library(NNS)
library(data.table)
require(knitr)
require(rgl)
require(meboot)
require(tdigest)
require(dtw)
Below are some examples demonstrating unsupervised learning with NNS clustering and nonlinear regression using the resulting clusters. As always, for a more thorough description and definition, please view the References.
NNS.part
NNS.part
is both a partitional and hierarchical clustering method. NNS iteratively partitions the joint distribution into partial moment quadrants, and then assigns a quadrant identification (1:4) at each partition.
NNS.part
returns a data.table of observations along with their final quadrant identification. It also returns the regression points, which are the quadrant means used in NNS.reg
.
x = seq(-5, 5, .05); y = x ^ 3
for(i in 1 : 4){NNS.part(x, y, order = i, min.obs.stop = FALSE, Voronoi = TRUE, obs.req = 0)}
NNS.part
offers a partitioning based on \(x\) values only NNS.part(x, y, type = "XONLY", ...)
, using the entire bandwidth in its regression point derivation, and shares the same limit condition as partitioning via both \(x\) and \(y\) values.
Note the partition identifications are limited to 1’s and 2’s (left and right of the partition respectively), not the 4 values per the \(x\) and \(y\) partitioning.
## $order
## [1] 4
##
## $dt
## x y quadrant prior.quadrant
## 1: -5.00 -125.0000 q1111 q111
## 2: -4.95 -121.2874 q1111 q111
## 3: -4.90 -117.6490 q1111 q111
## 4: -4.85 -114.0841 q1111 q111
## 5: -4.80 -110.5920 q1111 q111
## ---
## 197: 4.80 110.5920 q2222 q222
## 198: 4.85 114.0841 q2222 q222
## 199: 4.90 117.6490 q2222 q222
## 200: 4.95 121.2874 q2222 q222
## 201: 5.00 125.0000 q2222 q222
##
## $regression.points
## quadrant x y
## 1: q111 -4.3742412 -79.8807307
## 2: q112 -3.0992681 -28.0828202
## 3: q121 -1.8507319 -5.8599732
## 4: q122 -0.5992681 -0.2594580
## 5: q211 0.6507319 0.3130212
## 6: q212 1.9007319 6.3553668
## 7: q221 3.1507319 29.4685900
## 8: q222 4.3992681 81.4792796
NNS.reg
NNS.reg
can fit any \(f(x)\), for both uni- and multivariate cases. NNS.reg
returns a self-evident list of values provided below.
## $R2
## [1] 0.9999901
##
## $SE
## [1] 0.1525418
##
## $Prediction.Accuracy
## NULL
##
## $equation
## NULL
##
## $x.star
## NULL
##
## $derivative
## Coefficient X.Lower.Range X.Upper.Range
## 1: 74.68478 -5.000000 -4.966781
## 2: 72.57166 -4.966781 -4.866781
## 3: 69.50994 -4.866781 -4.766781
## 4: 67.22776 -4.766781 -4.700000
## 5: 65.00838 -4.700000 -4.616781
## ---
## 124: 65.30930 4.600000 4.683219
## 125: 67.47858 4.683219 4.750000
## 126: 68.53365 4.750000 4.833219
## 127: 59.12431 4.833219 4.933219
## 128: 91.79132 4.933219 5.000000
##
## $Point.est
## NULL
##
## $regression.points
## x y
## 1: -5.000000 -124.9927
## 2: -4.966781 -122.5118
## 3: -4.866781 -115.2546
## 4: -4.766781 -108.3036
## 5: -4.700000 -103.8141
## ---
## 125: 4.683219 102.7481
## 126: 4.750000 107.2544
## 127: 4.833219 112.9577
## 128: 4.933219 118.8701
## 129: 5.000000 125.0000
##
## $Fitted.xy
## x y y.hat NNS.ID gradient residuals
## 1: -5.00 -125.0000 -124.9927 q11111111 74.68478 0.007253545
## 2: -4.95 -121.2874 -121.2940 q11111112 72.57166 -0.006592169
## 3: -4.90 -117.6490 -117.6654 q11111121 72.57166 -0.016383989
## 4: -4.85 -114.0841 -114.0882 q11111122 69.50994 -0.004054077
## 5: -4.80 -110.5920 -110.6127 q11111211 69.50994 -0.020682060
## ---
## 197: 4.80 110.5920 110.6810 q22222121 68.53365 0.089037638
## 198: 4.85 114.0841 113.9498 q22222122 59.12431 -0.134301342
## 199: 4.90 117.6490 116.9060 q22222211 59.12431 -0.742960920
## 200: 4.95 121.2874 120.4104 q22222212 91.79132 -0.876940858
## 201: 5.00 125.0000 125.0000 q22222221 91.79132 0.000000000
Multivariate regressions return a plot of \(y\) and \(\hat{y}\), as well as the regression points ($RPM
) and partitions ($rhs.partitions
) for each regressor.
f= function(x, y) x ^ 3 + 3 * y - y ^ 3 - 3 * x
y = x ; z = expand.grid(x, y)
g = f(z[ , 1], z[ , 2])
NNS.reg(z, g, order = "max", ncores = 1)
## $R2
## [1] 1
##
## $rhs.partitions
## Var1 Var2
## 1: -5.00 -5
## 2: -4.95 -5
## 3: -4.90 -5
## 4: -4.85 -5
## 5: -4.80 -5
## ---
## 40397: 4.80 5
## 40398: 4.85 5
## 40399: 4.90 5
## 40400: 4.95 5
## 40401: 5.00 5
##
## $RPM
## Var1 Var2 y.hat
## 1: -4.8 -4.80 -7.105427e-15
## 2: -4.8 -2.55 -8.726063e+01
## 3: -4.8 -2.50 -8.806700e+01
## 4: -4.8 -2.45 -8.883587e+01
## 5: -4.8 -2.40 -8.956800e+01
## ---
## 40397: -2.6 -2.80 3.776000e+00
## 40398: -2.6 -2.75 2.770875e+00
## 40399: -2.6 -2.70 1.807000e+00
## 40400: -2.6 -2.65 8.836250e-01
## 40401: -2.6 -2.60 1.776357e-15
##
## $Point.est
## NULL
##
## $Fitted.xy
## Var1 Var2 y y.hat NNS.ID residuals
## 1: -5.00 -5 0.000000 0.000000 201.201 0
## 2: -4.95 -5 3.562625 3.562625 402.201 0
## 3: -4.90 -5 7.051000 7.051000 603.201 0
## 4: -4.85 -5 10.465875 10.465875 804.201 0
## 5: -4.80 -5 13.808000 13.808000 1005.201 0
## ---
## 40397: 4.80 5 -13.808000 -13.808000 39597.40401 0
## 40398: 4.85 5 -10.465875 -10.465875 39798.40401 0
## 40399: 4.90 5 -7.051000 -7.051000 39999.40401 0
## 40400: 4.95 5 -3.562625 -3.562625 40200.40401 0
## 40401: 5.00 5 0.000000 0.000000 40401.40401 0
NNS.reg
can inter- or extrapolate any point of interest. The NNS.reg(x, y, point.est = ...)
parameter permits any sized data of similar dimensions to \(x\) and called specifically with $Point.est
.
NNS.reg
also provides a dimension reduction regression by including a parameter NNS.reg(x, y, dim.red.method = "cor", ...)
. Reducing all regressors to a single dimension using the returned equation $equation
.
NNS.reg(iris[ , 1 : 4], iris[ , 5], dim.red.method = "cor", location = "topleft", ncores = 1)$equation
## Variable Coefficient
## 1: Sepal.Length 0.7980781
## 2: Sepal.Width -0.4402896
## 3: Petal.Length 0.9354305
## 4: Petal.Width 0.9381792
## 5: DENOMINATOR 4.0000000
Thus, our model for this regression would be: \[Species = \frac{0.798*Sepal.Length -0.44*Sepal.Width +0.935*Petal.Length +0.938*Petal.Width}{4} \]
NNS.reg(x, y, dim.red.method = "cor", threshold = ...)
offers a method of reducing regressors further by controlling the absolute value of required correlation.
NNS.reg(iris[ , 1 : 4], iris[ , 5], dim.red.method = "cor", threshold = .75, location = "topleft", ncores = 1)$equation
## Variable Coefficient
## 1: Sepal.Length 0.7980781
## 2: Sepal.Width 0.0000000
## 3: Petal.Length 0.9354305
## 4: Petal.Width 0.9381792
## 5: DENOMINATOR 3.0000000
Thus, our model for this further reduced dimension regression would be: \[Species = \frac{\: 0.798*Sepal.Length + 0*Sepal.Width +0.935*Petal.Length +0.938*Petal.Width}{3} \]
and the point.est = (...)
operates in the same manner as the full regression above, again called with $Point.est
.
NNS.reg(iris[ , 1 : 4], iris[ , 5], dim.red.method = "cor", threshold = .75, point.est = iris[1 : 10, 1 : 4], location = "topleft", ncores = 1)$Point.est
## [1] 1 1 1 1 1 1 1 1 1 1
For a classification problem, we simply set NNS.reg(x, y, type = "CLASS", ...)
.
NNS.reg(iris[ , 1 : 4], iris[ , 5], type = "CLASS", point.est = iris[1:10, 1 : 4], location = "topleft", ncores = 1)$Point.est
## [1] 1 1 1 1 1 1 1 1 1 1
NNS.stack
The NNS.stack()
routine cross-validates for a given objective function the n.best
parameter in the multivariate NNS.reg
function as well as the threshold
parameter in the dimension reduction NNS.reg
version. NNS.stack
can be used for classification NNS.stack(..., type = "CLASS", ...)
or continuous dependent variables NNS.stack(..., type = NULL, ...)
.
Any objective function obj.fn
can be called using expression()
with the terms predicted
and actual
.
Note: For mixed data type regressors / features, it is suggested to use NNS.stack(..., order = "max", ...)
.
NNS.stack(IVs.train = iris[ , 1 : 4],
DV.train = iris[ , 5],
IVs.test = iris[1:10, 1 : 4],
obj.fn = expression( mean(round(predicted) == actual) ),
objective = "max",
type = "CLASS", folds = 1, ncores = 1)
## $OBJfn.reg
## [1] 0.8695652
##
## $NNS.reg.n.best
## [1] 1
##
## $OBJfn.dim.red
## [1] 0.9565217
##
## $NNS.dim.red.threshold
## [1] 0.8
##
## $reg
## [1] 1 1 1 1 1 1 1 1 1 1
##
## $dim.red
## [1] 1 1 1 1 1 1 1 1 1 1
##
## $stack
## [1] 1 1 1 1 1 1 1 1 1 1
If the user is so motivated, detailed arguments further examples are provided within the following: