
1

Cluster Setup

Here, I provide some tips for system and software installations and configurations

of a Rocks cluster. This vignette completes the other manual file for running the

whole MVR procedure in R.

You might encounter problems on different system following these steps. It is

recommended to ask help from your system administrator.

===

1. Some system requirements

===

• The following assumes that your cluster has already been installed under

Unix/Linux and setup. Basically, you need to install in your system (with correct

configurations) the PVM or Open MPI libraries of communications protocol for

parallel networking of computers (PVM) or parallel programming of computers (MPI).

You might want to ask your system administrator to do this, otherwise you must

login as root to have administrator privileges. PVM (or MPI) must be installed

on all nodes or they can be exported from a network file system. You also want

to use ssh for safely connecting between each node. You can install them directly

from the Yum repositories, or download the latest source codes from their official

websites:

PVM : from netlib at http://www.netlib.org/pvm3/index.html

MPI : from http://www.open-mpi.org/.

When installing, target the download into a master node shared directory with

slaves nodes, e.g. ~/state/partition1/apps/R/. From the UNIX command line of each

node, install by typing:

 yum -y install pvm

• R (>= 2.13.0) must be installed on all nodes.

 You can download it from http://cran.r-project.org

• The following R packages are also required:

 "rpvm" : if R interface to PVM (Parallel Virtual Machine).

 You can download it only from http://cran.r-project.org

 or "Rmpi" : if R Interface to MPI (Message-Passing Interface).

 You can download it from http://cran.r-project.org or

http://www.stats.uwo.ca/faculty/yu/Rmpi

 "snow" : Simple Network Of Workstations.

 You can download it from http://cran.r-project.org.

 Tutorials on how to use it can also be found at:

http://www.stat.uiowa.edu/~luke/R/cluster/cluster.html

 and http://www.sfu.ca/~sblay/R/snow.html

http://www.netlib.org/pvm3/index.html
http://www.open-mpi.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://www.stats.uwo.ca/faculty/yu/Rmpi
http://cran.r-project.org/
http://www.stat.uiowa.edu/~luke/R/cluster/cluster.html
http://www.sfu.ca/~sblay/R/snow.html

2

===

2. Some additional system settings and installations

===

• Assuming the above installed on your system, first thing to do is to set some

user specific environment variables. From the UNIX command line of the master node,

create two environmental variables "NUMCPU", and "HOSTS", containing respectively

the number and hostnames (or IP addresses) of the slave nodes (machines) for later

adding to the virtual machine. The master node host name should (by default) be

stored in the environment variable "HOSTNAME".

Set the environment variables by adding the following lines in your startup

script file (.bashrc, .cshrc, .bash_profile, etc...):

 NUMCPU=`cat /proc/cpuinfo | grep processor | wc -l`

 HOSTS=`tail -n4 /etc/hosts | awk '{print $3}'`

and export some paths (I found the last two exports not required):

 export PVM_ROOT=/usr/share/pvm3

 export PVM_ARCH=LINUX64

 export PVM_RSH=/usr/bin/ssh

 #export R_SNOW_LIB=/usr/lib64/R/library

 #export R_LIBS=/usr/lib64/R/library

• Note that there are dependencies to take care of prior to installing R: Perl,

R-core, R-devel, libRmath, and libRmath-devel. See R manual "R Installation and

Administration".

• The R package snow suggests "rsprng" for creating separate Stream of Parallel

RNG (SPRNG) per node, and distributing the stream states to the nodes. This requires

installing the "gmp" and "gmp-devel" Yum packages beforehand. From the UNIX command

line of each node, install them in the master shared folder from the yum

repositories:

 yum -y install gmp gmp-devel

Next, download sprng from http://sprng.cs.fsu.edu/ and compile the source files.

The following steps assume you've done so.

===

3. Using and testing the cluster in R

===

Assuming the above is done, here are the steps to create/configure the

virtual machine and use the cluster in R.

 3.1 Starting the PVM

 3.2 Initializing the cluster

 3.3 Initializing random number generation (optional)

 3.4 Testing the cluster (optional)

 3.5 Exporting/Evaluating to global environment of each node

 3.6 Stopping the cluster

 3.7 Shutting the PVM down

http://sprng.cs.fsu.edu/

3

==========================

• 3.1 Starting the PVM

==========================

Starting a workstation cluster depends explicitly on the underlying communication

mechanism. A snow cluster is started by calling the makeCluster() function (see

next). Details of the call currently vary slightly depending on the type of cluster

(PVM or MPI) .PVM and MPI clusters may also need some preliminary configurations

to start the PVM or MPI systems.

To start a PVM-based cluster, you first need to start the PVM. I prefer to do this

from within a R session using e.g. the "rpvm" R interface (see next). Alternatively,

it can be done using the PVM console from the UNIX command line (for details, see:

http://www.sfu.ca/~sblay/R/snow.html). From within an R session, load in the R

package "snow" and start a pvmd3 process of a new local virtual machine on the

master. pvmd3 is a daemon process which coordinates UNIX hosts in the virtual

machine. It returns as soon as the pvmd is started and ready for work:

 R> library(snow)

 R> masterhost <- Sys.getenv("HOSTNAME")

 R> .PVM.start.pvmd(hosts = masterhost)

To create a virtual machine of 1 master node with at least one slave node, and

spawn the daemon process, add a vector of host names and add them to the virtual

machine. From within an R session:

 R> slavehosts <- unlist(strsplit(Sys.getenv("HOSTS"), split="\\\n"))

 R> .PVM.addhosts(slavehosts)

==============================

• 3.2 Initializing the cluster

==============================

Once the PVM is running, retrieve relevant parameters needed for creating and

intializing the cluster. From within an R session:

 R> cpus <- as.numeric(Sys.getenv("NUMCPU"))

 R> cl.type <- getClusterOption("type")

 R> cl.nodes <- length(slavehosts) + 1

 R> cl.cpus <- cl.nodes * cpus

 R> cl.homo <- getClusterOption("homogeneous")

 R> cl.script <- getClusterOption("useRscript")

 R> cl.out <- paste(getwd(), "/your_file_name.log", sep="")

The following depends on whether this is not already done internally in some package

using snow for configuring their cluster. If not, use the snow function

makeCluster() to create and initialize the cluster :

 R> cl <- makeCluster(spec=cl.cpus,

 type=cl.type,

 homogeneous=cl.homo,

 useRscript=cl.script,

 outfile = cl.out,

 verbose=T)

http://www.sfu.ca/~sblay/R/snow.html

4

where:

 - spec = integer specifying the total number of CPU cores, counting the

 masternode.

 - type = character vector specifying the cluster type ("SOCK", "PVM", "MPI").

 homogeneous = logical to be set to 'FALSE' for inhomogeneous clusters

 (default to TRUE).

 - useRscript = logical to be set to 'FALSE' if non-R script is used

 (default to TRUE).

 - outfile = character vector of output log file name for the slavenodes.

==============================

• 3.3 Initializing random number generation (optional)

==============================

For random number generation, create separate Stream of Parallel RNG (SPRNG) per

node. This is done from within the R session by distributing the stream states

to the nodes like this:

 R> clusterSetupSPRNG(cl=cl)

=========================

• 3.4 Testing the cluster (optional)

=========================

To test if the cluster is working, check the node names and machine types:

 R> clusterCall(cl=cl, function() Sys.info()[c("nodename","machine")])

You're supposed to see the node names and machine types in an R object of

type list of size "cl.cpus". Check the random number generation by running e.g.:

 R> clusterCall(cl, runif, 3)

=========================

• 3.5 Exporting/Evaluating

=========================

The following depends on whether this is not already done internally in some package

using snow for configuring their cluster. If not, you must assign the global values

on the master of all (listable) R objects of the worspace to variables of the same

names in the global environments of each node before using the cluster. To make

sure not to forget anything, I usually export the whole global environment.

Depending on how large is your workspace it can take up to a few minutes. This

is done via the snow function clusterExport().

 R> clusterExport(cl=cl, list=as.list(ls(.GlobalEnv)))

Also, you must do the same for required R libraries. This is done via clusterEvalQ()

which evaluates a literal expression on each cluster node.

 R> clusterEvalQ(cl=cl, expr=library("<libname_here>"))

=========================

• 3.6 Stopping the cluster

=========================

The following also depends on whether this is not already done internally in some

package using snow for configuring their cluster. If not, to cleanly stop the

5

cluster, close any remaining connections between machines and ensure that all slave

processes are shut down:

 R> stopCluster(cl)

=========================

• 3.7 Shutting the PVM down

=========================

To shut the PVM down, first delete the host machine(s) (pointed to in hosts) from

the existing configuration of machines making up the virtual machine, then the

master.

 R> .PVM.delhosts(slavehosts)

 R> .PVM.delhosts(masterhost)

Next, shut down the entire PVM system including remote tasks, remote pvmds,

the local tasks (including the calling task) and the local pvmd.

Note: this also kills the parent R session!

 R> .PVM.halt()

That's it! Now you can start to enjoy the parallel computing.

