Package ‘NFCP’

January 9, 2021
Title N-Factor Commodity Pricing Through Term Structure Estimation
Version 0.1.0

Description Commodity pricing models are (systems of) stochastic differential equations that are uti-
lized for the valuation and hedging of commodity contingent claims (i.e. derivative prod-
ucts on the commodity) and other commodity related investments. Commodity pricing mod-
els that capture market dynamics are of great importance to commodity market participants in or-
der to exercise sound investment and risk-management strategies. Parameters of commodity pric-
ing models are estimated through maximum likelihood estimation, using available term struc-
ture futures data of a commodity. 'NFCP' (n-factor commodity pricing) provides a frame-
work for the modeling, parameter estimation, probabilistic forecasting, option valuation and sim-
ulation of commodity prices through state space and Monte Carlo methods, risk-neutral valua-
tion and Kalman filtering. NFCP" allows the commodity pricing model to consist of n corre-
lated factors, with both random walk and mean-reverting elements. The n-factor commodity pric-
ing model framework was first presented in the work of Cor-
tazar and Naranjo (2006) <doi:10.1002/fut.20198>. Examples presented in NFCP' repli-
cate the two-factor crude oil commodity pricing model presented in the pro-
lific work of Schwartz and Smith (2000) <doi:10.1287/mnsc.46.7.893.12034> with the approxi-
mate term structure futures data applied within this study provided in the 'NFCP' package.

Depends R (>=3.5.0)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1.9000

RdMacros mathjaxr,
Rdpack

Suggests OptionPricing,
knitr,
rmarkdown

Imports FKE.SP,
MASS,
numDeriv,
parallel,
rgenoud,
stats,
mathjaxr,
Rdpack,
curl

VignetteBuilder knitr

2 AT

R topics documented:

AT e e e 2
cov_TUunc e 3
European.Option.Value e 4
Futures.Price.Forecast 6
Futures.Price.Simulate 8
NFCPbounds e 10
NFCP.Kalman.filter e 11
NFCPMLE e e 16
NFCP.Parameters o i e e e e e e e e e e e 20
Spot.Price.Forecast 22
Spot.Price.Simulate 24
SS.O1l . . . e 26
Stitch.Contracts e e e e e 28
TSFit.Volatility e e e e 29

Index 32

AT Calculate A(T)
Description

Calculate the values of A(T) for a given N-factor model parameters and observations. Primarily
purpose is for application within other functions of the NFCP package.

Usage

A_T(parameters, Tt)

Arguments
parameters A named vector of parameters of an N-factor model. Function NFCP.Parameters
is recommended.
Tt A vector or matrix of the time-to-maturity of observed futures prices
Details

Under the assumption that Factor 1 follows a Brownian Motion, A(T') is given by:

N
. 1—e Ty 1, , 1— e~ (ritr)T
AT) =T =) ——— + 5T+ > L R
i=1 v i.j#1 ¢

Value

A matrix of identical dimensions to T providing the values of function A(T') of a given N-factor
model and observations.

cov_func 3

References
Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Examples

##Calculate time homogeneous values of A(T) for the
##Schwartz and Smith (2000) two-factor model:
SS.0il.A_T <- A_T(SS.0il$Two.Factor, SS.0il$Stitched.TTM)

cov_func model_covariance: (formerly cov_func)

Description
Calculate the covariance matrix of state variables for a given N-factor model parameters and discrete
time step.

Usage

cov_func(parameters, dt)

Arguments
parameters anamed vector of parameters of an N-factor model. Function NFCP.Parameters
is recommended.
dt a discrete time step
Details

The primary purpose of the model_covariance function is to be called within other functions of
the NFCP package. The covariance of an N-factor model is given by:

2
covy 1(x1,,T1,) = 07t
() 1— ef(nﬁ»nj)t
CoV; j(Tit, Tjt) = Oi0jp; j—————————
, , , , ki + Ky
Value

A matrix object with dimensions N x N, where NV is the number of factors of the specified N-factor
model.

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

4 European.Option. Value

Examples

#Calculate the covariance matrix of a two-factor model over one discrete (weekly) time step:
SS.0il.covariance <- cov_func(SS.0il$Two.Factor, SS.0il$dt)

European.Option.Value European.Option.Value

Description

Value European Option Put and Calls under the parameters of an N-factor model.

Usage

European.Option.Value(X.0@, parameters, t, TTM, K, r, call, verbose = FALSE)

Arguments

X.0 Initial values of the state vector.

parameters Named vector of parameter values of a specified N-factor model. Function

NFCP.Parameters is recommended.

t Time to expiration of the option

T™ Time to maturity of the Futures contract.

K Strike price of the European Option

r Risk-free interest rate.

call logical is the European option a call or put option?

verbose logical. Should additional information be output? see details
Details

The European.Option.Value function calculates analytic expressions of the value of European
call and put options on futures contracts within the N-factor model. Under the assumption that
future futures prices are log-normally distributed under the risk-neutral process, there exist analytic
expressions of the value of European call and put options on futures contracts. The following
analytic expression follows from that presented by Schwartz and Smith (2000) extended to the N-
factor framework. The value of a European option on a futures contract is given by calculating its
expected future value using the risk-neutral process and subsequently discounting at the risk-free
rate.

One can verify that under the risk-neutral process, the expected futures price at time ¢ is:

N
. s . 1 itV (T— 1 — e (Ritry)t
E [FT,t] = emp(ze mrTwi(O)"'M t+A(T_t)+§(0'%t+ Z e (Hri‘f'ﬂ])(T t)o'zgjpldﬁ)) = FT,O
i=1 i.j#1 ¢ J

This follows from the derivation provided within the vignette of the NFCP package as well as
the details of the Futures.Price.Forecast package. The equality of expected futures price at
time ¢ being equal to the time-¢ current futures price F'r is proven by Futures prices being given
by expected spot prices under the risk-neutral process (Fp, = E; [Sr]) and the law of iterated
expectations (E* [E} [St]] = E* [ST])

European.Option. Value 5

Because future futures prices are log-normally distributed under the risk-neutral process, we can
write a closed-form expression for valuing European put and call options on these futures. When
T = 0 these are European options on the spot price of the commodity itself. The value of a
European call option on a futures contract maturing at time 7', with strike price K, and with time ¢
until the option expires, is:

e” " E* [max (Fr; — K,0)]

= ¢ " (FProN(d) - KN(d - a4(t,T)))

Where: W(F/K) 1
n
d= ——"—F32> 4 = t,T
o) T2 T
and:
(s dre) (T— 1 — e~ (mitnry)t
06 (1T) = (oft + 3 eI T 00,5 —————)
i.j#1 i b

Parameter N (d) indicates cumulative probabilities for the standard normal distribution (ie, P(Z <
d)).

Similarly, the value of a European put with the same parameters is given by:

e "' E*max(K — Fry,0)]

=t (—FT’()N (—d) + KN (U¢ (t,T) — d))

The presented option valuation formulas are analogous to the Black-Scholes formulas for valuing
European options on stocks that do not pay dividends

Under this terminology, the stock price corresponds to the present value of the futures commitment
(e~"*Fr) and the equivalent annualized volatility would be o4 (¢, T)/v/t

When verbose =T, the European.Option.Value function numerically calculates the sensitivity
of option prices to the underlying parameters specified within the N-factor model, as well as some
of the most common "Greeks" related to European put and call option pricing. All gradients are
calculated numerically by calling the grad function from the numDeriv package.

Value

The European.Option.Value function returns a numeric value corresponding to the present value
of an option when verbose = F. When verbose =T, European.Option.Value returns a list with
three objects:

Value Present value of the option.

Annualized.Volatility Annualized volatility of the option.

Parameter.Sensitivity Sensitivity of the option value to each parameter of the N-factor model.
Greeks Sensitivity of the option value to different option parameters.

6 Futures.Price.Forecast

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Examples

##Example 1 - A European 'put' option on a stock following 'GBM'
#i#growing at the risk-free rate:

Risk-free rate:

rf <- 0.05
Stock price:
SO <- 20

#i## Stock volatility:
S.sigma <- 0.2
Option maturity:

Tt <- 1
Exercise price:
K <- 20

Calculate 'put' option price:
European.Option.Value(X.0@ = log(SQ), parameters = c(mu_star = rf, sigma_1 = S.sigma),
t=Tt, TIM = Tt, K =K, r = rf, call = FALSE)

##Example 2 - A European call option under a two-factor crude oil model:

##Step 1 - Obtain current (i.e. most recent) state vector by filtering the

##two-factor oil model:

Schwartz.Smith.0il <- NFCP.Kalman.filter(parameter.values = SS.0il$Two.Factor,
parameters = names(SS.0il$Two.Factor),
log.futures = log(SS.0il$Stitched.Futures),
dt = SS.0ilsdt,

TTM = SS.0il$Stitched.TTM,
verbose = TRUE)

##Step 2 - Calculate 'call' option price:
European.Option.Value(X.0 = Schwartz.Smith.0il$X.t,
parameters = SS.0il$Two.Factor,
t = Tt,
TM = Tt,
K =K,
r =rf,
call = TRUE,
verbose = FALSE)

Futures.Price.Forecast
Futures.Price.Forecast

Description

Analytically forecast future expected Futures prices under the risk-neutral version of a specified
N-factor model.

Futures.Price.Forecast 7

Usage

Futures.Price.Forecast(X.0, parameters, t = @, TTM = 1:10, Percentiles = NULL)

Arguments
X.0 Initial values of the state vector.
parameters A named vector of parameter values of a specified N-factor model. Function
NFCP.Parameters is recommended.
t a numeric specifying the time point at which to forecast futures prices
T™ a vector specifying the time to maturity of futures contracts to value.
Percentiles Optional. A vector of percentiles to include probabilistic forecasting intervals.
Details

Under the assumption or risk-neutrality, futures prices are equal to the expected future spot price.
Additionally, under deterministic interest rates, forward prices are equal to futures prices. Let Fr ¢
denote the market price of a futures contract at time ¢ with time 7" until maturity. let * denote the
risk-neutral expectation and variance of futures prices. The following equations assume that the
first factor follows a Brownian Motion.

N
E*[In(Fry)] = Z e T2, (0) + p*t + AT —t)
i=1
Where:
. N 1— e—m(T—t)Ai 1) 1— e—(ni+ﬁj)(T—t)
A(T—t) =K (T—t)—z —74‘5(01 (T—t)+ Z 0'1‘0']‘[)2‘7]‘ o+ R
i=1 v i.j#1 v J

The variance is given by:
* l _ 2 —(Kkit+r;)(T—t) 1- 67(ni+’€j)t
Var®[In(Fry)] = oit + '2721 e E L AR
i.j

Value

Futures.Price.Forecast returns a vector of expected Futures prices under a given N-factor
model with specified time to maturities at time ¢. When percentiles are specified, the function
returns a matrix with the corresponding confidence bands in each column of the matrix.

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

8 Futures.Price.Simulate

Examples

Forecast futures prices of the Schwartz and Smith (2000) two-factor oil model:
Step 1 - Run the Kalman filter for the two-factor oil model:
Schwartz.Smith.0il = NFCP.Kalman.filter(parameter.values = SS.0il$Two.Factor,
parameters = names(SS.0il$Two.Factor),
log.futures = log(SS.0il$Stitched.Futures),
dt = SS.0ilsdt,
TTM = SS.0i1$Stitched.TTM,
verbose = TRUE)

Step 2 - Probabilistic forecast of the risk-neutral two-factor

stochastic differential equation (SDE):

E.Futures = Futures.Price.Forecast(X.0 = Schwartz.Smith.0il$X.t,
parameters = SS.0il$Two.Factor,
t =0,
TTM = seq(0,9,1/12),
Percentiles = c(0.1, 0.9))

Futures.Price.Simulate
Futures.Price.Simulate:

Description

Simulate Futures price data with dynamics that follow the parameters of an N-factor model through
Monte Carlo simulation.

Usage

Futures.Price.Simulate(X.@, parameters, dt, N.obs, TTM, verbose = TRUE)

Arguments
X.0 Initial values of the state vector.
parameters A named vector of parameter values of a specified N-factor model. Function
NFCP.Parameters is recommended.
dt discrete time step of simulation
N.obs The number of observations to simulate
T™ A vector or matrix of the time to maturity of futures contracts to simulate. See
details
verbose logical. Should the simulated state variables and associated prices be output?
Details

The Futures.Price.Simulate function simulates futures price data using the Kalman Filter algo-
rithm, drawing from a normal distribution for the shocks in the transition and measurement equa-
tions at each discrete time step. At each discrete time point, an observation of the state vector is
generated through the transition equation, drawing from a normal distribution with a covariance
equal to ;. Following this, simulated futures prices are generated through the measurement equa-
tion, drawing from a normal distribution with covariance matrix equal to .

Futures.Price.Simulate 9

Input TTM can be either a matrix specifying the constant time to maturity of futures contracts to
simulate, or it can be a matrix where nrow(TTM) == N. obs for the time-varying time to maturity of
the futures contracts to simulate. This allows for the simulation of both aggregate stitched data and
individual futures contracts.

Value

Futures.Price.Simulate returns a list with three objects when verbose = T and a matrix of sim-
ulated futures prices when verbose = F. The list objects returned are:

State.Vector A matrix of Simulated state variables at each discrete time point. The columns
represent each factor of the N-factor model and the rows represent the simulated values at each
discrete simulated time point.

Futures A matrix of Simulated futures prices, with each column representing a simulated futures
contract.

Spot A vector of simulated spot prices

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Examples

##Example 1 - Simulate Crude 0il Stitched futures prices
##under a Two-Factor model, assuming a constant time to maturity:

Simulated.Stitched.Futures <- Futures.Price.Simulate(X.@ = c(log(SS.0il$Spot[1,1]), @),
parameters = SS.0il$Two.Factor,
dt = SS.0ilsdt,
N.obs = nrow(SS.0il$Stitched.Futures),
TTM = SS.0il$Stitched.TTM)

##Example 2 - Simulate Crude 0il Contract Prices under a Two-Factor model

###tAssume constant white noise in parameters of 1%:

SS.0il.Two.Factor <- SS.0il$Two.Factor

SS.0il.Two.Factor <- SS.0il.Two.Factor[!grepl("”contract”, names(SS.0il.Two.Factor))]
SS.0il.Two.Factor["sigma.contracts”] <- 0.01

Simulated.Contracts <- Futures.Price.Simulate(X.0 = c(log(SS.0il$Spot[1,1]1), @),
parameters = SS.0il.Two.Factor,
dt = SS.0ilsdt,
N.obs = nrow(SS.0il$Contracts),
TTM = SS.0il$Contract.Maturities)

10

NFCP.bounds

NFCP . bounds NFCP.bounds

Description

Generate boundaries for the domain of parameters of the N-factor model for parameter estimation.

Usage

NFCP.bounds(parameters)

Arguments
parameters a vector of parameter names of an N-factor model. Function NFCP.Parameters
is recommended.
Details

The NFCP.bounds function is called ’as-is’ within the NFCP.MLE function when domains are not
provided as an input. NFCP. bounds allows easy setting of custom boundaries for parameter estima-
tion, whilst also providing default domains of parameters that should realistically work for all types
of observation datasets.

Value

A matrix of defaulted domains for the given unknown parameters. The first column corresponds
to the lower bound of the allowable search space for the parameter, whilst the second column cor-
responds to the upper bound. These values were set to allow for the ’realistic’ possible values
of given parameters as well as restricting some parameters (such as variance and mean-reverting
terms) from taking negative values. The format of the returned matrix matches that required by the
Domains argument of the Genoud function from the package RGenoud.

References

Mebane, W. R., and J. S. Sekhon, (2011). Genetic Optimization Using Derivatives: The rgenoud
Package for R. Journal of Statistical Software, 42(11), 1-26. URL http://www.jstatsoft.org/v42/i11/.

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Examples

##Specify the Schwartz and Smith (2000) two-factor model

##with constant contract white noise:

SS.parameters <- NFCP.Parameters(N.factors = 2,
GBM = TRUE,
Initial.State = TRUE,
S.Constant = TRUE)

###Generate the default 'domains' argument of 'NFCP.MLE' function:
NFCP.MLE.Bounds <- NFCP.bounds(SS.parameters)

NFCP.Kalman.filter 11

NFCP.Kalman.filter NFCP.Kalman.filter

Description

Given a set of parameters of the N-factor model, filter term structure data using the Kalman filter.

Usage

NFCP.Kalman.filter(
parameter.values,
parameters,
log.futures,
dt,

TTM,
verbose = FALSE,
debugging = FALSE

Arguments

parameter.values
Vector of parameter values of an N-factor model. The NFCP.Kalman.filter
function is designed for application to optim type functions, and thus parameter
values and corresponding parameters different inputs within the function.

parameters Vector of parameter names. Each element of parameters must correspond to
its respective value element in object parameter.values.

log. futures Object of class matrix corresponding to the natural logarithm of observable
futures prices. NA’s are allowed within the matrix. Every column of the matrix
must correspond to a particular futures contract, with each row corresponding to
a quoted price on a given date.

dt Constant, discrete time step of observations

TT™ Object of class "vector’ or 'matrix’ that specifies the time to maturity of observed
futures contracts. time to maturity can be either constant (ie. class ’vector’) or
time homogeneous (ie. class 'matrix’). When the time to maturity of observed
futures contracts is time homogeneous, the dimensions of TTM must be identi-
cal to that of log.futures. Every element of TTM corresponds to the time to
maturity, in years, of a futures contract at a given observation date.

verbose logical. Should additional information be output? see values. When verbose
= F, the NFCP.Kalman. filter function is significantly faster, see details
debugging logical. Should additional filtering information be output? see values
Details

NFCP.Kalman. filter applies the Kalman filter algorithm for observable log. futures prices against
the input parameters of an N-factor model provided through the parameter.values and parameters
input vectors.

The NFCP.Kalman.filter function is designed for subsequent input into optimization functions
and is called within the N-factor parameter estimation function NFCP.MLE. The first input to the

12

NFCP.Kalman.filter

NFCP.Kalman.filter function is a vector of parameters of an N-factor model, with elements of
this vector corresponding to the parameter names within the elements of input vector parameters.
When logical input verbose = F, the NFCP.Kalman. filter function calls the fkf_SP function of
the FKF_SP package, which itself is a wrapper of a routine of the Kalman filter written in C utilizing
Sequential Processing for maximum computational efficiency (see fkf_SP for more details). When
verbose =T, the NFCP.Kalman. filter instead applies a Kalman filter algorithm written in base R
and outputs several other 1ist objects, including filtered values and measures for model fit and
robustness (see Returns)

The N-factor model The N-factor model was first presented in the work of Cortazar and Naranjo
(2006, equations 1-3). The N-factor framework describes the spot price process of a commodity as
the correlated sum of N state variables x;.

When GBM = TRUE:
N
lOg(Sf) = ZIi?t
i=1
‘When GBM = FALSE:
N
log(Sy) = E + Z Ti ¢
i=1

Additional factors within the spot-price process are designed to result in additional flexibility, and
possibly fit to the observable term structure, in the spot price process of a commodity. The fit of dif-
ferent N-factor models, represented by the log-likelihood can be directly compared with statistical
testing possible through a chi-squared test.

Flexibility in the spot price under the N-factor framework allows the first factor to follow a Brownian
Motion or Ornstein-Uhlenbeck process to induce a unit root. In general, an N-factor model where
GBM = T allows for non-reversible behaviour within the price of a commodity, whilst GBM = F assumes
that there is a long-run equilibrium that the commodity price will revert to in the long-term.

State variables are thus assumed to follow the following processes:
When GBM = TRUE:
dxi s = pdt + ordwit

When GBM = FALSE:
driy = —(M + k121,)dt 4 o1dwt

And:
d{I?iyt =i#£l —()\1 + mxi’t)dt + O'id’wit

where:
E(w;)E(w;) = pi;
The following constant parameters are defined as:
param u: long-term growth rate of the Brownian Motion process.
param E: Constant equilibrium level.

param p*

= p — A1: Long-term risk-neutral growth rate

param \;: Risk premium of state variable 7.

param k;: Reversion rate of state variable i.

param o;: Instantaneous volatility of state variable i.

param p; ; € [—1, 1]: Instantaneous correlation between state variables ¢ and j.

Measurement Error:

NFCP.Kalman.filter 13

The Kalman filtering algorithm assumes a given measure of measurement error (ie. matrix H).
Measurement errors can be interpreted as error in the model’s fit to observed prices, or as errors in
the reporting of prices (Schwartz and Smith, 2000) and are assumed independent.

var s; Observation error of contract 4.

When S.Constant =T, the values of parameter s; are assumed constant and equal to parameter ob-

ject ’sigma.contracts’. When S.Constant = F, observation errors are assumed unique, where the er-

ror of futures contracts s; is equal to parameter object 'sigma.contract_" [i] (i.e. 'sigma.contract_1"',
'sigma.contract_2', ..).

Kalman Filtering
The following section describes the Kalman filter equations used to filter the N-factor model.

The Kalman filter iteration is characterised by a transition and measurement equation. The transition
equation develops the vector of state variables between discretised time steps (whilst considering a
given level of covariance between state variables over time). The measurement equation relates the
unobservable state vector to a vector of observable measurements (whilst also considering a given
level of measurement error). The typical Kalman filter algorithm is a Gaussian process state space
model.

Transition Equation:
Tyjp—1 = ¢ + Gee—1 + Qi

Measurement Equation:
Gt = di + ZtZye—1 + Hie

t=1,-,n

Where 7, and ¢, are IID N (0, I(m)) and iid N (0, I(d)) respectively.
The state vector follows a normal distribution, 2y ~ N(aq, Py), with a; and P; as the mean vector

and variance matrix of the initial state vector x1, respectively.

When verbose = F, the NFCP.Kalman. filter function performs Kalman filtering through the fkf . SP
function of the FKF . SP package for maximum filtering efficiency, which is crucial when filtering and
estimating parameters of term structure data under the N-factor model, which generally has many
observations, contracts and unknown parameters. When verbose =T, the NFCP.Kalman.filter
function instead performs Kalman filtering in R, returning greater details of filtered objects (see
Value)

The Kalman filter can be used for parameter estimation through the maximization of the Log-
Likelihood value. See NFCP.MLE.

Filtering the N-factor model
let m represent the number of observations at time ¢

let n represent the number of factors in the N-factor model

observable futures prices: y; = [In(F(t,T1)),In(F (¢, 1)), -, In(F(t, Trn))]

State vector: xy = [x1t, xat, - -, T, t])

Measurement error: diag(H) = [s3,53,- - -, s2]

Where s; == "sigma.contract_" [i] when the 1ogical of function NFCP.Parameters S.constant
=F

When S.constant=T,s1 = sy =--- =5, = "sigma.contracts”

var Z is an m X n matrix, where each element [, j] is equal to:

14

NFCP.Kalman.filter

Zi,j = eimTj
var d; is an m x 1 vector:
de = [A(Th), A(T2), -+, A(Ty)]

Under the assumption that Factor 1 follows a Brownian Motion, A(T') is given by:

N
. 1—e TN 1 1 — e~ (Ritry)T
A = 7= 3 AN A T i
‘ Ki 2 “ Ki + Kj
i=1 1.j#1 -
var v; is a m X 1 vector of serially uncorrelated Guassian disturbances with E(V;) = 0 and
cov(v,) = R?
Where:
diag(Gy) = [T, e "2 ... e finT]

Where =T — ¢

var wy is an n X 1 vector of serially uncorrelated Guassian disturbances where:
E(U)t) =0

and cov(wy) = Q4
var ¢; = [uAt,0,---,0] is an N x 1 vector of the intercept of the transition equation.

var @, is equal to the covariance function, given by:

COUl,l(xl,t; zl,t) = U%t

1— e—(m—i—f@j)t
COUi,j (-Ti,h xj,t) = Uiajpi’jTIij
(see also cov_func)

Penalising poorly specified models

The Kalman filter returns non-real log-likelihood scores when the function of the covariance ma-
trix becomes singular or its determinant becomes negative. This occurs when a poorly specified
parameter set is input. Non-real log-likelihood scores can break optimization algorithms. To cir-
cumvent this, the NFCP.Kalman. filter returns a heavily penalized log-likelihood score whilst also
returning a warning. Penalized log-likelihood scores are calculated by:

stats::runif(1,-1.5e6,-1e6)
Diffuse Kalman filtering

If the initial values of the state vector are not supplied within the parameters and parameter.values
vectors (ie. Initial.State = F within the NFCP.Parameters function), a ’diffuse’ assumption is
used within the Kalman filtering algorithm. Factors that follow an Ornstein-Uhlenbeck are assumed
to equal zero. When Estimate.Initial.State =F and GBM =T, the initial value of the first state
variable is assumed to equal the first element of log. futures. This is an assumption that the initial
estimate of the spot price is equal to the closest to maturity observed futures price.

The initial covariance of the state vector for the Kalman filtering algorithm assumed to be equal to
matrix ¢

Initial states of factors that follow an Ornstein-Uhlenbeck have a transient effect on future observa-
tions, however the initial value of a random walk variable persists across observations and therefore
influencing model fit more (see Schwartz and Smith (2000) for more details).

NFCP.Kalman.filter

Value

15

NFCP.Kalman.filter returns a numeric object when verbose = F, which corresponds to the log-
likelihood of observations. When verbose =T, the NFCP.Kalman. filter function returns a 1list
object of length seven with the following objects:

LL

X.t

X

Y

\Y
TSFit.Error

Log-Likelihood of observations

vector.
matrix.
matrix.
matrix.
matrix.

TSFit.Volatility matrix.

The final observation of the state vector

All observations of the state vector, after the updating equation has been applied
Estimated futures prices at each observation

Estimation error of each futures contracts at each observation

The Mean Error (Bias), Mean Absolute Error, Standard Deviation of Error and Root Mean
The theoretical and empirical volatility of futures returns for each observed contract as ret

When debugging = T, 9 objects are returned in addition to those returned when verbose = T:

-
—+

vector.
matrix.
matrix.
matrix.
matrix.
vector.
matrix.
matrix.

|
+

I
+ &

T O 0 ONQo X T

References

array. The covariance matrix at each observation point, with the third dimension indexing across time

The function of the Kalman filter covariance matrix at each observation point, with the third dimension inc
The Kalman Gain at each observation point, with the third dimension indexing across time

d; (see details)
Z (see details)
G (see details)
C (see details)
Q¢ (see details)
H (see details)

Anderson, B. D. O. and J. B. Moore, (1979). Optimal filtering Englewood Cliffs: Prentice-Hall.

Fahrmeir, L. and G. tutz,(1994) Multivariate Statistical Modelling Based on Generalized Linear
Models. Berlin: Springer.

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Durbin, J., and S. J. Koopman, (2012). Time series analysis by state space methods. Oxford univer-

sity press.

Examples

##Example 1 - complete, stitched data.
##Replicating the Schwartz and Smith (2000)
##Two-Factor commodity pricing model applied to crude oil:

Schwartz.Smith.0il.Stitched <- NFCP.Kalman.filter(
parameter.values = SS.0il$Two.Factor,

parameters = names(SS.0il$Two.Factor),

= log(SS.0il$Stitched.Futures),

log.futures

TTM = SS.0il$Stitched.TTM,

dt = SS.0il

$dt,

16 NFCPMLE

verbose = FALSE)

##Example 2 - incomplete, contract data.

##Replicating the Schwartz and Smith (2000)

##Two-Factor commodity pricing model applied to all available
##crude oil contracts:

SS.0il.2F <- SS.0il$Two.Factor

##omit stitched contract white noise

SS.0il.2F <- SS.0il.2F[!grepl("sigma.contract”,
names(SS.0il.2F))]

##Assume constant white noise in observable contracts:

SS.0il.2F["sigma.contracts”] <- 0.01

#Kalman filter

Schwartz.Smith.0il.Contracts <- NFCP.Kalman.filter(
parameter.values = SS.0il.2F,

parameters = names(SS.0il.2F),

All available contracts are considered
log.futures = log(SS.0il$Contracts),

Respective 'TTM' of these contracts are input
TTM = SS.0il$Contract.Maturities,

dt = SS.0ilsdt,

verbose = FALSE)

NFCP.MLE N-Factor Model Parameter Estimation through the Kalman Filter and
Maximum Likelihood Estimation

Description

the NFCP.MLE function performs parameter estimation of an n-factor model given observable term
structure futures data through maximum likelihood estimation. NFCP.MLE allows for missing obser-
vations as well as constant or variable time to maturity of observed futures contracts.

Usage

NFCP.MLE(
log.futures,
dt,
TTM™,
N.factors,
GBM = TRUE,
S.Constant = TRUE,
Estimate.Initial.State = FALSE,
Richardsons.Extrapolation = TRUE,
cluster = FALSE,
Domains = NULL,

NFCPMLE 17

Arguments

log.futures Object of class matrix corresponding to the natural logarithm of observable
futures prices. NA’s are allowed within the matrix. Every column of the matrix
must correspond to a particular futures contract, with each row corresponding to
a quoted price on a given date.

dt Constant, discrete time step of observations

T™ Object of class vector or matrix that specifies the time to maturity of observed
futures contracts. time to maturity can be either constant (i.e. class vector)
or time dependent (i.e. class matrix). When the time to maturity of observed
futures contracts is time dependent, the dimensions of TTM must be identical to
that of log. futures. Every element of TTM corresponds to the time to maturity,
in years, of a futures contract at a given observation date.

N.factors numeric. Number of state variables in the spot price process.

GBM logical. When TRUE, factor 1 of the model is assumed to follow a Brownian
Motion, inducing a unit-root in the spot price process.

S.Constant logical. When TRUE, the white noise of observable contracts are assumed iden-

tical and independent.

Estimate.Initial.State
logical. When TRUE, the initial state vector is specified as unknown parameters
of the commodity pricing model. When FALSE, a "diffuse" assumption is taken
instead (see details)

Richardsons.Extrapolation
logical. When TRUE, the grad function from the numDeriv package is called
to approximate the gradient within the genoud optimization algorithm.

cluster an optional object of the "cluster’ class returned by one of the makeCluster com-
mands in the parallel package to allow for parameter estimation to be per-
formed across multiple cluster nodes.

Domains an optional matrix of the lower and upper bounds for the parameter estimation
process. The NFCP.bounds function is highly recommended. When Domains
is not specified, the standard bounds specified within the NFCP . bounds function
are used.

additional arguments to be passed into the genoud function. See help(genoud)

Details

NFCP.MLE is a wrapper function that uses the genetic algorithm optimization function genoud from
the rgenoud package to optimize the log-likelihood score returned from the NFCP.Kalman.filter
function. When Richardsons.Extrapolation = TRUE, gradients are approximated numerically
within the optimization algorithm through the grad function from the numDeriv package. NFCP.MLE
is designed to perform parameter estimation as efficiently as possible, ensuring a global optimum
is reached even with a large number of unknown parameters and state variables. Arguments passed
to the genoud function can greatly influence estimated parameters and must be considered when
performing parameter estimation. Recommended arguments to pass into the genoud function are
included within the vignette of NFCP. All arguments of the genoud function may be passed through
the NFCP.MLE function (except for gradient.check, which is hard set to false).

NFCP.MLE performs boundary constrained optimization of log-likelihood scores and does not allow
does not allow for out-of-bounds evaluations within the genoud optimization process, preventing
candidates from straying beyond the bounds provided by Domains. When Domains is not specified,
the default bounds specified by the NFCP. bounds function are used.

18

NFCPMLE

The N-factor model The N-factor model was first presented in the work of Cortazar and Naranjo
(2006, equations 1-3). The N-factor framework describes the spot price process of a commodity as
the correlated sum of N state variables ;.

When GBM = TRUE:
N
log(St) = Zl’i,t
i=1
When GBM = FALSE: N
log(S:) = E+ Z Tiy
i=1

Additional factors within the spot-price process are designed to result in additional flexibility, and
possibly fit to the observable term structure, in the spot price process of a commodity. The fit of dif-
ferent N-factor models, represented by the log-likelihood can be directly compared with statistical
testing possible through a chi-squared test.

Flexibility in the spot price under the N-factor framework allows the first factor to follow a Brownian
Motion or Ornstein-Uhlenbeck process to induce a unit root. In general, an N-factor model where
GBM = T allows for non-reversible behaviour within the price of a commodity, whilst GBM = F assumes
that there is a long-run equilibrium that the commodity price will revert to.

State variables are thus assumed to follow the following processes:
When GBM = TRUE:
dl’l’t = M*dt + Uldwlt

‘When GBM = FALSE:
dris = —(M + K121,¢)dt 4 o1dwt

And:
dxi,t =i#1 *()\7 + Hz'l'Lt)dt + O’Z‘dwit

where:
E(wi)E(w;) = pi;
The following constant parameters are defined as:
var p: long-term growth rate of the brownian motion process.
var IJ: Constant equilibrium level.
var u* = u — Ap: Long-term risk-neutral growth rate
var A;: Risk premium of state variable <.
var k;: Reversion rate of state variable .
var o;: Instantaneous volatility of state variable .
var p; ; € [—1, 1]: Instantaneous correlation between state variables 7 and j.
Measurement Error:

The Kalman filtering algorithm assumes a given measure of measurement error (ie. matrix H).
Measurement errors can be interpreted as error in the model’s fit to observed prices, or as errors in
the reporting of prices (Schwartz and Smith, 2000) and are assumed independent.

var s; Observation error of contract 4.

When S.Constant =T, the values of parameter s; are assumed constant and equal to parameter ob-
ject ’sigma.contracts’. When S.Constant = F, observation errors are assumed unique, where the er-

ror of futures contracts s; is equal to parameter object ' sigma.contract_' [i] (i.e. 'sigma.contract_1"'

'sigma.contract_2', ...).

’

NFCPMLE 19

Diffuse Kalman Filtering

If Estimate.Initial.State =F, a ’diffuse’ assumption is used within the Kalman filtering algo-

rithm. Factors that follow an Ornstein-Uhlenbeck are assumed to equal zero. When Estimate.Initial.State
=F and GBM =T, the initial value of the first state variable is assumed to equal the first element of

log. futures. This is an assumption that the initial estimate of the spot price is equal to the closest

to maturity observed futures price.

The initial covariance of the state vector for the Kalman Filtering algorithm assumed to be equal to
matrix ¢

Initial states of factors that follow an Ornstein-Uhlenbeck process are generally not estimated with
a high level of precision, due to the transient effect of the initial state vector on future observations,
however the initial value of a random walk variable persists across observations (see Schwartz and
Smith (2000) for more details).

Value

NFCP.MLE returns a list with 10 objects. 9 objects are returned when the user has specified not to
calculate the hessian matrix at solution.

MLE numeric The Maximum-Likelihood-Estimate of the solution
Estimated.Parameters vector. The estimated parameters
Standard.Errors vector. Standard error of the estimated parameters. Returned only when hessian =T is speci
X.t vector. The final observation of the state vector
X matrix. All observations of the state vector, after the updating equation has been applied
Y matrix. Estimated futures prices at each observation
\ matrix. Estimation error of each futures contracts at each observation
TSFit.Error matrix. The Mean Error (Bias), Mean Absolute Error, Standard Deviation of Error and Root]
TSFit.Volatility matrix. The theoretical and empirical volatility of futures returns for each observed contract ¢
genoud.value list. The output of the called genoud function.
References
Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.
Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.
Mebane, W. R., and J. S. Sekhon, (2011). Genetic Optimization Using Derivatives: The rgenoud
Package for R. Journal of Statistical Software, 42(11), 1-26. URL http://www.jstatsoft.org/v42/i11/.
Examples

##Example 1 - Perform One Generation of Maximum Likelihood Estimation on the
##first 20 weekly observations of the Schwartz and Smith (2000) Crude 0il Data:
##Example 1 - Complete, Stitched Data:

Schwartz.Smith.Two.Factor.Stitched <- NFCP.MLE(

####Arguments

log.futures = log(SS.0il$Stitched.Futures)[1:5,11],

dt = SS.0ilsdt,

TTM= SS.0il$Stitched.TTM[1],

S.Constant = FALSE, N.factors = 2, GBM = TRUE,

cluster = NULL,

hessian = TRUE,

####Genoud arguments:

20

Richardsons.Extrapolation = FALSE,
pop.size = 4, optim.method = "L-BFGS-B"”, print.level = 0,
max.generations = @, solution.tolerance = 0.1)

##Example 2 - Incomplete, Contract Data:
Schwartz.Smith.Two.Factor.Contract <- NFCP.MLE(
####Arguments

log.futures = log(SS.0il$Contracts)[1:20,1:5],
dt = SS.0ilsdt,

TTM= SS.0il$Contract.Maturities[1:20,1:5],
S.Constant = TRUE,

N.factors = 2, GBM = TRUE,

cluster = NULL,

hessian = TRUE,

####Genoud arguments:
Richardsons.Extrapolation = FALSE,

pop.size = 4, optim.method = "L-BFGS-B", print.level = 0,
max.generations = @, solution.tolerance = 0.1)

NFCP Parameters

NFCP.Parameters Specify parameters of N-factor model

Description

the NFCP . Parameters function specifies the parameters of a commodity pricing model under the N-
factor framework first described by Cortazar and Naranjo (2006). This function is a recommended

starting position for the application of N-factor models within the NFCP package.

Usage

NFCP.Parameters(
N.factors,
GBM,
Initial.State,
S.Constant,
N.contracts =
verbose = TRUE

NULL,

Arguments

N.factors

GBM

Initial.State

S.Constant

numeric. Number of state variables in the spot price process.

logical. If GBM=T, factor 1 of the model is assumed to follow a Brownian
Motion, inducing a unit-root in the spot price process.

logical. If Initial.State =T, the initial state vector is specified as unknown
parameters of the commodity pricing model.

logical. If S.Constant =T, the white noise of observable contracts are as-
sumed and identical (and independent).

NFCP, Parameters 21

N.contracts numeric. The number of individual observation white noise terms when S.Constant
= F. Optional when S.Constant = T. When N. contracts = 0, the value of NFCP.Parameters
returns a vector without any "sigma.contract" or "sigma.contracts" elements.

verbose logical. If verbose =T, the specified N-factor model is printed when the func-
tion is called.

Details

The N-factor model The N-factor model was first presented in the work of Cortazar and Naranjo
(2006, equations 1-3). The N-factor framework describes the spot price process of a commodity as
the correlated sum of N state variables ;.

‘When GBM = TRUE:
N
lOg(St) = in?t
i=1
When GBM = FALSE:

N
log(S;) = E + in,t
i=1

Additional factors within the spot-price process are designed to result in additional flexibility, and
possibly fit to the observable term structure, in the spot price process of a commodity. The fit of dif-
ferent N-factor models, represented by the log-likelihood can be directly compared with statistical
testing possible through a chi-squared test.

Flexibility in the spot price under the N-factor framework allows the first factor to follow a Brownian
Motion or Ornstein-Uhlenbeck process to induce a unit root. In general, an N-factor model where
GBM = T allows for non-reversible behaviour within the price of a commodity, whilst GBM = F assumes
that there is a long-run equilibrium that the commodity price will revert to in the long-term.

State variables are thus assumed to follow the following processes:
When GBM = TRUE:
dml,t = /L*dt + O'ld’wlt

When GBM = FALSE:
dryy = — (A + K11,)dt + ordwst

And:
dxi,t =i#l 7()\7 + Hl'l‘Lt)dt + aidwit

where:
E(wi)E(w;) = pi;
The following constant parameters are defined as:
var pu: long-term growth rate of the Brownian Motion process.
var E: Constant equilibrium level.
var u* = u — Ap: Long-term risk-neutral growth rate
var \;: Risk premium of state variable 7.
var k;: Reversion rate of state variable .
var o;: Instantaneous volatility of state variable ;.
var p; ; € [—1, 1]: Instantaneous correlation between state variables 4 and j.

Measurement Error:

22 Spot.Price.Forecast

The Kalman filtering algorithm assumes a given measure of measurement error (ie. matrix H).
Measurement errors can be interpreted as error in the model’s fit to observed prices, or as errors in
the reporting of prices (Schwartz and Smith, 2000) and are assumed independent.

var s; Observation error of contract 7.

When S.Constant =T, the values of parameter s; are assumed constant and equal to parameter ob-

ject sigma.contracts’. When S.Constant = F, observation errors are assumed unique, where the er-

ror of futures contracts s; is equal to parameter object 'sigma.contract_' [i] (i.e. 'sigma.contract_1',
'sigma.contract_2', ...).

When N.contracts = 9, "sigma.contract" parameters are not returned within the parameter vector.

Diffuse Assumption: If Initial.State = F, a ’diffuse’ assumption is made within Kalman filter-
ing and parameter estimation functions (See NFCP.MLE or NFCP.Kalman. filter for more informa-
tion)

Value

A vector of parameter names for a specified N-factor spot price process. This vector is ideal for
application within many other functions within the NFCP package

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Examples

##Generate parameter of a Two-factor model Crude 0il model
#i#tas first presented by Schwartz and Smith (2000):
SS.0il.Two.Factor.parameters <- NFCP.Parameters(N.factors = 2,
GBM = TRUE,
Initial.State = FALSE,
S.Constant = FALSE,
N.contracts = 5)
print(SS.0il.Two.Factor.parameters)

Spot.Price.Forecast Spot.Price.Forecast

Description

Analytically forecast expected spot prices following the "true" process of a given n-factor stochastic
model

Usage

Spot.Price.Forecast(X.0, parameters, t, Percentiles = NULL)

Spot.Price.Forecast 23

Arguments
X.0 Initial values of the state vector.
parameters A named vector of parameter values of a specified N-factor model. Function
NFCP.Parameters is recommended.
t a vector of discrete time points to forecast
Percentiles Optional. A vector of percentiles to include probabilistic forecasting intervals.
Details

Future expected spot prices under the N-factor model can be forecasted through the analytic expres-
sion of expected future prices under the "true" N-factor process.

Given that the log of the spot price is equal to the sum of the state variables (equation 1), the spot
price is log-normally distributed with the expected prices given by:

E[S;] = exp(E[In(Sy)] + %Var[ln(St)])

Where:
N

E[in(Sy)] = Z e Fi 2, (0) + pt

i=1
Where x; = 0 when GBM=T and yx = O when GBM = F

1— —(kitrj)t
Var[ln(St)] = O'%t + Z O'Z'O'jpi’jeij

K; K;
ij#1 it

and thus:

N 1—e —(ritr;)t

E[S:] = ewp(z e "itai(0) + (u+ 0'1 t+ = Z 0i0;pij———)

Ki + K
i=1 ”7&1 i TR

Under the assumption that the first factor follows a Brownian Motion, in the long-run expected spot
prices grow over time at a constant rate of p + 2 as the e "¢ and e~ (" 14)! terms approach
Zero.

An important consideration when forecasting spot prices using parameters estimated through max-
imum likelihood estimation is that the parameter estimation process takes the assumption of risk-
neutrality and thus the true process growth rate p is not estimated with a high level of precision.
This can be shown from the higher standard error for i than other estimated parameters, such as the
risk-neutral growth rate p*. See Schwartz and Smith (2000) for more details.

Value

Spot.Price.Forecast returns a vector of expected future spot prices under a given N-factor model
at specified discrete future time points. When percentiles are specified, the function returns a
matrix with the corresponding confidence bands in each column of the matrix.

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

24 Spot.Price.Simulate

Examples

Forecast the Schwartz and Smith (2000) two-factor oil model:

##Step 1 - Run the Kalman filter for the two-factor oil model:
Schwartz.Smith.0il <- NFCP.Kalman.filter(SS.0il$Two.Factor,
names(SS.0il$Two.Factor),
log(SS.0il$Stitched.Futures),
SS.0ilsdt,
SS.0il$Stitched.TTM,
verbose = TRUE)

##Step 2 - Probabilistic forecast of n-factor stochastic differential equation (SDE):
E.Spot <- Spot.Price.Forecast(X.0 = Schwartz.Smith.0il$X.t,

parameters = SS.0il$Two.Factor,

t = seq(0,9,1/12),

Percentiles = c(0.1, 0.9))

Spot.Price.Simulate Spot.Price.Simulate

Description

Simulate risk-neutral price paths of an an N-factor commodity pricing model through Monte Carlo

Simulation.
Usage
Spot.Price.Simulate(
X.0,
parameters,
t=1,
dt =1,
n=2,

antithetic = TRUE,
verbose = FALSE

)
Arguments
X.0 Initial values of the state vector.
parameters A named vector of parameter values of a specified N-factor model. Function
NFCP.Parameters is recommended.
t the number of years to simulate
dt discrete time step of simulation
n total number of simulations
antithetic logical. Should antithetic price paths be simulated?

verbose logical. Should simulated state variables be output? see returns

Spot.Price.Simulate 25

Details

The Spot.Price.Simulate function is able to quickly simulate a large number of risk-neutral price
paths of a commodity following the N-factor model. Simulating risk-neutral price paths of a com-
modity under an N-factor model through Monte Carlo simulations allows for the valuation of com-
modity related investments and derivatives, such as American Options and Real Options through
dynamic programming methods. The Spot.Price.Simulate function quickly and efficiently sim-
ulates an N-factor model over a specified number of years, simulating antithetic price paths as a
simple variance reduction technique. The Spot.Price.Simulate function uses the mvrnorm func-
tion from the MASS package to draw from a multivariate normal distribution for the simulation
shocks.

The N-factor model stochastic differential equation is given by:

Brownian Motion processes (ie. factor one when GBM = T) are simulated using the following solu-
tion:

T141 =Tt + WAL+ 01 AL Z

Where At is the discrete time step, p* is the risk-neutral growth rate and o7 is the instantaneous
volatility. Z; represents the independent standard normal at time .

Ornstein-Uhlenbeck Processes are simulated using the following solution:

e by ke K .
Tit = Tin€ mit T2 — et 4 e dW
0

K

Where a numerical solution is obtained by numerically discretising and approximating the integral
term using the Euler-Maruyama integration scheme:

t t
/ e dW, = Zaie”"des

0 =0

Value

Spot.Price.Simulate returns a list when verbose = T and a matrix of simulated price paths when
verbose = F. The returned objects in the list are:

Prices A matrix of simulated price paths. Each column represents one simulated price path and
each row represents one simulated observation.

Factors A matrix of simulated state variables for each factor is returned when verbose = T. The
number of factors returned corresponds to the number of factors in the specified N-factor model.

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Examples

Example 1
###Simulate a Geometric Brownian Motion (GBM) process:
Starting price of 20, with a growth of 5% p.a. and

26 SS.0il

volatility of 20% p.a.

Simulated.Spot.Prices <- Spot.Price.Simulate(

X.0 = log(20),

parameters = c(mu_star = (0.05 - (1/2) * 0.2%2), sigma_1 = 0.2),
t=1,

dt = 1/12,

n = 1e3)

Example 2
###Simulate future spot price paths under Risk-Neutrality and under the
###Schwartz - Smith two factor model:

##Step 1 - Run the Kalman Filter for the Two-Factor 0il Model:

Schwartz.Smith.0il <- NFCP.Kalman.filter(parameter.values = SS.0il$Two.Factor,
parameters = names(SS.0il$Two.Factor),
log.futures = log(SS.0il$Stitched.Futures),
dt = SS.0ilsdt,

TTM = SS.0il$Stitched.TTM,
verbose = TRUE)

#Step 2 - Simulate spot prices:
##100 antithetic simulations of one year of monthly observations
Simulated.Spot.Prices <- Spot.Price.Simulate(

X.0 = Schwartz.Smith.0il$X.t,

parameters = SS.0il$Two.Factor,

t=1,
dt = 1/12,
n = 1e3,

antithetic = TRUE,
verbose = TRUE)

SS.0il SS.0il

Description

The SS.0il 1list object features the approximate weekly observations of Crude Oil (WTI) futures
contracts used to develop a two-factor commodity pricing model within the prominent work of
Schwartz and Smith (2000) titled: "Short-Term Variations and long-Term Dynamics in Commodity
Prices". The two-factor commodity pricing model presented within this study is also included. The
SS.0i1 list object is used extensively within the NFCP package to provide working examples and
showcase the features of the package.

Usage

data(SS.0il)

Format

A list Containing eight objects:

SS.0il 27

Contracts A data frame with 268 rows and 82 columns. Each column represents a Crude Oil fu-
tures contract, and each row represents a closing weekly price for that futures contract. Obser-
vation dates of the contract object are weekly in frequency from 1990-02-06 to 1995-02-14.
Contracts without observations on a particular date are represented as NA.

Stitched.Futures Schwartz and Smith (2000) applied stitched contract observation data to estimate
commodity pricing models, which are approximated within this object. The Stitched.Futures
object was developed using the Stitch.Contracts function (see Stitch.Contracts ex-
amples for more details). Contracts were stitched according to the contract numbers spec-
ified within the object Stitched.TTM. Stitched.Futures is identical to the futures data
made available within the MATLAB program "SchwartzSmithModel" developed by Good-
win (2013).

Spot A data. frame of spot prices of Crude Oil. weekly in frequency from 1990-02-06 to 1995-02-14.

Final. Trading.Days Named vector listing the final trading days of each observed futures contract
within the Contracts object. Each element of Final.Trading.Days corresponds to a column
of the Contracts object. The final trading day of a futures contract is used to calculate the
number of business days from a given observation to the maturity of the contract (ie. a contract
time to maturity).

Contract.Maturities A data frame with identical dimensions to the Contracts data frame. This
data frame lists the time to maturity of a given futures contract in years at each observation
point. This is identical to the number of business days (in years) between the observed date and
the final trading day of a particular futures contract. The maturity matrix assumes 262 trading
days a year. If the contract is not yet available or has expired, the Contract.Maturities
element is NA.

Stitched. TTM A vector corresponding to the constant time to maturities that was assumed within
the original study of Schwartz and Smith (2000).

dt The discrete time step used to estimate parameters with this data. The time step is 5/262, which
represents a weekly frequency of observations where each weekday is a business day (ie. there
are no business days on weekends).

Two.Factor The crude oil two-factor commodity pricing model parameters presented within the
work of Schwartz and Smith (2000). These parameter estimates are prolific, benchmarked
within several subsequent publications.

Details

Crude Oil Futures pricing and modeling Data (1990 - 1995)

References

Dominice Goodwin (2013). Schwartz-Smith 2-factor model - Parameter estimation (https://www.mathworks.com/matlab
schwartz-smith-2-factor-model-parameter-estimation), MATLAB Central File Exchange. Retrieved
November 21, 2020.

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

28 Stitch.Contracts

Stitch.Contracts Stitch Futures Contracts

Description

Aggregate futures contract price data by stitching according to either approximate maturities and
rollover frequency or contract number from closest maturity.

Usage

Stitch.Contracts(
Futures,
TTM = NULL,
maturity.matrix = NULL,
rollover.frequency = NULL,
Contract.Numbers = NULL,
verbose = FALSE

)
Arguments
Futures Contract futures price data. Each row of Futures should represent one obser-
vation of futures prices and each column should represent one quoted futures
contract. NA’s in Futures are allowed, representing missing observations.
TT™ A vector of contract maturities to stitch

maturity.matrix
The time-to-maturity (in years) for each contract at each given observation point.
The dimensions of maturity.matrix should match those of Futures
rollover.frequency
the frequency (in years) at which contracts should be rolled over
Contract.Numbers
A vector of contract numbers offset from the closest-to-maturity contract at
which to stitch contracts.

verbose logical. Should additional information be output? see details

Details

This function aggregates a set of futures contract data by stitching contract data over an observation
period, resulting in a set of futures observations that is ’complete’ (ie. Does not feature missing
observations). Aggregated futures data benefit from several computational efficiencies compared to
raw contract data, but results in the loss of futures price information.

There are two methods of the Stitch.Contracts function that can be utilized the stitch contracts:
Method 1

Stitch.Contracts(Futures,Contract.Numbers,verbose = T) Futures data may be aggregated

by stitching prices according to maturity matching. This method requires the inputs TTM, maturity.matrix
and rollover.frequency. This method stitched contracts by matching the observation prices ac-
cording to which contract has the closest time-to-maturity of the desired maturity specified in TTM.
Contracts are rolled over at the frequency specified in rollover. frequency.

Method 2

TSFit. Volatility 29

Stitch.Contracts(Futures,TTM,maturity.matrix,rollover.frequency,verbose = T) Futures
data may be stitched according to the contract numbers offset from the closest-to-maturity contract.
This method requires only the input Contract.Numbers specifying which contracts should be in-
cluded. This method is most appropriate when the maturity of available contracts are consistent (ie.
contracts expire every month or three months).

Value

Stitch.Contracts returns a matrix of stitched futures prices if verbose =T and a list with two or
three objects otherwise (see below).

Prices A data frame of Stitched futures prices. Each row represents an observation of the specified
contracts.

Maturities A data frame of the time-to-maturity of observed futures prices. Each row represents
an observation of the specified contracts. Returned only when Method 1 is used (see Details) and
verbose =T.

Tickers A data frame of the named columns of observed futures prices (e.g. contract tickers).
Returned only when Futures or maturity.matrix have named columns and verbose =T.

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Examples

##These examples approximately replicate the Crude 0il data utilized within the
##prominent work of Schwartz and Smith (2000):

###Method 1 - Stitch crude oil contracts according to maturity matching:
SS0ilStitched.M1 <- Stitch.Contracts(Futures = SS.0il$Contracts,

TIM = c(1, 5, 9, 13, 17)/12, maturity.matrix = SS.0il$Contract.Maturities,
rollover.frequency = 1/12, verbose = TRUE)

###Method 2 - Stitch crude oil contracts according to nearest contract numbers:
SS0ilStitched.M2 <- Stitch.Contracts(Futures = SS.0il$Contracts,
Contract.Numbers = c(1, 5, 9, 13, 17), verbose = TRUE)

TSFit.Volatility Volatility Term Structure of futures returns

Description

Estimate the Theoretical and Empirical Volatility Term Structure of futures returns

Usage

TSFit.Volatility(parameter.values, parameters, Futures, TTM, dt)

30

Arguments

TSFit. Volatility

parameter.values

parameters

Futures

TT™

dt

Details

Vector of parameter values of an N-factor model. The NFCP.Kalman.filter
function is designed for application to optim type functions, and thus the pa-
rameter values and corresponding parameter names are separated by different
inputs within the function.

A named vector of parameters of an N-factor model. Function NFCP.Parameters
is recommended.

A Matrix of futures price data. Each column corresponds to a given futures
contract, and each row is an observation of the futures contracts.

A vector listing the Time to Maturities of each listed Futures contract from the
current observation point.

Numeric. The length of the discrete time step (years).

The fit of the models theoretical volatility term structure of futures returns to those obtained directly
from observed futures prices can be used as an additional measure of robustness for the models
ability to explain the behavior of a commodities term structure. A commodity pricing model should
capture all dynamics of a commodities term structure,

The theoretical model volatility term structure of futures returns is given by the following equation:

N N

UF(T) = Z Z O-io'jp@je_(ﬁr‘rﬁj)T

i=1 j=1

Under the case that x; = 0, the model volatility term structure converges to o as T grows large.

The empirical volatility term structure of futures returns is given by:

N

According to Cortazar and Naranjo (2006): "A larger number of factors gives more flexibility to
adjust first and second moments simultaneously, hence explaining why (a) four-factor (may) out-
perform (a) three-factor one in fitting the volatility term structure."

Value

TSFit.Volatility returns a matrix with the theoretical and empirical volatility term structure of
futures returns, with the number of columns of this matrix coinciding with the number of input

futures contracts.

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

TSFit. Volatility 31

Examples

#i## Test the volatility term structure fit of the Schwartz-Smith two-factor model on crude oil:
V_TSFit <- TSFit.Volatility(

parameter.values = SS.0il$Two.Factor,

parameters = names(SS.0il$Two.Factor),

Futures = SS.0il$Stitched.Futures,

TTM = SS.0il$Stitched.TTM,

dt = SS.0il$dt)

Index

x datasets
SS.0il, 26

A_T,2

cov_func, 3
European.Option.Value, 4

Futures.Price.Forecast, 6
Futures.Price.Simulate, 8

NFCP.bounds, 10
NFCP.Kalman.filter, 11
NFCP.MLE, 16
NFCP.Parameters, 20

Spot.Price.Forecast, 22
Spot.Price.Simulate, 24
SS.0il, 26
Stitch.Contracts, 28

TSFit.Volatility, 29

32

	A_T
	cov_func
	European.Option.Value
	Futures.Price.Forecast
	Futures.Price.Simulate
	NFCP.bounds
	NFCP.Kalman.filter
	NFCP.MLE
	NFCP.Parameters
	Spot.Price.Forecast
	Spot.Price.Simulate
	SS.Oil
	Stitch.Contracts
	TSFit.Volatility
	Index

