library(NNS)
library(data.table)
require(knitr)
require(rgl)
require(meboot)
require(plyr)
require(tdigest)
require(dtw)
Below are some examples demonstrating unsupervised learning with NNS clustering and nonlinear regression using the resulting clusters. As always, for a more thorough description and definition, please view the References.
NNS.part()
NNS.part
is both a partitional and hierarchical clustering method. NNS
iteratively partitions the joint distribution into partial moment quadrants, and then assigns a quadrant identification (1:4) at each partition.
NNS.part
returns a data.table
of observations along with their final quadrant identification. It also returns the regression points, which are the quadrant means used in NNS.reg
.
= seq(-5, 5, .05); y = x ^ 3
x
for(i in 1 : 4){NNS.part(x, y, order = i, Voronoi = TRUE, obs.req = 0)}
NNS.part
offers a partitioning based on \(x\) values only NNS.part(x, y, type = "XONLY", ...)
, using the entire bandwidth in its regression point derivation, and shares the same limit condition as partitioning via both \(x\) and \(y\) values.
for(i in 1 : 4){NNS.part(x, y, order = i, type = "XONLY", Voronoi = TRUE)}
Note the partition identifications are limited to 1’s and 2’s (left and right of the partition respectively), not the 4 values per the \(x\) and \(y\) partitioning.
## $order
## [1] 4
##
## $dt
## x y quadrant prior.quadrant
## 1: -5.00 -125.0000 q1111 q111
## 2: -4.95 -121.2874 q1111 q111
## 3: -4.90 -117.6490 q1111 q111
## 4: -4.85 -114.0841 q1111 q111
## 5: -4.80 -110.5920 q1111 q111
## ---
## 197: 4.80 110.5920 q2222 q222
## 198: 4.85 114.0841 q2222 q222
## 199: 4.90 117.6490 q2222 q222
## 200: 4.95 121.2874 q2222 q222
## 201: 5.00 125.0000 q2222 q222
##
## $regression.points
## quadrant x y
## 1: q111 -4.3962225 -81.0701656
## 2: q112 -3.1537775 -29.2770553
## 3: q121 -1.8710836 -5.9569603
## 4: q122 -0.6037775 -0.2136884
## 5: q211 0.6537775 0.2707720
## 6: q212 1.9037775 6.2606237
## 7: q221 3.1537775 29.2770553
## 8: q222 4.3962225 81.0701656
The right column of plots shows the corresponding regression for the order of NNS
partitioning.
for(i in 1 : 3){NNS.part(x, y, order = i, obs.req = 0, Voronoi = TRUE) ; NNS.reg(x, y, order = i, ncores = 1)}
NNS.reg()
NNS.reg
can fit any \(f(x)\), for both uni- and multivariate cases. NNS.reg
returns a self-evident list of values provided below.
NNS.reg(x, y, ncores = 1)
## $R2
## [1] 1
##
## $SE
## [1] 0
##
## $Prediction.Accuracy
## NULL
##
## $equation
## NULL
##
## $x.star
## NULL
##
## $derivative
## Coefficient X.Lower.Range X.Upper.Range
## 1: 74.2525 -5.00 -4.95
## 2: 72.7675 -4.95 -4.90
## 3: 71.2975 -4.90 -4.85
## 4: 69.8425 -4.85 -4.80
## 5: 68.4025 -4.80 -4.75
## ---
## 196: 68.4025 4.75 4.80
## 197: 69.8425 4.80 4.85
## 198: 71.2975 4.85 4.90
## 199: 72.7675 4.90 4.95
## 200: 74.2525 4.95 5.00
##
## $Point.est
## NULL
##
## $regression.points
## x y
## 1: -5.00 -125.0000
## 2: -4.95 -121.2874
## 3: -4.90 -117.6490
## 4: -4.85 -114.0841
## 5: -4.80 -110.5920
## ---
## 197: 4.80 110.5920
## 198: 4.85 114.0841
## 199: 4.90 117.6490
## 200: 4.95 121.2874
## 201: 5.00 125.0000
##
## $Fitted.xy
## x y y.hat NNS.ID gradient residuals
## 1: -5.00 -125.0000 -125.0000 q4444444444 74.2525 0
## 2: -4.95 -121.2874 -121.2874 q4444441444 72.7675 0
## 3: -4.90 -117.6490 -117.6490 q4444432222 71.2975 0
## 4: -4.85 -114.0841 -114.0841 q4444414444 69.8425 0
## 5: -4.80 -110.5920 -110.5920 q4444411444 68.4025 0
## ---
## 197: 4.80 110.5920 110.5920 q1111141144 69.8425 0
## 198: 4.85 114.0841 114.0841 q1111124444 71.2975 0
## 199: 4.90 117.6490 117.6490 q1111114444 72.7675 0
## 200: 4.95 121.2874 121.2874 q1111112222 74.2525 0
## 201: 5.00 125.0000 125.0000 q1111111444 74.2525 0
Multivariate regressions return a plot of \(y\) and \(\hat{y}\), as well as the regression points ($RPM
) and partitions ($rhs.partitions
) for each regressor.
= function(x, y) x ^ 3 + 3 * y - y ^ 3 - 3 * x
f= x ; z = expand.grid(x, y)
y = f(z[ , 1], z[ , 2])
g NNS.reg(z, g, order = "max", ncores = 1)
## $R2
## [1] 1
##
## $rhs.partitions
## Var1 Var2
## 1: -5.00 -5
## 2: -4.95 -5
## 3: -4.90 -5
## 4: -4.85 -5
## 5: -4.80 -5
## ---
## 40397: 4.80 5
## 40398: 4.85 5
## 40399: 4.90 5
## 40400: 4.95 5
## 40401: 5.00 5
##
## $RPM
## Var1 Var2 y.hat
## 1: -4.8 -4.80 -7.105427e-15
## 2: -4.8 -2.55 -8.726063e+01
## 3: -4.8 -2.50 -8.806700e+01
## 4: -4.8 -2.45 -8.883587e+01
## 5: -4.8 -2.40 -8.956800e+01
## ---
## 40397: -2.6 -2.80 3.776000e+00
## 40398: -2.6 -2.75 2.770875e+00
## 40399: -2.6 -2.70 1.807000e+00
## 40400: -2.6 -2.65 8.836250e-01
## 40401: -2.6 -2.60 1.776357e-15
##
## $Point.est
## NULL
##
## $Fitted.xy
## Var1 Var2 y y.hat NNS.ID residuals
## 1: -5.00 -5 0.000000 0.000000 201.201 0
## 2: -4.95 -5 3.562625 3.562625 402.201 0
## 3: -4.90 -5 7.051000 7.051000 603.201 0
## 4: -4.85 -5 10.465875 10.465875 804.201 0
## 5: -4.80 -5 13.808000 13.808000 1005.201 0
## ---
## 40397: 4.80 5 -13.808000 -13.808000 39597.40401 0
## 40398: 4.85 5 -10.465875 -10.465875 39798.40401 0
## 40399: 4.90 5 -7.051000 -7.051000 39999.40401 0
## 40400: 4.95 5 -3.562625 -3.562625 40200.40401 0
## 40401: 5.00 5 0.000000 0.000000 40401.40401 0
NNS.reg
can inter- or extrapolate any point of interest. The NNS.reg(x, y, point.est = ...)
parameter permits any sized data of similar dimensions to \(x\) and called specifically with NNS.reg(...)$Point.est
.
NNS.reg
also provides a dimension reduction regression by including a parameter NNS.reg(x, y, dim.red.method = "cor", ...)
. Reducing all regressors to a single dimension using the returned equation NNS.reg(..., dim.red.method = "cor", ...)$equation
.
NNS.reg(iris[ , 1 : 4], iris[ , 5], dim.red.method = "cor", location = "topleft", ncores = 1)$equation
## Variable Coefficient
## 1: Sepal.Length 0.7980781
## 2: Sepal.Width -0.4402896
## 3: Petal.Length 0.9354305
## 4: Petal.Width 0.9381792
## 5: DENOMINATOR 4.0000000
Thus, our model for this regression would be: \[Species = \frac{0.798*Sepal.Length -0.44*Sepal.Width +0.935*Petal.Length +0.938*Petal.Width}{4} \]
NNS.reg(x, y, dim.red.method = "cor", threshold = ...)
offers a method of reducing regressors further by controlling the absolute value of required correlation.
NNS.reg(iris[ , 1 : 4], iris[ , 5], dim.red.method = "cor", threshold = .75, location = "topleft", ncores = 1)$equation
## Variable Coefficient
## 1: Sepal.Length 0.7980781
## 2: Sepal.Width 0.0000000
## 3: Petal.Length 0.9354305
## 4: Petal.Width 0.9381792
## 5: DENOMINATOR 3.0000000
Thus, our model for this further reduced dimension regression would be: \[Species = \frac{\: 0.798*Sepal.Length + 0*Sepal.Width +0.935*Petal.Length +0.938*Petal.Width}{3} \]
and the point.est = (...)
operates in the same manner as the full regression above, again called with NNS.reg(...)$Point.est
.
NNS.reg(iris[ , 1 : 4], iris[ , 5], dim.red.method = "cor", threshold = .75, point.est = iris[1 : 10, 1 : 4], location = "topleft", ncores = 1)$Point.est
## [1] 1 1 1 1 1 1 1 1 1 1
For a classification problem, we simply set NNS.reg(x, y, type = "CLASS", ...)
.
NOTE: Base category of response variable should be 1, not 0 for classification problems.
NNS.reg(iris[ , 1 : 4], iris[ , 5], type = "CLASS", point.est = iris[1 : 10, 1 : 4], location = "topleft", ncores = 1)$Point.est
## [1] 1 1 1 1 1 1 1 1 1 1
NNS.stack()
The NNS.stack
routine cross-validates for a given objective function the n.best
parameter in the multivariate NNS.reg
function as well as the threshold
parameter in the dimension reduction NNS.reg
version. NNS.stack
can be used for classification NNS.stack(..., type = "CLASS", ...)
or continuous dependent variables NNS.stack(..., type = NULL, ...)
.
Any objective function obj.fn
can be called using expression()
with the terms predicted
and actual
.
NNS.stack(IVs.train = iris[ , 1 : 4],
DV.train = iris[ , 5],
IVs.test = iris[1 : 10, 1 : 4],
obj.fn = expression( mean(round(predicted) == actual) ),
objective = "max", type = "CLASS",
folds = 1, ncores = 1)
## $OBJfn.reg
## [1] 0.9666667
##
## $NNS.reg.n.best
## [1] 2
##
## $probability.threshold
## [1] 0.20875
##
## $OBJfn.dim.red
## [1] 0.9
##
## $NNS.dim.red.threshold
## [1] 0.78
##
## $reg
## [1] 1 1 1 1 1 1 1 1 1 1
##
## $dim.red
## [1] 1 1 1 1 1 1 1 1 1 1
##
## $stack
## [1] 1 1 1 1 1 1 1 1 1 1
If the user is so motivated, detailed arguments further examples are provided within the following: