multinomial model for
the marginal distribution of cause conditional on covariates. We note that our model allows
data to be right censored and the censoring variable may depend on the covariates. We have
also successfully illustrated this theory in simulation studies and in the analysis of Taiwan
SARS data. Our approach can be used to estimate quantities like covariate specific fatality
rate and covariate-specific expected time from onset to death. For future investigation, we
would like to extend the present work to semiparametric mixture models in which the failure
time models conditional on cause are replaced by other survival models for right-censored
data.
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Appendix

Proposition (Identifiability)
Assumption 2 implies assumption 1.

Proof. By considering (4) for X1 near t∗ and �1 =1, we can show the existence of

limt→t∗
d�1

d�10
(t); denote it by y∗

1. Similarly, let y∗
2 = limt→t∗

d�2

d�20
(t). By considering (4) for [C1 ≥

�, �1 =1], we can show that (�c, �1)= (�c0, �10) implies �1 =�10 on [0, �]. Similarly, we know
(�c, �2)= (�c0, �20) implies �2 =�20 on [0, �].

Considering now X1 near t∗ in (4), we get

{�(Z1)y∗
1 exp(�T

1 Z1 −�1(t∗) e�T
1 Z1 )}[�1 =1]

×{[1−�(Z1)]y∗
2 exp(�T

2 Z1 −�2(t∗) e�T
2 Z1 )}[�1 =2]

×{�(Z1) exp(−�1(t∗) e�T
1 Z1 )+ [1−�(Z1)] exp(−�2(t∗) e�T

2 Z1 )}[�1 =3]

={�0(Z1) exp(�T
10Z1 −�10(t∗) e�T

10Z1 )}[�1 =1]

×{[1−�0(Z1)] exp(�T
20Z1 −�20(t∗) e�T

20Z1 )}[�1 =2]

×{�0(Z1) exp(−�10(t∗) e�T
10Z1 )+ [1−�0(Z1)] exp(−�20(t∗) e�T

20Z1 )}[�1 =3]. (40)

It follows from (40) and assumption 2 that �c =�c0, �1 =�10 and �2 =�20. This completes the
proof.
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