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Abstract
MortHump is an R package designed to provide ready-to-use methods to analyse the young adult

mortality hump. It contains functions to
• format all-cause and cause-of-death data from the Human Mortality Database (HMD) and

the Human Cause-of-Death Database (HCD) respectively,
• identify and group causes of death that are likely to contribute to the young adult mortality

hump,
• estimate parametric and non-parametric models that isolate the young adult mortality

hump from the rest of the force of mortality, decomposing when needed by cause of death,
• measure the young adult mortality hump by computing summary statistics about its mag-

nitude, location and spread, optionally by cause of death.
This technical paper is meant as a user guide for the MortHump package and provides examples on
how to use its functions.

1 Introduction
Human mortality patterns usually include a brief period of excess mortality in young adult ages, often
called the young adult mortality hump. Although the hump was first described long ago (Thiele, 1871),
recognizability has not led to extensive theoretical or analytic attention. Consequently, empirical
research on the hump has been scarce. Parametric models that do separate the hump have done
so for the sake of a better fit to all-cause mortality, but these have not been used to study the
hump specifically. Important questions therefore remain unanswered. It was for instance claimed that
the hump is a universal feature of male populations (Heligman and Pollard, 1980; Goldstein, 2011),
although this assertion is disputable (Remund, 2012). Moreover, despite the extensive use of the term
“accident hump”, its composition by cause of death remains poorly studied. These considerations
make the development of dedicated tools all the more important for the study of the evolution and
international comparison of the young adult mortality hump.

Human mortality is characterized by the level and shape of the age-specific death rates, which are
defined as the ratio between the observed number of deaths by age, and the person-years lived in this
age. The set of observed rates can be conceptualized as a realization of a latent force of mortality.
The force of mortality can be divided into three main phases that characterize specific periods in
the lifecourse (Figure 1). During childhood, the force of mortality decreases in a process known as
ontogenescence (Levitis, 2011). During adulthood, the force of mortality increases exponentially due to
senescence (Gompertz, 1825), until about age 90, when it appears to decelerate to a plateau (Vaupel,
1997; Horiuchi and Wilmoth, 1998). Between childhood and adulthood, the force of mortality often
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Figure 1: Schematic evolution of the risk of death over the life course. The force of mortality is usually
composed of three phases: a decreasing trend during the first decade of life, a hump in the second and
third decade, and an increasing trend thereafter, marked by a progressive deceleration in very old age.

includes what can be described as a hump. This feature is mostly visible between about 10 and 30
years of age, although it may extend further.

Studies addressing young adult mortality must take into account that at all ages deaths can be
attributable to any of these three processes, although they each dominate a specific period of life. In
particular, young adults are likely influenced by the same forces shaping senescent mortality in higher
ages. If we accept this possibility, then the young-adult senescent pattern may be projected from the
observations at older ages, leaving the hump as an identifiable excess. In this sense, it is possible to
decompose the force of mortality using an additive model in which it is the sum of different components
corresponding to the phases described. Figure 1 illustrates this additive construction and hints at the
arbitrariness of setting strict age bounds for the hump. In this example the total force of mortality
starts increasing again around age 30. Setting age 30 as the end of early adulthood would however
result in attributing senescent deaths before age 30 (area A1) to the hump and ignoring deaths after
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age 30 that belong to the hump component (area A2).
The decomposition of the force of mortality into additive component has traditionally been done

using parametric models because they are relatively easy to fit by least squares or maximum likelihood,
and because their parameters can be relatively well interpreted. Examples of such parametric models
include those proposed by Thiele (1871), Heligman and Pollard (1980), Mode and Busby (1982) or
Kostaki (1992), to cite only some that include a young adult mortality hump.

Parametric models have the advantage of being easy to estimate but suffer from the important
flaws of being relatively arbitrary and rigid in their formulation, which translated in the literature by
a race to the best model that culminated in the 1980s and early 1990s and resulted in the presence of
dozens of competing models whose respective merits are often hard to compare (Wunsch et al., 2002).
A promising alternative consists in estimating the force of mortality with the help of non-parametric
models, such as splines. This line of research has been explored in the last decade, for instance by
Camarda (2008); Camarda et al. (2016).

In the MortHump package we implement several models, both parametric and non-parametric, that
can be fitted to real data. Moreover, we offer a ready-to-use application of a new model that combines
the best of parametric (i.e. formulation in terms of components) and non-parametric models (i.e.
adaptiveness to any mortality context). This so-called Sum of Smooth Exponentials (SSE) model was
defined by Camarda et al. (2016) and was extended to cause-of-death analysis by Remund et al. (2017).
The MortHump package is not limited to the fitting procedure, but also includes methods to format
data from popular demographic databases, identify and group causes of death that possibly contribute
to the hump, as well as provide summary statistics about the magnitude, location and spread of the
hump.

In the next sections, we present how these tasks can be performed using our pre-defined functions.
We first present the tools designed to study all-cause mortality and then move to cause-specific analyses.
Two cases are used as main examples, namely Swiss males in 2010 for all-cause mortality, and American
males in 2000 for cause-specific mortality. These data were obtained from the Human Mortality
Database (HMD) and the Human Cause-of-Death Database (HCD, 2017), respectively.

2 All-cause mortality
In this section we present how to (1) extract and format data from the Human Mortality Database
(HMD), (2) fit different models of mortality, including parametric and non-parametric options, (3)
compute summary statistics about the hump from these models. We use data from the HMD and
show all steps required to perform the analysis using the MortHump package. To access it, install it
from CRAN and load it with the following commands.

install.packages("MortHump")

library(MortHump)

2.1 Format data
Mortality data from the HMD can be accessed either online or locally with the function HMD2MH(),
which can be used in the following manner.

# For local access, replace "path" with the file path to the HMD data.
# For online access, replace "user" and "pass" with valid HMD username and password.
# To register for the HMD, go to www.mortality.org

# Period: Swiss males in 2010 (truncated at age 90)
CHE2010m <- HMD2MH(country = "CHE", year = 2010, sex = "males",

dim = "period", min = 0, max = 90,
password = pass, username = user)
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# Cohort: Swiss females born in 1980 (extrapolation after last available year)
CHE1980fc <- HMD2MH(country = "CHE", year = 1980, sex = "females",

dim = "cohort", xtra = TRUE, min = 0, max = 90,
path = path)

The function takes several arguments, some of them to select the desired combination of country,
years, and sex, others to indicate where to find the data (path for local access, username and password
for online access), and others to format the data (min and max to truncate by age). Additionally, it
is possible to chose the dimension of the data (period or cohort), by using the dim argument. In the
cohort case, the xtp option allows extrapolating the data for the non-extinct cohorts using a variant
of the Lee-Carter model (Hyndman and Ullah, 2007, see documentation of the xtp() function).

The HMD2MH() function produces a data frame with the following variables: x = age, d = death
counts, n = exposures, m = rates. User-supplied datasets can be used but they need to be supplied in
the same format in order to be usable by the other functions of the MortHump package. The format of
the object must be as follows.

str(CHE2010m)

## 'data.frame': 91 obs. of 4 variables:
## $ x: int 0 1 2 3 4 5 6 7 8 9 ...
## $ d: num 151 7 4 5 5 5 2 1 4 1 ...
## $ n: num 40069 40337 39880 39240 39276 ...
## $ m: num 0.003768 0.000174 0.0001 0.000127 0.000127 ...

2.2 Estimate models
Studying the young adult mortality hump requires modelling the shape of the force of mortality in
a flexible way. The general aim is to describe the age-specific death rates mx as a function of age
(Equation 1), where the parameters θ can represent explicit aspects of the force of mortality (such as
the β of the Gompertz law that represents the rate of ageing due to senescence) or a more descriptive
set of coefficients (such as the coefficients of a spline basis).

mx = µ(x) + εx = γC(x, θC) + γH(x, θH) + γS(x, θS) + εx (1)

Whatever the form of the model, it is designed to fit the observed mortality rates and decompose
the underlying force of mortality into three additive components corresponding to specific periods of
the life course: γC(x, θC) for the decrease in the risk of death during childhood, γH(x, θH) for the hump
that characterizes young adult excess mortality, and γS(x, θS) for the senescence process characterizing
adulthood. In this section we compare three parametric and one non-parametric models that can be
all estimated with the MortHump package in a straightforward fashion.

2.2.1 Parametric models

Dozens of parametric models have been published (Wunsch et al., 2002), but only three of them are
implemented here1. They are all based on the structure of the Heligman-Pollard model (Heligman and
Pollard, 1980), and are conceived as nested models that offer a range of ways to address the specificity
of young adult mortality.

The "hps" model, which is inspired by the Siler model (Siler, 1979), is the simplest because it only
models ontogenescence and senescence, and does not take the hump into account. Its role is mainly
to serve as a "null" model to be compared with more complex models that incorporate a hump. The
"hp" model implements the Heligman-Pollard model. This assumes a symmetrical hump with a given

1For a more comprehensive implementation of other mortality laws, see the MortalityLaws R package (Pascariu,
2017).
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height (D), spread (E) and location (F ). The "hpk" model, which corresponds to the model suggested
by Kostaki (1992), relaxes the assumption of symmetry by introducing a different spread before and
after the peak of the hump. Algebraically, "hp" is equal to "hps" iff E = 0, and "hpk" is equal to
"hp" iff E1 = E2.

"hp" Published by Heligman and Pollard (1980), this model contains eight parameters in three
additive terms.

µ(x) = A(x+B)C

+D · exp(−E · (log(x)− log(F ))2) + G ·Hx

1 +G ·Hx
(2)

where (1) A, B and C describe the infant mortality component, (2) D, E and F describe the
hump component, and (3) G and H describe the senescence component.

"hpk" Published by Kostaki (1992), this extension of "hp" contains nine parameters in three additive
terms. This model is defined by two equations that describe the evolution of the force of
mortality before and after the peak of the hump respectively.

µ(x) =
{

A(x+B)C +D · exp(−E1 · (log(x)− log(F ))2) + G·Hx

1+G·Hx ∀x ≤ F
A(x+B)C +D · exp(−E2 · (log(x)− log(F ))2) + G·Hx

1+G·Hx ∀x > F
(3)

In contrast to the "hp" model, it allows the hump to be asymmetrical by differentiating the
spread of the hump before (E1) and after (E2) its peak. Another formulation of this model
consists in substituting E2 = E1 · k, leaving thus a single value for the E parameter, whose
spread is scaled after the peak of the hump by a coefficient k. This second formulation is used
in the outputs of the MortHump package.

"hps" This model is an adaptation of the "hp" model that does not account for the young adult
hump. It resembles in this respect the model published by Siler (1979), but is nested in the
"hp" model.

µ(x) = A(x+B)C

+D + G ·Hx

1 +G ·Hx
(4)

In contrast to the "hp" model, it only has one parameter for the hump component (D) that
has the same function as the constant term of the Makeham model (1860), i.e. to absorbe the
"white noise" of mortality unrelated with age.

For each of these models, the response variable is defined as mx (i.e. the age-specific mortality
rates), x stands for age and is the only covariate, while capital letters represent the parameters that
need to be estimated. In their original paper, Heligman and Pollard (1980) use the odds of death as
the response variable ( qx

1−qx
), a choice that they justify by the fact that this limits the possible values

to the interval [0-1]. We chose instead to define all three models on mx for ease of comparison and
because its domain spans all real numbers.

Estimation is done by weighted least squares to avoid heteroskedasticity, using the inverse of rates
( 1
mx

) as the weights. Heligman and Pollard (1980) advise using quadratic weights (or relative least
squares, which is the same2), while Brillinger (1986) advises to use the inverse of the death counts as
weights3. A comparison of these options shows that 1

mx
respects the hypotheses of the Gauss-Markov

theorem (Remund, 2015). However, the user can choose other weights if desired by specifying other
values for the w argument.

2S2 =
ω∑

x=0
( m̂x

mx
− 1)2 =

ω∑
x=0

( 1
mx

· (m̂x − mx))2 =
ω∑

x=0

1
m2

x
· (m̂x − mx)2

3By default, parametric models are estimated with the "port" algorithm from the nls() function. Is some rare cases,
it may become stuck into local minimums. If this happens, try switching to the Levenberg-Marcquart algorithm using
the "method" argument of the morthump() function.
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Fitting any of these models is straightforward with the MortHump package, using the morthump()
function. The user only needs to specify the data (formatted by the HMD2MH() function or similarly
structured), and the type of model ("hp", "hpk" or "hps"). For instance, fitting the Heligman-Pollard
model on Swiss males in 2010 is as follows.

# load data for Swiss males in 2010 (HMD)
data(CHE2010m)

# fit the Heligman-Pollard model
fit.hp.default <- morthump(data = CHE2010m, model = "hp")

# the fitted value of the F parameter (location of the peak of the hump)
# corresponds to its upper bound (25)
coef(fit.hp.default)

## A B C D
## 0.000225945531 0.069297497186 0.152846905932 0.000406578030
## E F G H
## 2.026465548113 25.000000000000 0.000004093011 1.128283819765

In this example, the F parameter that indicates the location of the peak of the hump is problematic
because using the default starting, lower and upper values, this parameter is estimated at 25 years of
age, which corresponds to its default upper bound. It is also possible to remove this upper bound by
setting it to Infinity, using the following code.

# change upper bound for the F parameter from 25 to Infinity (!)
st <- list(
start = list(A = 1e-3, B = 5e-3, C = 0.11, D = 15e-4, E = 8, F = 20, G = 3e-5, H = 1.105),
lower = c(1e-4, 1e-6, 1e-4, 0, 1, 16, 1e-7, 0.5),
upper = c(0.1, 0.5, 1, 0.01, 50, Inf, 0.01, 1.5))

# refit the model with new constraints
fit.hp.new <- morthump(data = CHE2010m, model = "hp", start = st)

# look at the new fitted parameters
coef(fit.hp.new)

## A B C D E
## 1.781458e-04 1.000000e-06 3.789006e-02 1.000000e-02 1.687957e+00
## F G H
## 1.294310e+02 5.138385e-07 1.155075e+00

This results in a new (absurd) fitted value of 129 years for the peak of the hump (F ), and to
new problematic values for parameters B and D, which is a clear sign that the hump component
is misused. More specifically, the hump component is not really used to fit a young adult mortality
hump, but instead corrects for a slight bend in the senescence component around age 60. Although the
hump component is intended to capture the young adult mortality hump, which is usually the most
prominent feature deviating from the senescence trend, in some (not so rare) cases this senescence
trend does not exactly follow a strictly exponential trend. In this case the optimization algorithm
"recycles" the hump to compensate for these departures from the exponential trend.

This problem is obvious on the left panel of Figure 2 that represents the age-specific death rates
and the estimated force of mortality resulting from this unconstrained Heligman-Pollard model. One
can see that, between about 40 and 70 years of age, the observed death rates fall slightly above the
expected exponential trend, which is why the hump component is relocated around these ages4. On

4Do not forget that the estimation is done on the absolute rates and not on the logged values (as showed in the plot).
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the right panel of Figure 2, the hump component is represented alone as a share of the observed
age-specific death rates (which can be reduced to a density by rescaling the hump to sum to 1). Its
median and mean are marked (see the next section about the measures of the hump). By definition,
the mode of the hump corresponds to the F parameter in the Heligman-Pollard model (not shown
here due to its extreme value of 129 years of age), while the median indicates the age at which half of
the people have died from the hump (here 74 years of age), and the mean indicates the mean age at
death of the people who died from the hump (here 71 years of age). In this case all of these measures
of centrality confirm that the hump component was used for other purposes than describing the young
adult mortality hump.
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Figure 2: Fitted Heligman-Pollard model on Swiss males in 2010

A possible way around this problem is to fit the slightly more complex Kostaki model. This
extension of the Heligman-Pollard formula relaxes the assumption of symmetry by allowing the spread
of the hump to vary before and after its peak. This model can be easily fitted by specifying the "hpk"
model in the morthump() function as follows.

# load data for Swiss males in 2010 (HMD)
data(CHE2010m)

# fit the Kostaki model
fit.hpk <- morthump(data = CHE2010m, model = "hpk")

# look at the fitted parameters
coef(fit.hpk)

## A B C D
## 0.000190851683 0.007068709528 0.086459317334 0.000495567376
## E F G H
## 8.191326548161 22.000000000000 0.000003114126 1.131899023381
## k
## 0.000000000000

It may thus very well be that in absolute terms the deviation from the exponential trend is actually stronger around age
50 than around age 25, although the graph suggests otherwise.
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There is now a ninth parameter k, which indicates by how much the spread after the peak of the
hump differs from the spread before the hump. When k = 1, E1 = E2 and the Kostaki model reduces
to the Heligman-Pollard model, and when k = 0, this means that the hump is in fact flat after the
peak. According to the estimated values of the parameters, this is what happens, which allows for a
better goodness of fit of the death rates between 20 and 40 years of age (Figure 3). Note however that:
(1) the F parameter still sticks to the upper bound which in the Kostaki model is set at 22 by default,
(2) the fit is poor between 40 and 60 years of age, and (3) the hump now takes a totally unreasonable
shape. While the mode is located by definition at 22 years of age, the mean and the median now reach
values above 50 years of age. This is because the hump does not decrease at all after reaching its peak.
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Figure 3: Fitted Kostaki model on Swiss males in 2010

We demonstrate particular example because the Heligman-Pollard model does not offer a good
fit in all ages and tends to misuse the hump component to capture features of the force of mortality
that have nothing to do with the young adult mortality hump. The Kostaki model may be better at
modelling the overall force of mortality, but it tends to estimate unreasonable shapes for the hump.
These drawbacks are less obvious when these models are estimated on data from the 1960s and 1970s,
on which they were first developed, because at that time the hump had a more symmetrical shape that
was easier to capture parametrically. To these limitations, one should also add that the parameters
are highly correlated (Remund, 2015), which is why some studies have argued for the use of Bayesian
estimation techniques of these parametric models (e.g. Dellaportas et al., 2001). Still, a potentially
more promising option is to estimate the three components of the force of mortality with non-parametric
techniques.

2.2.2 Non-parametric models

Age-specific mortality rates can alternatively be fitted with non-parametric models, such as P -splines
(Camarda, 2008). These are are more flexible and are useful for smoothing, but they are less helpful in
parsimoniously describing the characteristics of a mortality curve than parametric models. A possible
compromise would keep the additive approach from parametric models that is needed to isolate the
young adult mortality hump from the rest of the force of mortality, while defining each component
non-parametrically. This is what does the Sum of Smooth Exponentials (SSE) model (Camarda et al.,
2016).

In brief, this model describes the force of mortality as the sum of three smooth functions of age that
correspond to ontogenescence, the young adult hump, and senescence. These smooth functions are
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estimated non-parametrically using penalised splines, forcing the three components to be monotonically
decreasing, log-concave, and increasing, respectively. The model assumes that age-specific death counts
are draws from Poisson distributions, and exponentiation ensures non-negative values. The model
is formulated as a Penalized Composite Link Model (Thompson and Baker, 1981) and fitted using
Iterative Re-weighted Least Squares (Eilers, 2007).

In the MortHump package, estimating the SSE model is done similarely to the parametric models,
using the morthump() function and specifying "sse" in the model argument as follows.

# load data for Swiss males in 2010 (HMD)
data(CHE2010m)

# fit the SSE model
fit.sse <- morthump(data = CHE2010m, model = "sse")

In the case of Swiss males in 2010, the SSE model proves more efficient than its parametric counter-
parts. Not only does the estimated force of mortality more closely match the shape of the age-specific
death rates at all ages, but the hump is also more symmetrical and concave (Figure 4). Indeed, the
lack of fit observed between age 40 and 70 with the parametric models completely disappears thanks
to the more flexible estimation of the rate of ageing (i.e. the β parameter of the Gompertz model).
Moreover, the three measures of location (mode, mean and median) are very close to each other around
age 22, which confirms the visual impression of symmetry.
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Figure 4: Fitted SSE model on Swiss males in 2010

This example shows the flexibility of the SSE model. It can adapt to virtually any shape of the
force of human mortality, as long as the three components that it assumes are present. This nuance
is important as there are examples of populations where the hump does not exist, or to such a small
extent that it becomes indistinguishable from the stochastic noise due to the population size and the
level of mortality. In this case, some fine tuning may help model convergence, but it does not mean that
the result is meaningful. Several arguments might prove useful: a larger maxit increases the number of
iterations and slows down the convergence, a larger x1 helps capture a wider hump, while lambda.hump
and lambda.sen control the rigidity of the hump and senescence components, respectively5. These
arguments can be used for instance in the following way on the case of Swiss females in 1950.

5For more information see the documentation of the morthump() and sse.fit() functions
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library(MortHump)

# load data for Swiss females in 1950 (HMD)
data(CHE1950f)

# fit sse model with default parameters
fit.sse.default <- morthump(data = CHE1950f, model = "sse")

# change starting values for the hump (x1) and senescence (x2) components,
# and amount of smoothing for the senescence component (lambda.sen)
fit.sse.custom <- morthump(data = CHE1950f, model = "sse", x1 = 25, x2 = 40,

lambda.sen = 1)

The resulting fit of the SSE model on the case of Swiss females in 1950 shows how flexible this
method is, but also that its results must be sometimes interpreted with caution (Figure 5). Just
looking at the observed age-specific death rates, we can clearly see that there is almost no perceptible
deviation around age 20. Consequently, if we estimate the SSE model using the default values for
the parameters (Figure 5, left panel), the resulting hump component is unreasonable. It is possible
to force the SSE model to focus on a more specific age range and reduce the smoothing parameter of
the senescence component to tolerate more variation in the slope of the senescence component. The
result is a very small hump estimate around age 20 (Figure 5, right panel), although its significance
remains dubious. We see in the next section how to treat the question of statistical significance, both
in parametric and non-parametric models.
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Figure 5: Fitted SSE model on Swiss females in 1950, using default (left) and custom (right) parameters

2.3 Measure the hump
We provide a small suite of summary methods for interpreting model output. Three dimensions are
especially relevant in this context: the magnitude, the location and the spread of the hump. There are
different ways to capture these concepts and we will now illustrate some of them using the same data
of Swiss females in 1950. Let us thus estimate a parametric (Heligman-Pollard) and non-parametric
(SSE) model on these data. Because this population has a very small hump, we need to use custom
parameters for both models in order to avoid that the hump and the senescence components overlap.
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In particular, for the Heligman Pollard model the mode of the hump must be kept low (F parame-
ter). For the SSE model this involves chaning the age range used to find starting values for the hump
("x1") and senescence component ("x2"), and allowing more flexibility to the senescence component
in order to absorbe the variations observed at older ages ("lambda.sen").

# load data for Swiss females in 1950 (HMD)
data(CHE1950f)

# fit the HP model with custom constraints
st <- list(
start = list(A = 1e-3, B = 5e-3, C = 0.11, D = 15e-4, E = 40, F = 20, G = 3e-5, H = 1.1),
lower = c(1e-4, 1e-6, 1e-4, 0, 30, 19, 1e-7, 0.5),
upper = c(0.1, 0.5, 1, 0.01, 50, 21, 0.01, 1.5))

fit.hp.custom <- morthump(data = CHE1950f, model = "hp", start = st)

# fit the SSE model with custom starting values and smoothing parameter
fit.sse.custom <- morthump(data = CHE1950f, model = "sse", x1 = 25, x2 = 40, lambda.sen = 1)

Figure 6 represents the fit of the observed age-specific death rates for Swiss females in 1950 by
each model. The HP model systematically underestimates mortality between 30 and 60 years of age,
which is not the case of the SSE model. They however estimate similar humps, centered around age
20, although it is not obvious from the observed rates that the underlying force of mortality contains
a hump.
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Figure 6: Fitted HP (left) and SSE (right) models on Swiss females in 1950, using custom parameters

2.3.1 Magnitude

Magnitude refers to the overall size of the hump component and not only its height. We suggest three
measures of magnitude which have straightforward interpretations. They can all be computed using
the summary method of morthump objects.

LEL
The life expectancy at birth lost due to the hump (LEL) is the difference between the life expectancy

computed on the fitted force of mortality (ê(0)), and life expectancy computed on the hump-free force
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of mortality (ê−H(0)). Algebraically,

LEL = ê−H(0)− ê(0) =
∫ ω

0
e−

∫ a

0
γC (y)+γS(y)dy

da−
∫ ω

0
e−

∫ a

0
γC(y)+γH (y)+γS(y)dy

da (5)

where γC , γH and γS , defined in Equation 1, are the childhood, hump and senescence components,
respectively. These components can be estimated with a parametric or non-paremetric model.

This difference can be interpreted as the mean years of life lost in the population due to the
presence of the hump, or alternatively as the potential gain in life expectancy that could be reached
in the absence of the hump. In the case of Swiss females in 1950, LEL amounts only to 0.09 years of
life according to both parametric and non-parametric models.

# life expectancy lost to the hump
summary(fit.hp.custom)$loss

## [1] 0.09

summary(fit.sse.custom)$loss

## [1] 0.09

In other words, were the hump not present, Swiss females would have lived about one extra month
on average. This should be compared with the uncertainty of the observed period life expectancy at
birth (about 70 years in 1950), which depends on the amount of stochasticity due to the size of the
population exposure and the level of mortality. In this case, the 95% confidence interval estimated
either analytically (Chiang, 1978) or numerically (Andreev and Shkolnikov, 2010) reaches a width of
0.24 year. The LEL of 0.09 due to the hump falls thus within the confidence interval of the observed
life expectancy and does not stand out from stochastic noise. One can conclude from this that the
estimated hump does not significantly lower life expectancy.

# confidence intervals
ci.hp <- confint(fit.hp.custom, method = "chiang")

## Loss of life expectancy due to the hump (years): 0.09
## Half-confidence interval of fitted life expectancy at birth: 0.102
## The hump is not statistically significant
## Significance level: 0.95

ci.sse <- confint(fit.sse.custom, method = "chiang")

## Loss of life expectancy due to the hump (years): 0.09
## Half-confidence interval of fitted life expectancy at birth: 0.121
## The hump is not statistically significant
## Significance level: 0.95

In the case of a parametric model, the statistical significance of the hump can be further tested
by comparing the fit of a model that contains a hump component, with a model that does not. For
instance, using the same population, it is possible to fit a HP model and compare its goodness-of-fit
with that of a HPS model. This can be done with a F-test of nested models, since HPS is a special
case of HP. In this case, this test indicates a p-value of 1, which means that there is about 100% chance
to be wrong in claiming that the HP model (with a hump) outperforms the HPS model (without a
hump). This confirms the conclusion reached with the confidence intervals of the fitted life expectancy.

# p-value
summary(fit.hp.custom)$pval

## [1] 1
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YLL
Another measure of magnitude is an adaptation from the years of life lost (YLL), which is a well-

known measure of premature mortality, defined by the World Health Organization as the product of
the age-specific distribution of death with age-specific life expectancy (WHO, 2013). In this case, we
only consider the deaths that are generated by the hump to compute the years of life lost due to the
hump (Y LLH).

Y LLH =
∑
x

γH(x) · nx · e(x) (6)

Y LLH is defined as the product of the hump component of the force of mortality (γH) and the
age-specific exposure (nx), which are then multiplied again with the remaining life expectancy (e(x))
and summed over age in order to obtain the total number of years that could have been lived by those
who died because of the hump. In the case of Swiss females in 1950, this measure amounts to 3309
years of life according to the SSE model (3483 according to the HP model).

summary(fit.hp.custom)$yll

## [,1]
## [1,] 3483

summary(fit.sse.custom)$yll

## [,1]
## [1,] 3309

Deaths
The third measure of magnitude is the absolute number of deaths that would have been averted in

the absence of the hump. It is obtained by multiplying the hump component of the force of mortality
(γH) by the exposures (nx):

dH =
∑
x

γH(x) · nx (7)

This measure is probably the simplest to grasp and is thus easy to communicate to a non-scientific
audience, but is not advisable if the goal is to compare populations. Indeed, the number of people
who die because of the hump not only depends on the shape of the force of mortality, but also on the
population at risk. In two populations with the same hump, the one with the larger population in the
age range that contains the hump will experience more deaths. Note that this limitation also applies
to the years of life lost to the hump. In the case of Swiss females in 1950, 62 young women would have
been "saved" if the hump had been suppressed according to the SSE model (66 according to the HP
model).

summary(fit.hp.custom)$d

## [1] 66

summary(fit.sse.custom)$d

## [1] 62

2.3.2 Location

Measures of location are inspired by classical measures of centrality that can be applied to any distri-
bution. We treat the hump components as a density for such measures by rescaling the hump to sum
to 1.
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Mode
The mode of the hump is the most straightforward measure of location. This corresponds to the

age at which the hump component reaches its peak.

ModeH = argmax
x

γH(x) (8)

In the case of parametric models (HP and HPK ),ModeH = F by definition. With the SSE model,
this quantity can be easily computed by predicting values for non-integer ages. In the case of Swiss
females in 1950, the modal age at death was 21 according to the HP model, against 20.05 according
to the SSE model. In this case parametric and non-parametric agree thus more or less on the age at
which the hump reaches its maximum strength.

summary(fit.hp.custom)$mode

## [1] 20.99999

summary(fit.sse.custom)$mode

## [1] 20.04776

Mean
Another measure of location is the mean age at death for those who died because of the hump. It

is the weighted mean of the age, weighted by the hump component.

MeanH =
∫
γH(x) · x∫
γH(x)

(9)

This mean computes to 20.05 and 21.5 years of age for the SSE and HP models respectively. The
difference between the two models is slightly larger on this measure because, unlike the mode, it is
sensitive to the shape of the tails of the hump. An asymetrical hump that extends further into older
ages may have a higher mean age at death but not necessarily a higher mode.

summary(fit.hp.custom)$mean

## [1] 21.53162

summary(fit.sse.custom)$mean

## [1] 20.04734

Median
A last measure of location is the median age at death from the hump. As its name suggests, it is

the age at which half of the people who died from the hump have done so.

MedianH = x |
∫ x

0 γH(a)da∫ ω
0 γH(a)da

≥ 0.5 and
∫ ω
x
γH(a)da∫ ω

0 γH(a)da
≥ 0.5 (10)

This measure computes to 20.06 and 21.35 years of age for the SSE and HP models respectively.

summary(fit.hp.custom)$median

## [1] 21.35294

summary(fit.sse.custom)$median

## [1] 20.06337
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The combination of these three measures of location (or centrality) is useful in determining the
overall shape of the hump. Indeed, as this example demonstrates (albeit to a relatively small extent),
the mean is more sensitive to extreme values than the median and the mode. If these three measures
are close this is thus a sign that the hump is symmetrical, while if the mode and median are located
before the mean this is a sign of a longer right tail (positive skew), and inversely if they are located
after the mean this suggests a longer left tail (negative skew). These three measures of location should
thus be ideally interpreted together.

2.3.3 Spread

Measures of spread are inspired of the classical measures of dispersion that can be applied to any
distribution. By treating the hump component as a density, these measures provide alternative per-
spective on the age range affected by the hump. The spread (or dispersion) of the hump is also an
explicit parameter in the HP and HPK models. Indeed, in both cases, the E parameter controls
the concentration of the hump around the peak. Additionally, in the HPK model this value can be
different before and after the peak depending on the value of the k parameter. The E parameter is
thus inversely correlated with the spread of the hump, but its units are not easily interpretable.

Standard deviation
Unlike the E parameter, the standard deviation of the age at death from the hump comes in years

units. This quantity can be easily computed from the density of the hump with standard formula.

sdH =

√∫
γH(x) · (x−Meanx)2∫

γH(x)
(11)

In the case of Swiss females in 1950, the standard deviation of the age at death from the hump
amounts to 1.9 years according to the SSE model, against 2.8 years according to the HP model.

summary(fit.hp.custom)$sd

## [1] 2.791342

summary(fit.sse.custom)$sd

## [1] 1.888632

Quantile
Other measures of spread can be computed using the ready-to-use functions generated by the

summary method. In particular, the quantile function (qtl(x)) can be used to compute any quantile of
the hump. For instance, one can compute the interquartile range (IQR), which for Swiss females in
1950 ranges from 19.6 to 23.3 years according to the HP model, and from 18.7 to 21.3 years according
to the SSE model.

qtl <- summary(fit.hp.custom)$qtl
qtl(c(0.25, 0.75)) # IQR

## [1] 19.57224 23.29560

qtl <- summary(fit.sse.custom)$qtl
qtl(c(0.25, 0.75)) # IQR

## [1] 18.70538 21.32667

3 Cause-specific mortality
In recent decades, the hump has been almost exclusively associated in the literature with accidents, as
reflected by the widespread use of the term "accident hump", likely coined by Heligman and Pollard
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(1980). However this hypothesis has never been tested properly due to methodological limitations.
A solution to this problem was proposed by Remund et al. (2017). It is based on the same premises

as the all-cause "sse" model, but generalizes it to decompose the hump into contributions from each
cause of death. Common age-cause decompositions of mortality differences such as those proposed
by Arriaga (1984), Pollard (1982), Andreev (1982) and Pressat (1985) do not isolate the hump. The
MortHump package implements this model and allows (1) formatting the data, (2) generating a cause-of-
death typology, (3) estimating the model and (4) measuring the cause- and age-specific contributions
to the young adult mortality hump.

3.1 Format data
The MortHump package includes a data grabber for the Human Cause-of-Death Database (HCD, 2017),
which offers cause-of-death series reconstructed across ICD transitions (Meslé and Vallin, 1996). It
currently only works locally and thus requires previously downloading the data from the website. All
the data must be located in country-specific folders named after the country short names, ideally
directly taken from the zipped files available on the HCD website. The function HCD2MH() works along
the same principles as the HMD2MH() function, but has slightly different options.

# For local access, replace "path" with the file path to the HCD data.
# To register for the HCD and download the data, go to www.causesofdeath.org
#
# US males in 2000 (intermediate list with 101 causes, abridged data)
USA2000m <- HCD2MH(country = "USA", year = 2000, sex = "males",

unabr = FALSE, list = "interm", path = path)

str(USA2000m, max.level = 1)

## List of 7
## $ mxc :'data.frame': 22 obs. of 101 variables:
## $ dxc :'data.frame': 22 obs. of 101 variables:
## $ nx : num [1:22] 2005790 7825242 10461439 10556762 10438509 ...
## $ x : num [1:22] 0.5 3 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 ...
## $ age : chr [1:22] "0" "1-4" "5-9" "10-14" ...
## $ inter: num [1:22, 1:2] 0 1 5 10 15 20 25 30 35 40 ...
## $ lab :'data.frame': 101 obs. of 3 variables:

# US males in 2000 (short list with 16 causes, unabridged data)
USA2000m <- HCD2MH(country = "USA", year = 2000, sex = "males",

unabr = TRUE, list = "short", path = path)

str(USA2000m, max.level = 1)

## List of 7
## $ mxc :'data.frame': 110 obs. of 16 variables:
## $ dxc :'data.frame': 110 obs. of 16 variables:
## $ nx : num [1:110] 2005790 1965719 1940427 1943665 1975431 ...
## $ x : num [1:110] 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 ...
## $ age : int [1:110] 0 1 2 3 4 5 6 7 8 9 ...
## $ inter: num [1:109, 1:2] 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 ...
## $ lab :'data.frame': 16 obs. of 3 variables:

HCD data are available in three different lists of causes of death: short, intermediate and full.
The short list contains 16 causes of death that define broad families of causes (e.g. neoplasms, heart
diseases, or external causes). The intermediate list contains 104 causes of death that provide a finer
display of the etiological processes (e.g. malignant neoplasm of stomach, pulmonary heart diseases, or
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suicide and self-inflicted injury). The full list depends on the original data but is as close as possible
to the 4-digit codes of the 10th revision of the ICD. Depending on the desired level of analysis, the
type of list can be easily selected in the HCD2MH() function using the list argument, which takes
three possible values: "short", "interm" and "full". In practice, for the study of the young adult
mortality hump, it is probably advisable to work with the intermediate list.

Another option that is specific to the HCD2MH() function concerns the nature of the age groups. By
default, all HCD data come into five-year age groups, except the first year of life. The open interval
varies from 85+ to 100+ depending on the original data. These abridged data can be used directly
in the other functions of the MortHump package, but they also can be unabridged thanks to the unabr
option. When this argument is used (unabr = TRUE), a single-age dataset is produced by applying
a monotonic spline to the cumulative distribution of the cause- and age-specific death counts. This
method is inspired by the method protocol of the Human Mortality Database and is fully described
in the documentation of the unabridge() function, together with explanations on how to produce
diagnostic plots in order to check the coherence of the resulting unabridged data.

User-supplied datasets can also be loaded instead of the HCD data. In this case, the dataset must
be structured in the same way as the output of the HCD2MH() function. Particularly, it must be a
list containing data frames with the cause- and age-specific rates and death counts, as well as vectors
for the age-specific exposures, mid-points, and labels, intervals for each age groups and a data frame
containing the label for each cause of death (short and long).

3.2 Group causes of death
The first step in the decomposition of cause- and age-specific contributions to the young adult mortality
hump is to identify the causes that are likely to contribute to the hump (Remund et al., 2017). This
task is unavoidable because there is no way to fully automatize this selection. This selection is not
an apriori estimation of the respective weight of each cause, and different typologies can be tested in
sensitivity analyses. As a general rule of thumb, it is advisable to select between 2 and 6 causes of
death (or groups of causes) that are susceptible to contribute to the hump. This task can be done
manually, by creating a list containing the desired typology. The user needs to define this by creating
a list of which each element is a vector containing the column index of the desired causes in the mxc
and dxc data frames which are stored within the data object generated by the HCD2MH() function.
For instance, using the dataset of US males in 2000, one can define five user-defined groups of causes
in the following way. Note that in this typology, causes 93 (Accidental poisoning by alcohol) and 94
(Accidental poisoning by alcohol) are aggregated to form a single cause of death labeled as poisoning
(poi). Likewise, causes 95 (Other accidental threats to breathing), 98 (Event of undetermined intent)
and 100 (Other accidents and late effects of accidents (remainder)) are grouped into a common cause
of death labeled as other accidents (oac).

# load data for US males in 2000 (HCD)
data(USA2000m)

# manual typology
typ <- list()
typ$tac <- 89
typ$sui <- 96
typ$hom <- 97
typ$poi <- c(93,94)
typ$oac <- c(95,98,100)

# display long labels
lapply(typ,function(x){USA2000m$lab$label[x]})

## $tac
## [1] "Transport accidents"
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##
## $sui
## [1] "Suicide and self inflicted injury"
##
## $hom
## [1] "Assault"
##
## $poi
## [1] "Accidental poisoning by alcohol"
## [2] "Accidental poisoning by other substance"
##
## $oac
## [1] "Other accidental threats to breathing"
## [2] "Event of undetermined intent"
## [3] "Other accidents and late effects of accidents (remainder)"

Alternatively, if one wants to adopt a more inductive approach, data mining methods are available
in the codgroup() function. They consist essentially in computing the first difference of the cause- and
age-specific death rates, and applying Principal Component Analysis (PCA) and Hierarchical Cluster
Analysis (HCA) to study the differences in age-shape between causes. Keeping the US males in 2000
as a working example, one can see that the codgroup() function, applied to the age range 10 to 29 and
using a six-group cluster solution (k = 6, including the group of all other causes that do not contribute
to the hump) suggests the following typology.

# load data for US males in 2000 (HCD)
data(USA2000m)

# Find grouping automatically
groups <- codgroup(USA2000m, k = 6, x.range = 10:29)

# store the automatic typology
typ <- groups$typ

# display long labels
lapply(typ,function(x){USA2000m$lab$label[x]})

## $B
## [1] "HIV disease"
##
## $C
## [1] "Transport accidents"
##
## $D
## [1] "Accidental poisoning by other substance"
##
## $E
## [1] "Suicide and self inflicted injury"
##
## $F
## [1] "Assault"

# rename groups
names(typ) <- c("hiv","tac","poi","sui","hom")
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# display short labels
typ

## $hiv
## INF_hiv
## 6
##
## $tac
## EXT_transp
## 89
##
## $poi
## EXT_poison.other
## 94
##
## $sui
## EXT_suicide
## 96
##
## $hom
## EXT_assault
## 97

Several diagnostic plots are available in order to visualize distance between each cause and cluster
of causes (Figure 7). This typology isolates all the causes that stand out from the general trend in
the force of mortality between 10 and 29 years of age: HIV, traffic accidents, poisonings other than
alcohol (i.e. drug overdoses), suicides, and homicides. The projection of these causes on the first
two dimensions of a Principal Component Analysis (Figure 7, left) shows that these five causes have
very different shapes than the other ones during early adulthood. The first two dimensions of the
PCA capture 96% of the between-cause variation. The comparison of the first difference of the force of
mortality by cluster of causes (Figure 7, right) shows that the proposed clusters distinguish causes that
experience a rapid increase before 20 years of age followed by a decrease (transports accidents, and to
a lesser extent suicides and homicides), from causes that are progressively accelerating (non-alcoholic
poisonings and HIV) compared to the general trend (cluster 1). In other words, the former probably
have narrower contributions to the hump than the latter, but all of these causes deviate from the
general trend.
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Figure 7: Constructing a cause-of-death typology with automatized tools

Other tools can be used to help chosing the typology, using measures of cluster quality to pick the
optimal size of the typology (see documentation of codgroup() and plot.codgroup()). The general
aim is to obtain (1) a remaining group that does not display any hump, and (2) as many groups of
causes of death as necessary to obtain a satisfactory level of detail in the analysis.

3.3 Estimate models
The modelling of the cause-of-death decomposition of the hump is described in detail in Remund et al.
(2017). It consists first in fitting an SSE model to the overall force of mortality from age 10 (or the
lowest oberved death rate), only keeping the hump and senescence components in order to simplify
the computation. Then the model is refit with cause deleted and replaced in sucession. The resulting
perturbations in the hump component after deletion of a cause is interpreted as the contribution of
this cause to the hump. The estimation is done simultaneously on all the causes as the sum of all
cause-specific contributions to the hump needs to equal the overall hump estimated in the first step.
In order to ensure this, a constrained optimization algorithm is used.

The model returns a set of values for the contribution of each cause (κ) to each component (γH for
the young adult mortalit hump and γS for senescence).

mx = µ(x) + εx = γH(x, θH) + γS(x, θS) + εx =
∑
κ

γκH(x, θκH) +
∑
κ

γκS(x, θκS) + εx, ∀x ≥ 10 (12)

In the MortHump package, this model can be estimated with the codhump() function, which takes
as necessary arguments data, a list typically resulting from a call to HCD2MH(), and typ, a list that
describes the structure of the cause-of-death typology (see previous section). All the other arguments
have default values that help the algorithm to converge, but can be modified if necessary. For instance,
the

# load data for US males in 2000 (HCD)
data(USA2000m)

# automatically generate and rename a typology
groups <- codgroup(USA2000m, k = 6, x.range = 10:29)

20



typ <- groups$typ[c(2:5, 1)]
names(typ) <- c("tac", "poi", "sui", "hom", "hiv")

# fit the model
fit.full <- codhump(data = USA2000m, typ = typ)

# remove HIV from the contributing causes
typ <- typ[-5]
fit.nohiv <- codhump(data = USA2000m, typ = typ)

Applying this approach on US males in 2000, and using the default typology suggested by the
inductive approach, we obtain a decomposition that shows no significant contribution from HIV (Figure
8, left)6. This can be explained by the fact that the force of mortality for this cause of death only
deviates from the overall force of mortality after the mid-twenties (Figure 7), whereas the overall hump
peaks around 20 years of age. Consequently, although HIV deviates from the general trend, it does so
in a way that does not contribute to the hump. Incidentally, the quality of the fit is also affected as we
can see that the overall hump (black line) does not overlap perfectly with the stacked cause-specific
contributions. One way to deal with this issue is to remove HIV from the contributing causes. Doing
this allows the model to converge more easily and the sum of all cause-specific contributions to overlap
with the overall hump (Figure 8, right).
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Figure 8: Estimating a cause-of-death decomposition of the hump on US males in 2000, with (left)
and without (right) HIV

3.4 Measure the hump
The measures developed for the all-cause hump can be generalized to cause-of-death contributions.
Here again, we distinguish measures of intensity (magnitude), location (centrality) and spread (disper-
sion). They are defined by applying the same formulas that for all-cause mortality, this time on the
cause-specific contribution to the hump (γκH). We refer thus to the previous chapter for the formulas.

6Other diagnostic plots are available, notably to make sure that the convergence happened as expected. One possible
caveat is that the algorithm gets stuck around a local optimum and starts drifting away from a reasonable solution.
Safeguards were designed to stop the algorithm in this case, but they may prevent it from reaching a satisfactory solution.
This kind of issue can be identified with the help of the other diagnostic plots (see the documentation for the plot method
of codhump()).
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We only present a selection of these measures, keeping only, for magnitude, years of life expectancy
lost to the hump (Equation 5), for location, mode (Equation 8) and mean age at death from the hump
(Equation 9), and for spread, standard deviation of age at death from the hump (Equation 11). They
can all be computed using the summary method of the codhump objects in the following way.

In the case of US males in 2000, the loss in life expectancy due to the hump amounts to 0.62 years,
of which about 45% (0.28 years) is due to traffic accidents, 5% (0.03 years) to poisonings, 20% (0.12
years) to suicides and 30% (0.18 years) to homicides. The sum of these three contributions equals the
life expectancy lost to the overall hump.

# life expectancy lost to the hump, total and by cause of death
summary(fit.nohiv)$loss

## all tac poi sui hom
## 0.62 0.28 0.03 0.12 0.18

These values do not match the corresponding share in the absolute death couts for these causes
between ages 10 and 35. Traffic accidents is the only cause for which the two measures are more or
less equal (about 25%), but all the other causes have much larger contributions to the hump than their
share in the absolute number of deaths. This is because the model isolates the contributions to the
hump, which is stronger for these causes, and thus increases their weight compared to the observed
deaths. Other causes account for about 40% of the original death counts in this age range, but the
shape of their force of mortality is close enough to the overall trend that they do not generate any
deviation.

Regarding measures of location, in the case of US males in 2000, the mode of cause-specific contri-
butions to the hump coincide with the overall hump at 22.5 years of age. The mean also gives similar
results across causes (22.6 to 24.3), which suggests that, at least in this case, the underlying forces
that make young adult more vulnerable to specific causes of death during their transition to adulthood
follow similar timings. This assertion should however be tested on single-age data instead of abridged
data.

# mode of the hump, total and by cause of death
summary(fit.nohiv)$mode

## all tac poi sui hom
## 22.5 22.5 27.5 22.5 22.5

# mean age at death from the hump, total and by cause of death
summary(fit.nohiv)$mean

## all tac poi sui hom
## 23.47 22.64 25.60 24.26 23.79

Concluding with measures of spread, in the case of US males in 2000 the standard deviation of age
at death from the hump also indicates similar values for all causes (5.23 to 5.52). Let us note here
that depending on the age-specific shape of the cause-of-death contributions, the overall spread may be
smaller, equal or larger than any of the cause-specific contributions. For instance, each cause-specific
contributions can be narrow but centered on different ages, which would generate a wide overall hump.
Inversely, several wide cause-specific contributions centered on the same age may generate a narrower
overall hump.

# standard deviation of the age at death from the hump, total and by cause of death
summary(fit.nohiv)$sd

## tac poi sui hom
## 5.364672 5.231438 5.517979 5.467718 5.236948
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4 Conclusion
The young adult mortality hump is probably the least studied of the three main components of the
force of mortality. The terms used to speak of this phenomenon are even themselves debatable, as
many publications use the expression "accident hump", even though there is evidence that accidents
are not the only cause of death contributing to the hump, and maybe not even the largest one. More
importantly perhaps, there is no commonly accepted measure of the hump that is really based on
the definition of a deviation in the force of mortality. Consequently, theories about the source of this
phenomenon remain fuzzy and have not been thoroughly tested.

The MortHump package is conceived as a methodological toolbox to fill this gap, by offering a
user-friendly, adaptable, and open-source solution for research on the hump. It includes functions to
format data, estimate models, generate diagnostic plots and compute summary measures in a simple
straightforward fashion. Our hope is that it will help open a new line of research on the comparative and
historical study of the young adult mortality hump, ultimately allowingcompeting and complementary
theories on the forces that drive this phenomenon to be tested.
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