
MatchingFrontier: Automated Matching for Causal

Inference∗

Gary King
Harvard University

Christopher Lucas
Harvard University

Richard Nielsen
MIT

Abstract

MatchingFrontier is an R package that implements the methods described in King,
Lucas, and Nielsen (n.d.) for simultaneously optimizing both balance and sample size in
matching methods for causal inference. MatchingFrontier supports the computation of
frontiers for both continuous and discrete metrics and also provides functions for visual-
izing the frontier and exporting matched data sets for further analysis.

Keywords: R, matching, frontier, Mahalanobis, L1.

1. Introduction

Matching methods have become extremely popular amongst researchers working with obser-
vational data, especially when used as a nonparametric preprocessing step to reduce model
dependence (Ho, Imai, King, and Stuart 2007, 2009). But despite this popularily, exist-
ing matching approaches leave researchers with two fundamental tensions. First, they are
designed to maximize one metric (such as propensity score or Mahalanobis distance) but
are judged against another for which they were not designed (such as L1 or differences in
means). Second, they lack a principled solution to revealing the implicit bias-variance trade
off: matching methods need to optimize with respect to both imbalance (between the treated
and control groups) and the number of observations pruned, but existing approaches optimize
with respect to only one; users then either ignore the second or tweak it without a formal
stopping rule.

MatchingFrontier resolves both tensions by consolidating previous techniques into a single,
optimal, and flexible approach. The software calculates the matching solution with maximum
balance for each possible sample size (N,N − 1, N − 2, ...) and returns each solution, the
whole of which constitute the frontier, from which the user can easily choose one, several, or
all subsamples with which to conduct the final analysis, given their own choice of imbalance
metric and quantity of interest. MatchingFrontier solves the joint optimization problem in
one run, automatically, without manual tweaking, and without iteration. Although for each
subset size k, there exist a huge number of unique subsets

(
N
k

)
, MatchingFrontier includes

specially designed and extremely fast algorithms that give the optimal answer, usually in a
few minutes or less.

∗The current release of MatchingFrontier is in active development and will continue to grow over the coming
months. Comments and suggestions are greatly appreciated.

2 MatchingFrontier

2. General Framework

Matching methods are designed to reduce imbalance in data by selectively pruning observa-
tions, which in turn reduces model dependence (King and Zeng 2006; Imai, King, and Stuart
2008; Iacus, King, and Porro 2011b; Ho et al. 2007). However, pruning reduces sample size
and therefore may increase variance in the eventual estimates. Users of matching are then con-
fronted with the perennial bias-variance trade-off. Perhaps surprisingly, existing approaches
to matching do not conduct the implied joint optimization of bias and variance. Rather,
they improve one dimension of the optimization and leave the second to the user. Such an
approach is time consuming and rarely yields the optimal solution.

King et al. (n.d.) proposes a solution to this joint optimization, which is implemented in
MatchingFrontier. Discrete and continuous metrics are defined and algorithms are provided
for both continuous and discrete metrics, thus rendering the method agnostic to the metric.
We point users of MatchingFrontier to King et al. (n.d.) for algorithmic details and theo-
retical proofs. In this section, we provide definitions of the metrics so that users can choose
appropriately when using makeFrontier().

For discrete metrics, we follow (Iacus, King, and Porro 2011a) and use the difference between
the multivariate histograms of the treated and control groups. Formally, let f`1···`k be the
relative empirical frequency of treated units in a bin with coordinates on each of the X
variables as `1 · · · `k so that f`1···`k = nT`1···`k

/nT where nT`1···`k
is the number of treated units

in stratum `1 · · · `k and nT is the number of treated units in all strata. We define g`1···`k
similarly among control units. Then:

L1(H) =
1

2

∑
(`1···`k)∈H

|f`1···`k − g`1···`k | (1)

For continuous metrics, we define the Average Mahalanobis Imbalance (AMI). Though easily
generalized to all continuous measures of distance, we choose Mahalanobis distance. AMI
is the distance between each unit i and the closest unit in the opposite group, averaged
over all units: D = meani[D(Xi, Xj(i))], where the closest unit in the opposite group is
Xj(i) = arg min Xj |j∈{1−Ti}[D(Xi, Xj)] and {1 − Ti} is the set of units in the (treatment or
control) group that does not contain i. MatchingFrontier defaults to AMI but can just as
easily be used with L1.

Of note is that these metrics presume a dichotomous treatment. Given recent advances in
matching with continuous treatments (Iacus and King n.d.; Ratkovic n.d.), we encourage
researchers to consider generalizing our algorithms (and therefore, metrics) to continuous
treatment regimes.

3. Getting Started

MatchingFrontier is written in the R language (Team et al. 2012) and is currently hosted
on Github and CRAN. CRAN hosts the latest stable release. You can install the current
development release of MatchingFrontier with the devtools package (Wickham and Chang
2013), as follows.

> library(devtools)

> install_github('ChristopherLucas/MatchingFrontier')

Gary King, Christopher Lucas, Richard Nielsen 3

Alternatively, you can install the development version of MatchingFrontier from a *nix com-
mand line as follows.

$ curl -OL https://github.com/ChristopherLucas/MatchingFrontier/archive/master.zip

$ unzip master.zip

$ cd MatchingFrontier-master

$ R CMD INSTALL package

4. A User’s Guide

The typical MatchingFrontier workflow is displayed in Figure 1. Note that in nearly all cases,
users first proceed through the two-step process of computing the frontier and then estimating
quantities of interest across it. After these steps are completed, the results can be used to
visually summarize the full frontier or to closely inspect a particular point on it. Next, we
illustrate this workflow with the LaLonde data (LaLonde 1986; Dehejia and Wahba 1999),
which is included in MatchingFrontier.

makeFrontier()

estimateEffects()

plotFrontier()

plotEstimates()

plotMeans()

Visualize the full frontier

generateDataset()

parallelPlot()

Analyze a single frontier point

Figure 1: A typical MatchingFrontier workflow. makeFrontier() is used to construct the
frontier, then estimateEffects() is used to estimate quantities of interest for each point
on the frontier, after which the user may proceed to visualize the full frontier or to inspect
individual points on it.

4.1. LaLonde Example

For the running example in this paper, we use a randomly selected subset of the “LaLonde”
data (LaLonde 1986; Dehejia and Wahba 1999)1. The LaLonde data is commonly used
to assess matching methods and refers to the combination of data from an experimental
intervention containing 185 treated units (the National Supported Work Demonstration) with
observational data. By combining the experimental data with observational data, methods
can be compared to the underlying experimental benchmark. We follow LaLonde (1986) and

1For a complete description of the data, type ?lalonde after loading MatchingFrontier.

4 MatchingFrontier

combine the results of the experimental intervention with the Current Population Survey.
In King et al. (n.d.), we analyze the Lalonde data plus the full data set from the Current
Population Study. In this paper, we keep the 185 treated units and randomly selected 1,000
controls from the full data. This allows users to quickly replicate and adapt the code presented
in this paper. See King et al. (n.d.) for a serious substantive analysis.

The LaLonde data contains a treatment indicator “treat” (an indicator for assigment to a jobs
training program), an outcome measure “re78” (income in 1978), and a number of controls
(potential confounders) that we will match on during the illustration. The controls are as
follows.

age: subject age at time of intervention

education: years of education

black: a race indicator for identification as black

hispanic: an ethnicity indicator for identification as hispanic

married: an indicator for whether or not the subject is married

nodegree: an indicator for whether or not the subject has a college degree

re74: income in 1974

re75: income in 1975

4.2. Computing the Frontier

The user must first create the frontier. To do so, use the makeFrontier() function, which will
calculate the optimal subsample at every point on the frontier. By default, makeFrontier()
calculates the frontier with the Average Mahalanobis Imbalance. However, as we demonstrate,
MatchingFrontier works just as easily with L1 difference.

First, calculate the Mahalanobis frontier for the LaLonde data.

> # Load the package and the data

> library(MatchingFrontier)

> data('lalonde')
> # Create a vector of column names to indicate which variables we

> # want to match on. We will match on everything except the treatment

> # and the outcome.

> match.on <- colnames(lalonde)[!(colnames(lalonde) %in% c('re78', 'treat'))]
> match.on # Print variables in match.on

[1] "age" "education" "black" "hispanic" "married" "nodegree"

[7] "re74" "re75"

Gary King, Christopher Lucas, Richard Nielsen 5

> # Make the mahalanobis frontier

> mahal.frontier <- makeFrontier(dataset = lalonde,

+ treatment = 'treat',
+ outcome = 're78',
+ match.on = match.on)

Calculating Mahalanobis distances...

Calculating theoretical frontier...

Calculating information for plotting the frontier...

> mahal.frontier

An imbalance frontier with 997 points.

As shown above, match.on is a vector holding the variable names that the user wishes to match
on. Because re78 is the outcome and treat is the treatment, we exclude those variable names
from the vector.

By default, makeFrontier() calculates the frontier for the Average Mahalanobis Imbalance,
as defined in Section 2. The default quantity of interest is the feasible sample average treatment
effect on the treated or FSATT (King et al. n.d.), for which weights are calculated and returned
to the user.

To instead calculate the L1 frontier, simply provide optional “metric”, “QOI”, and “ratio”
arguments, as follows.2

> # Make the L1 frontier

> L1.frontier <- makeFrontier(dataset = lalonde,

+ treatment = 'treat',
+ outcome = 're78',
+ match.on = match.on,

+ QOI = 'SATT',
+ metric = 'L1',
+ ratio = 'fixed')

Calculating L1 binnings...

Calculating L1 frontier... This may take a few minutes...

> L1.frontier

An imbalance frontier with 976 points.

Next, we will use the results computed above to estimate causal effects along the frontier.

4.3. Estimating Effects

Continuing with the Lalonde example, we will estimate the effects along the frontier with the
estimateEffects() function, which takes the output from makeFrontier() to estimate the

2For technical explanations of these arguments, we point users to King et al. (n.d.).

6 MatchingFrontier

effect of the treatment along all values of the frontier. With the Lalonde example, the code
is as follows.

> # Set base form

> my.form <- as.formula(re78 ~ treat + age + black + education + hispanic +

+ married + nodegree + re74 + re75)

> # Estimate effects for the mahalanobis frontier

> mahal.estimates <- estimateEffects(mahal.frontier,

+ 're78 ~ treat',
+ mod.dependence.formula = my.form,

+ continuous.vars = c('age',
+ 'education',
+ 're74',
+ 're75'),
+ prop.estimated = .1,

+ means.as.cutpoints = TRUE

+)

> # Estimate effects for the L1 frontier

> L1.estimates <- estimateEffects(L1.frontier,

+ 're78 ~ treat',
+ mod.dependence.formula = my.form,

+ continuous.vars = c('age',
+ 'education',
+ 're74',
+ 're75'),
+ prop.estimated = .1,

+ means.as.cutpoints = TRUE

+)

estimateEffects() plots estimates of the causal effect and Athey-Imbens model depen-
dence intervals (Athey and Imbens 2015). To do so, it requires the object returned by
makeFrontier(), a model formula to use when calculating point estimates (in the above, the
difference in means), and a base formula to use for the model dependence estimates (my.form
above). Control variables that are continuous should be passed to continuous.vars so cut-
points can be estimated.

We’ve now estimated effects along the full frontier for AMI with and without controls and for
L1 with and without controls. Next, we will visually inspect the full frontier.

4.4. Plotting the Frontier

We can plot the frontier and the estimates with the plotting functions, as follows. Note that
for the sake of brevity, we will only do so with the L1 frontier (no controls). However, to plot
the other three frontiers calculated in the previous section, simply pass the corresponding
objects to the plotting functions, as the syntax is the same.

First, we will plot the frontier, where the y-axis is L1 and the x-axis is the number of obser-
vations pruned. This is displayed in Figure 2 next to the code that generated it.

Gary King, Christopher Lucas, Richard Nielsen 7

> # Plot frontier

> plotFrontier(L1.frontier)

●●

0 200 400 600 800 1000

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Frontier Plot

Number of Observations Pruned
L1

Figure 2: The L1 frontier without optional
arguments

However, Figure 2 is not especially attractive. The font is too small and the dots constituting
the frontier run into each other and create an ugly, fat line. All of the plotting functions in
MatchingFrontier use R’s ellipsis feature to permit access to the base plotting functionality.
Figure 3 shows an example, along with the corresponding code.

> # Plot frontier

> plotFrontier(L1.frontier,

+ cex.lab = 1.4,

+ cex.axis = 1.4,

+ type = 'l',
+ panel.first =

+ grid(NULL,

+ NULL,

+ lwd = 2)

+)
0 200 400 600 800 1000

0.
65

0.
75

0.
85

0.
95

Frontier Plot

Number of Observations Pruned

L1

Figure 3: The L1 frontier with optional argu-
ments

4.5. Plotting Estimates

Next, we can plot estimates along the frontier. As in the previous section, we will use
the L1 frontier without controls. To do so, we’ll use the results from makeFrontier() and
frontierEst(). Figure 4 displays these results.

8 MatchingFrontier

> # Plot estimates

> plotEstimates(L1.estimates,

+ ylim =

+ c(-10000,

+ 3000),

+ cex.lab = 1.4,

+ cex.axis = 1.4,

+ panel.first =

+ grid(NULL,

+ NULL,

+ lwd = 2,

+)

+)

0 200 400 600 800 1000−
10

00
0

−
60

00
−

20
00

20
00

Number of Observations Pruned
E

st
im

at
e

Figure 4: Estimates across the L1 frontier.

4.6. Plotting Means

Next, we can inspect covariate means along the frontier. Again, we will use the L1 frontier
without controls. To do so, we’ll use the results from makeFrontier(). Figure 5 displays
these results.

> # Plot estimates

> plotMeans(L1.frontier)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Observations Pruned

S
ca

le
d

m
ea

ns

Group

age
education
black
hispanic
married
nodegree
re74
re75

Figure 5: Estimates across the L1 frontier.

4.7. Inspect a Single Point on the Frontier

Lastly, users may wish to export a data set on the frontier for additional analysis. To do
so, users are likely to rely on parallelPlot() and generateDataset(). Parellel plot allows
the user to visually inspect multiple dimensions of a data set and requires only the output
of makeFrontier(). For illustration, we will create a parallel plot that displays the treated
and control values on ‘age’, ‘re74’, ‘re75’, and ‘black’ for the point on the frontier where 985

Gary King, Christopher Lucas, Richard Nielsen 9

observations have been dropped. We will color treated units blue and control units gray.

> # Make parallel plot

> parallelPlot(L1.frontier,

+ N = 200,

+ variables = c('age',
+ 're74',
+ 're75',
+ 'black'),
+ treated.col = 'gray',
+ control.col = 'blue'
+)

age re74 re75 black

Figure 6: Parallel plot for pruning 785 obser-
vations.

Figure 6 makes obvious the fact that there are many more control than treated units and that
the sample still contains a large number of controls that are not good matches for treated units,
at least on these dimensions. Though this implies that perhaps we might move even further
down the frontier, for illustration, let’s now export this data set, using generateDataset()

as follows.

> n <- 200 # Identify the point from which to select the data

> matched.data <- generateDataset(L1.frontier, N = n)

If the estimand is variable ratio, as it is by default, the exported data set will include the
appropriate weights necessary for estimating the FSATT. We can now run a few simple
regressions, controlling for the variables we matched on, using the matched data.3

5. Conclusion

We demonstrated how to use the new R software package MatchingFrontier for causal inference
with observational data. With the LaLonde data, users were shown how to compute the
balance-sample size frontier, calculate estimates along it, and visualize and inspect the results.

3Table generated by Stargazer (Hlavac 2014).

10 MatchingFrontier

Table 1:

Dependent variable:

re78 re78

(1) (2)

treat 632.414 542.844
(1,679.089) (1,743.008)

age 73.699
(80.625)

education 530.711
(372.001)

black −483.788
(1,696.320)

hispanic 896.082
(2,760.944)

married 1,178.768
(1,502.566)

nodegree −1,032.820
(1,679.024)

re74 0.035
(0.155)

re75 0.080
(0.234)

Constant 5,716.729∗∗∗ −920.506
(1,579.743) (5,506.946)

Observations 209 209
R2 0.001 0.052
Adjusted R2 −0.004 0.009
Residual Std. Error 7,739.127 (df = 207) 7,686.476 (df = 199)
F Statistic 0.142 (df = 1; 207) 1.221 (df = 9; 199)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Gary King, Christopher Lucas, Richard Nielsen 11

References

Athey S, Imbens G (2015). “A Measure of Robustness to Misspecification.” American Eco-
nomic Review Papers and Proceedings.

Dehejia RH, Wahba S (1999). “Causal effects in nonexperimental studies: Reevaluating the
evaluation of training programs.” Journal of the American statistical Association, 94(448),
1053–1062.

Hlavac M (2014). “stargazer: LaTeX code and ASCII text for well-formatted regression and
summary statistics tables.” R package version 5.1. URL http://CRAN.R-project.org/

package=stargazer.

Ho DE, Imai K, King G, Stuart EA (2007). “Matching as nonparametric preprocessing for
reducing model dependence in parametric causal inference.” Political analysis, 15(3), 199–
236.

Ho DE, Imai K, King G, Stuart EA (2009). “MatchIt: nonparametric preprocessing for
parametric causal inference.” Journal of Statistical Software.

Iacus SM, King G (n.d.). “How coarsening simplifies matching-based causal inference theory.”

Iacus SM, King G, Porro G (2011a). “Causal inference without balance checking: Coarsened
exact matching.” Political analysis, p. mpr013.

Iacus SM, King G, Porro G (2011b). “Multivariate matching methods that are monotonic
imbalance bounding.” Journal of the American Statistical Association, 106(493), 345–361.

Imai K, King G, Stuart EA (2008). “Misunderstandings between experimentalists and ob-
servationalists about causal inference.” Journal of the royal statistical society: series A
(statistics in society), 171(2), 481–502.

King G, Lucas C, Nielsen RA (n.d.). “The Balance-Sample Size Frontier in Matching Methods
for Causal Inference.” Working Paper.

King G, Zeng L (2006). “The dangers of extreme counterfactuals.” Political Analysis, 14(2),
131–159.

LaLonde RJ (1986). “Evaluating the econometric evaluations of training programs with ex-
perimental data.” The American Economic Review, pp. 604–620.

Ratkovic M (n.d.). “A Matching Method for General Treatment Regimes.”

Team RC, et al. (2012). “R: A language and environment for statistical computing.”

Wickham H, Chang W (2013). “devtools: Tools to make developing R code easier.” R package
version, 1(1).

http://CRAN.R-project.org/package=stargazer
http://CRAN.R-project.org/package=stargazer

12 MatchingFrontier

Affiliation:

Gary King
Department of Government
Harvard University
1737 Cambridge St, Cambridge, MA, USA
E-mail: king@harvard.edu
URL: http://gking.harvard.edu/

Christopher Lucas
Department of Government
Harvard University
1737 Cambridge St, Cambridge, MA, USA
E-mail: clucas@fas.harvard.edu
URL: christopherlucas.org

Richard Nielsen
Department of Political Science
Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge, MA, USA
E-mail: rnielsen@mit.edu
URL: http://www.mit.edu/ rnielsen/index.htm

mailto:king@harvard.edu
http://gking.harvard.edu/
mailto:clucas@fas.harvard.edu
http://christopherlucas.org/
mailto:rnielsen@mit.edu
http://www.mit.edu/~rnielsen/index.htm

	Introduction
	What MatchingFrontier Does
	Getting Started
	A User's Guide
	LaLonde Example
	Computing the Frontier
	Estimating Effects
	Plotting the Frontier
	Plotting Estimates
	Plotting Means
	Inspect a Single Point on the Frontier

	Conclusion

