Assessing Tumor Microsatellite Instability from
Tumor Exome Somatic Mutations—The MSlseq
Package

Mini Huang
June 11, 2015

The MSIseq package provides a mechanism for detecting microsatellite in-
stability (MSI) in somatic mutation data from whole exome sequencing. The
package provides both a classifier (detector), as well as a means to train new
classifiers, which may be necessary depending on changes in variant-calling al-
gorithms.

This package contains two main functions. The function MSIseq.train()
generates a detector for MSI status from training data that consists of somatic
mutation information and MSI status. The function MSIseq.classify() uses
the generated detector to classify the MSI status of new tumors. The package
also provides a helper function, Compute.input.variables(), to generate the
input needed by these two functions.

1 Input data

As input, the MSIseq package requires somatic mutation information (i.e. from
The Cancer Genome Atlas (TCGA) website, https://tcga-data.nci.nih.
gov/tcga/) in the format of a “mutation annotation file” (https://wiki.nci.

nih.gov/display/tcga/File+Format+Specifications). For example, NGStrain-

data and NGStestdata are in this format.

library('MSIseq')
data(NGStraindata)
data (NGStestdata)
head (NGStraindata)

vV V. VvV

Chrom Start_Position End_Position Variant_Type Tumor_Sample_Barcode

1 chri9 58862932 58862932 SNP TCGA-D1-A15Z
3 chril0 52575855 52575856 INS TCGA-BG-AOMO
4 chril0 52575855 52575856 INS TCGA-BG-AOM3
5 chri10 52575855 52575856 INS TCGA-BG-AOM9
6 chri2 9229467 9229467 SNP TCGA-D1-A16B
7 chri2 9229527 9229527 SNP TCGA-BG-AOM4

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://wiki.nci.nih.gov/display/tcga/File+Format+Specifications
https://wiki.nci.nih.gov/display/tcga/File+Format+Specifications

Usually the TCGA mutation annotation file contains 37 columns. The
NGStraindata only contains the 5 columns that are necessary for this pack-
age and the Compute.input.variables() function. Any other columns are
ignored. The names of the 5 columns must be exactly as shown.

In the 5 columns, Chrom indicates the chromosome identifier. Start_Position
and End_Position are the start and end positions of the mutation in the chromo-
some. Variant_Type indicates the type of variant, for which the legal values are
“SNP”, “INS” and “DEL”. Other values will cause an error. Tumor_Sample_Barcode
is the sample ID.

To obtain such a somatic mutation information table for your own data, you
will need to create it from your sequence alignments and suitable annotation.

Another information that MSIseq package needs is the sequence length,
which is the total length of the genomic regions from a DNA sample captured
by sequencing techniques. For example, NGStrainseqlLen and NGStestseqlLen
contain the information.

> data(NGStrainseqLen)
> data(NGStestseqLen)
> head (NGStrainseqLen)

Tumor_Sample_Barcode Sequence_Length

1 TCGA-CM-6677 44
2 TCGA-CA-6717 44
3 TCGA-AZ-4315 44
4 TCGA-D5-6531 44
5 TCGA-CM-6162 44
6 TCGA-AA-3663 44

The sequence length table contains 2 columns, Tumor_Sample_Barcode and
Sequence_Length, which indicate the sample IDs and their corresponding se-
quence lengths in megabases.

The genomic coordinates of simple sequence repeats in the reference genome
are also required by MSIseq. The sequence repeats table contains 3 columns.
Chrom indicates the chromosome identifier. Start_Position and End_Position
are the start and end positions.

For example, we can get the simple sequence repeats in human genome
(version Hgl9) from the following link:

> url <-

+ "http://steverozen.net/data/Hgl9repeats.rda"
> file <- basename (url)

> download.file(url, file)

> load("Hgl9repeats.rda")

> head (Hg19repeats)

Chrom Start_Position End_Position
1 chri10 60213 60217

2 chri10 60287 60291
3 chri0 60379 60383
4 chri0 60518 60523
5 chri10 60741 60745
6 chril0 60898 60902

Hgl9repeats is a static dataset which can be used for sequencing data gen-
erated with the same reference genome. You can also get it from http://
hgdownload.cse.ucsc.edu/goldenpath/hgl9/database/| for other reference
genome.

Hgl9repeats is a bed format data containing all the simple repeat regions
(mono-, di-, tri-, tetra-nucleotide repeats) in the human genome version hgl9.
In this data, di-nucleotide, tri-nucleotide and tetra-nucleotide repeats are from
the table in UCSC Genome Bioinformatics Site: |ftp://hgdownload.cse.ucsc.
edu/goldenPath/hgl9/database/simpleRepeat.txt.gz. Mono-nucleotide re-
peats with a length > 5 are generated with the following two functions, find.mono.repeats
and find.mono.repeats against the human hgl9 genome.

Here is an example of how one can generate the mono-nucleotide repeats in
one chromosome:

download the chromosome 20 sequence from UCSC

url2 <-
"ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/chr20.fa.gz"
file <- basename (url2)

download.file(url2, file)

gunzip(file)

file <- 'chr20.fa'

generate mono-nucleotide repeats regions from chromosome 20
data.chr20 = read.fasta(file)

mono.repeats.chr20 = find.mono.repeats(data.chr20)

names (mono . repeats.chr20)<-c('Chrom', 'Start_Position', 'End_Position')

VVVVVVVV+ VY

Users can easily apply these functions to their own fastq file and generate
their own repeats file.

The MSI status information is required by MSIseq.train() function specif-
ically. If your want to train a classifier with your own data, you need to have a
classification table showing the clinical test result of MSI status of your samples.

> data(NGStrainclass)
> head (NGStrainclass)

Tumor_Sample_Barcode MSI_status

1 TCGA-A6-5661 MSI-H
2 TCGA-A6-5665 MSI-H
3 TCGA-A6-6653 MSI-H
4 TCGA-A6-6781 MSI-H
5 TCGA-AA-3492 MSI-H
10 TCGA-AA-3663 MSI-H

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/simpleRepeat.txt.gz
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/simpleRepeat.txt.gz

In the classification table, Tumor_Sample_Barcode represents the sample ID.
MSI_status is a factor with two levels, “MSI-H” and “Non-MSI-H”. Other values
will cause an error.

The cancer type information is optional. If you would like to use cancer type
as a candidate input for your classifier, you need to have a cancer type table.

> data(NGStraintype)
> data(NGStesttype)
> head (NGStraintype)

Tumor_Sample_Barcode

DO WN -

TCGA-D1-A15Z
TCGA-D1-A17D
TCGA-BG-AOMQ
TCGA-BS-AQU9
TCGA-D1-A16D
TCGA-BG-AOM7

cancer_type
endometrial
endometrial
endometrial
endometrial
endometrial
endometrial

In the cancer type table, Tumor_Sample_Barcode represents the sample ID.
cancer_type is a factor which gives the corresponding cancer types.

2 Functions

First, the helper function Compute.input.variables() is used to generate the
input needed by the two main functions.

> train.mutationNum<-Compute.input.variables (NGStraindata,
+ repeats = Hgl9repeats, seq.len = NGStrainseqLen)

This function takes four arguments: Compute.input.variables(data, repeats,
uniform.seq.len = 38, seq.len = NULL). The formats for data, repeats, and
seq.len are explained in the Input data section. And the default seq.len argument
is 38. This argument is used when sequences for all samples have the same
length.

This function computes and extracts mutation count information from the
argument data. The variable sequence length is used as a denominator to gen-
erate mutation count per megabase. The mutation can be either a single nu-
cleotide substitution (SNS) or a short insertion/deletion (indel).

The returned value is a data frame containing the following 9 variables:

e T.sns: total count of SNSs/Mb

e S.sns: count of SNSs in simple sequence repeats/Mb

T.ind: total count of indels/Mb

S.ind: count of indels in simple sequence repeats/Mb

T: total mutation count/Mb

e S: mutation count in simple sequence repeats/Mb

Ratio.sns: S.sns/T.sns

e Ratio.ind: S.ind/T.ind

e Ratio: S/T

Now let’s look at the two main functions.

> sampleclassifier<-MSIseq.train(mutationNum = train.mutationNum,
+ classification=NGStrainclass, cancerType = NGStraintype)

5 fold cross validation result: 98.61496

The function MSIseq.train() takes three arguments: MSIseq.train(mutationNum,
classification, cancerType = NULL). The format of mutationNum should be the
same as the returned value of the helper function Compute.input.variables().
The format for classification and cancerType are explained in the Input data
section. Again, the cancerType argument is optional. It depends on whether
you want to train your classifier with cancer type information.

This function uses the ‘RWeka’ package to build and evaluate a J48 decision
tree with the 9 variables (or 10 variables including ‘cancer type’). The function
will also give a five-fold cross validation result for the classification accuracy of
the model.

The return value for MSIseq.train() is a Weka_classifier object, a J48 de-
cision tree classifier.

> sampleclassifier

J48 pruned tree

S.ind <= 0.394737: Non-MSI-H (295.0/3.0)
S.ind > 0.394737: MSI-H (66.0)

Number of Leaves : 2

Size of the tree : 3

The two output classses of the decision tree classifier are MSI-H and Non-
MSI-H. 3 variables (S.ind, T.sns, S) are chosen to build the decision tree. When
training with other data, you will get a different decision tree.

In this sample classifier, the desicion tree is based on a single variable, S.ind.
If S.ind > 0.395, the tumor is classified as MSI-H. Otherwise, the classification
is non-MSI-H. This classifier is also provided by MSIseq named as NGSclas-
sifier. And it is offered as the default classifier for the second function,
MSIseq.classify().

The function MSIseq.classify() classifies tumors with unknown MSI sta-
tus.

> test.mutationNum<-Compute.input.variables (NGStestdata,

+ repeats = Hgl9repeats, seq.len = NGStestseqLen)
> result <- MSIseq.classify(mutationNum = test.mutationNum,
+ cancerType = NGStesttype)

This function takes three arguments: MSIseq.classify(mutationNum, classi-
fier, cancerType = NULL). The format of mutationNum should be the same as
the returned value of the helper function Compute.input.variables(). The
default classifier is a built-in classifier, NGSclassifier. You can also use your own
classifier, which should be a returned value from the function MSIseq.train().
Remember if the input classifier is trained with cancerType argument, you
should also give cancer type information in this function. And the format of
cancerType should be the same as mentioned before.

> head(result)

Tumor_Sample_Barcode MSI_status Likely_POLE_deficiency

1 TCGA-A5-AOGE Non-MSI-H No
2 TCGA-D1-A176 MSI-H No
3 TCGA-BG-AOW1 Non-MSI-H No
4 TCGA-EO-A1Y5 Non-MSI-H No
5 TCGA-D1-A17U MSI-H No
6 TCGA-AX-A064 MSI-H No

The return value for MSIseq.classify () is a data frame with three columns.
The first two columns are Tumor_Sample_Barcode and the corresponding classi-
fied MSLstatus. The third column indicates whether the sample is likely POLE
deficient based on the criteria of T.sns > 60/Mb and S.ind < 0.18/Mb.

	Input data
	Functions

