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This vignette describes the main functionalities of the LMMstar package. This package implements
specific types of linear mixed models mainly useful when having repeated observations over a discrete
variable (e.g. time, brain region, . . . ). Key assumptions are that at the cluster level, observation are
independent and identically distributed and that the mean and variance are driven by independent factors.
In particular, in large samples the residuals do not have to be normally distributed.

The LMMstar package contains four main functions:

• the function lmm is the main function of the package which fits linear mixed models. The user can
interact with lmm objects using:

– anova to test combinations of coefficients (Wald test or Likelihood ratio tests).
– autoplot to obtain a graphical display of the fitted values.
– coef to extract the estimates.
– confint to extract estimates, confidence intervals, and p.values.
– getVarCov to extract the modeled residual variance covariance matrix.
– logLik to output the log-likelihood of the estimated model.
– predict to compute the conditional mean for new observations.
– residuals to extract the observed residuals of the fitted model.
– summary to obtain a summary of the results.

• the summarize function to compute summary statistics stratified on a categorical variable (typically
time).

• the sampleRem function to simulate longitudinal data.

• the LMMstar.options function enables the user to display the default values used in the LMMstar
package. The function can also change the default values to better match the user needs.
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Before going further we need to load the LMMstar package in the R session:
library(LMMstar)

To illustrate the functionalities of the package, we will use the gastricbypass dataset:
data(gastricbypassL, package = "LMMstar")
head(gastricbypassL)

id visit time weight glucagon
1 1 1 3 months before surgery 127.2 5032.50
2 2 1 3 months before surgery 165.2 12142.50
3 3 1 3 months before surgery 109.7 10321.35
4 4 1 3 months before surgery 146.2 6693.00
5 5 1 3 months before surgery 113.1 7090.50
6 6 1 3 months before surgery 158.8 10386.00

See ?gastricbypassL for a presentation of the database. We will use a shorter version of the time
variable:
gastricbypassL$time <- factor(gastricbypassL$time,

levels = c("3 months before surgery", "1 week before surgery",
"1 week after surgery", "3 months after surgery" ),

labels = c("B3_months","B1_week","A1_week","A3_months"))

and rescale the glucagon values
gastricbypassL$glucagon <- as.double(scale(gastricbypassL$glucagon))

Note: the LMMstar package is under active development. Newer package versions may include
additional functionalities and fix previous bugs. The version of the package that is being used is:
utils::packageVersion("LMMstar")

[1] ’0.3.0’

When estimating model coefficients, we will use the internal optimization routine of the LMMstar
package (instead of relying on the nlme::gls function, which is the default option):
LMMstar.options(optimizer = "FS")
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1 Descriptive statistics
Mean, standard deviation, and other summary statistic can be computed with respect to a categorical
variable (typically time) using the summarize function:
sss <- summarize(weight+glucagon ∼ time, data = gastricbypassL, na.rm = TRUE)
print(sss, digits = 3)

outcome time observed missing mean sd min median max
1 weight B3_months 20 0 128.9700 20.269 100.900 123.1000 173.000
2 weight B1_week 20 0 121.2400 18.910 95.700 114.5000 162.200
3 weight A1_week 20 0 115.7000 18.275 89.900 110.6000 155.000
4 weight A3_months 20 0 102.3650 17.054 78.800 98.5000 148.000
5 glucagon B3_months 20 0 -0.4856 0.641 -1.395 -0.6679 1.030
6 glucagon B1_week 19 1 -0.6064 0.558 -1.416 -0.7669 0.946
7 glucagon A1_week 19 1 1.0569 1.044 -0.478 0.9408 3.267
8 glucagon A3_months 20 0 0.0576 0.760 -1.047 0.0319 2.124
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2 Linear mixed model

2.1 Modeling tools
Fit a linear model with identity structure:
eId.lmm <- lmm(weight ∼ time + glucagon,

repetition = ∼time|id, structure = "ID",
data = gastricbypassL)

eId.lmm
cat(" covariance structure: \n");getVarCov(eId.lmm)

Linear regression

outcome/cluster/time: weight/id/time
data : 78 observations and distributed in 20 clusters
parameters : 5 mean ((Intercept) timeB1_week timeA1_week timeA3_months glucagon)

1 variance (sigma)
log-likelihood : -323.086426918519
convergence : TRUE (6 iterations)
covariance structure:

B3_months B1_week A1_week A3_months
B3_months 330.0426 0.0000 0.0000 0.0000
B1_week 0.0000 330.0426 0.0000 0.0000
A1_week 0.0000 0.0000 330.0426 0.0000
A3_months 0.0000 0.0000 0.0000 330.0426

Fit a linear model with independence structure:
eInd.lmm <- lmm(weight ∼ time + glucagon,

repetition = ∼time|id, structure = "IND",
data = gastricbypassL)

eInd.lmm
cat(" covariance structure: \n");getVarCov(eInd.lmm)

Linear regression with heterogeneous residual variance

outcome/cluster/time: weight/id/time
data : 78 observations and distributed in 20 clusters
parameters : 5 mean ((Intercept) timeB1_week timeA1_week timeA3_months glucagon)

4 variance (sigma k.B1_week k.A1_week k.A3_months)
log-likelihood : -321.457830361849
convergence : TRUE (9 iterations)
covariance structure:

B3_months B1_week A1_week A3_months
B3_months 442.6475 0.0000 0.0000 0.0000
B1_week 0.0000 418.9934 0.0000 0.0000
A1_week 0.0000 0.0000 222.8463 0.0000
A3_months 0.0000 0.0000 0.0000 237.2049
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Fit a linear mixed model with compound symmetry structure:
eCS.lmm <- lmm(weight ∼ time + glucagon,

repetition = ∼time|id, structure = "CS",
data = gastricbypassL)

eCS.lmm
cat(" covariance structure: \n");getVarCov(eCS.lmm)

Linear Mixed Model with a compound symmetry covariance matrix

outcome/cluster/time: weight/id/time
data : 78 observations and distributed in 20 clusters
parameters : 5 mean ((Intercept) timeB1_week timeA1_week timeA3_months glucagon)

1 variance (sigma)
1 correlation (rho)

log-likelihood : -243.600523870253
convergence : TRUE (10 iterations)
covariance structure:

B3_months B1_week A1_week A3_months
B3_months 355.3062 344.6236 344.6236 344.6236
B1_week 344.6236 355.3062 344.6236 344.6236
A1_week 344.6236 344.6236 355.3062 344.6236
A3_months 344.6236 344.6236 344.6236 355.3062

Fit a linear mixed model with unstructured covariance matrix:
eUN.lmm <- lmm(weight ∼ time + glucagon,

repetition = ∼time|id, structure = "UN",
data = gastricbypassL)

eUN.lmm
cat(" covariance structure: \n");getVarCov(eUN.lmm)

Linear Mixed Model with an unstructured covariance matrix

outcome/cluster/time: weight/id/time
data : 78 observations and distributed in 20 clusters
parameters : 5 mean ((Intercept) timeB1_week timeA1_week timeA3_months glucagon)

4 variance (sigma k.B1_week k.A1_week k.A3_months)
6 correlation (rho(B3_months,B1_week) rho(B3_months,A1_week) rho(B3_months,A3_months) rho(B1_week,A1_week) rho(B1_week,A3_months) rho(A1_week,A3_months))

log-likelihood : -216.318937004305
convergence : TRUE (27 iterations)
covariance structure:

B3_months B1_week A1_week A3_months
B3_months 411.3114 381.9734 352.6400 318.8573
B1_week 381.9734 362.7326 335.4649 304.6314
A1_week 352.6400 335.4649 311.6921 285.8077
A3_months 318.8573 304.6314 285.8077 280.9323
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2.2 Model output
The summary method can be used to display the main information relative to the model fit:
summary(eCS.lmm)

Linear Mixed Model

Dataset: gastricbypassL

- 20 clusters
- 78 observations were analyzed, 2 were excluded because of missing values
- between 3 and 4 observations per cluster

Summary of the outcome and covariates:

$ weight : num 127 165 110 146 113 ...
$ time : Factor w/ 4 levels "B3_months","B1_week",..: 1 1 1 1 1 1 1 1 1 1 ...
$ glucagon: num -0.9654 0.2408 -0.0682 -0.6837 -0.6163 ...
reference level: time=B3_months

Estimation procedure

- Restricted Maximum Likelihood (REML)
- log-likelihood :-243.6005
- parameters: mean = 5, variance = 1, correlation = 1
- convergence: TRUE (10 iterations, largest |score|=3.641667e-06 is for rho)

Residual variance-covariance: compound symmetry

- correlation structure: ~1
B3_months B1_week A1_week A3_months

B3_months 1.00 0.97 0.97 0.97
B1_week 0.97 1.00 0.97 0.97
A1_week 0.97 0.97 1.00 0.97
A3_months 0.97 0.97 0.97 1.00

- variance structure: ~1
standard.deviation

sigma 18.84957

Fixed effects: weight ~ time + glucagon

estimate se df lower upper p.value
(Intercept) 129.369 4.226 20.034 120.556 138.183 <0.001 ***
timeB1_week -7.619 1.054 53.968 -9.732 -5.507 <0.001 ***
timeA1_week -14.495 1.428 53.879 -17.358 -11.632 <0.001 ***
timeA3_months -27.051 1.087 53.943 -29.231 -24.872 <0.001 ***

6



glucagon 0.822 0.62 53.81 -0.421 2.065 0.191

Uncertainty was quantified using model-based standard errors (column se).
Degrees of freedom were computed using a Satterthwaite approximation (column df).
The columns lower and upper indicate a 95% confidence interval for each coefficient.

Note: the calculation of the degrees of freedom, especially when using the observed information can be
quite slow. Setting the arguments df to FALSE and type.information to "expected" when calling lmm
should lead to a more reasonnable computation time.

2.3 Extract estimated coefficients
The value of the estimated coefficients can be output using coef:
coef(eCS.lmm)

(Intercept) timeB1_week timeA1_week timeA3_months glucagon
129.3690995 -7.6194918 -14.4951323 -27.0514694 0.8217879

It is possible to apply specific transformation on the variance coefficients, for instance to obtain the
residual variance relative to each outcome:
coef(eUN.lmm, effects = "variance", transform.k = "sd")

sigma:B3_months sigma:B1_week sigma:A1_week sigma:A3_months
20.28081 19.04554 17.65480 16.76104

2.4 Extract estimated residual variance-covariance structure
The method getVarCov can be used to output the covariance structure of the residuals:
getVarCov(eCS.lmm)

B3_months B1_week A1_week A3_months
B3_months 355.3062 344.6236 344.6236 344.6236
B1_week 344.6236 355.3062 344.6236 344.6236
A1_week 344.6236 344.6236 355.3062 344.6236
A3_months 344.6236 344.6236 344.6236 355.3062

It can also be specific to an individual:
getVarCov(eCS.lmm, individual = 5)

B3_months A1_week A3_months
B3_months 355.3062 344.6236 344.6236
A1_week 344.6236 355.3062 344.6236
A3_months 344.6236 344.6236 355.3062
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2.5 Model diagnostic
The method residuals can also be used to extract the residulas in the wide format:
eCS.diagW <- residuals(eCS.lmm, type = "normalized", format = "wide")
head(eCS.diagW)

cluster B3_months B1_week A1_week A3_months
1 1 -0.8042448 -0.709908591 -1.4242830 0.3176640
2 2 1.0863177 -0.133256793 1.1083627 1.5977042
3 3 -0.4597852 -0.612727857 -0.6060136 -0.8589524
4 4 -1.0103075 0.007471092 0.1309862 1.1428822
5 5 -0.1258773 NA -0.3819184 -0.7874832
6 6 3.5646224 2.333205013 2.8387203 0.3586263

or in the long format:
eCS.diagL <- residuals(eCS.lmm, type = "normalized", format = "long")
head(eCS.diagL)

[1] -0.8042448 1.0863177 -0.4597852 -1.0103075 -0.1258773 3.5646224

Various type of residuals can be extract but the normalized one are recommanded when doing model
checking. The method residuals can also be used to display diagnostic plots, e.g. about:

• the distribution of the residuals across fitted values using a scatterplot

residuals(eCS.lmm, type = "normalized", plot = "scatterplot", size.text = 20)
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• the "normality" of the residuals at each repetition using a quantile-quantile plot 1:

residuals(eCS.lmm, type = "normalized", format = "wide",
plot = "qqplot", engine.qqplot = "qqtest")

## Note: the qqtest package to be installed to use the argument engine.plot = "qqtest"

time: B3_months (Normalized residuals)
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time: B1_week (Normalized residuals)
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time: A1_week (Normalized residuals)
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time: A3_months (Normalized residuals)
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• the residual correlation within cluster between the residuals:

residuals(eCS.lmm, type = "normalized", plot = "correlation", format = "wide",
size.text = 20)

1 0.68

1

0.59

0.8

1

0.38

0.21

0.25

1

B3_months

B1_week

A1_week

A3_months

B3_months B1_week A1_week A3_months
time

tim
e

−1.0
−0.5
0.0
0.5
1.0

Correlation

Normalized residuals

1see Oldford (2016) for guidance about how to read quantile-quantile plots.
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2.6 Model fit
The fitted values can be displayed via the emmeans package or using the autoplot method:
library(emmeans) ## left panel
emmip(eCS.lmm, ∼time) + theme(text = element_text(size=20))

library(ggplot2) ## right panel
autoplot(eCS.lmm, color = "id", size.text = 20)
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In the first case the average curve (over glucago values) is displayed while in the latter each possible
curve is displayed. With the autoplot method, it is possible to display a curve specific to a glucagon
value via the argument at:
autoplot(eCS.lmm, at = data.frame(glucagon = 10), color = "glucagon")

2.7 Statistical inference

2.7.1 Model coefficients

The estimated coefficients with their confidence intervals can be accessed via the confint method:
confint(eCS.lmm)

estimate lower upper
(Intercept) 129.369 120.556 138.18
timeB1_week -7.619 -9.732 -5.51
timeA1_week -14.495 -17.358 -11.63
timeA3_months -27.051 -29.231 -24.87
glucagon 0.822 -0.421 2.06
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Confidence intervals for the variance and correlation parameters can be displayed too specifying
effect="all":
confint(eCS.lmm, effect = "all", backtransform = TRUE)

estimate lower upper
(Intercept) 129.369 120.556 138.183
timeB1_week -7.619 -9.732 -5.507
timeA1_week -14.495 -17.358 -11.632
timeA3_months -27.051 -29.231 -24.872
glucagon 0.822 -0.421 2.065
sigma 18.850 13.479 26.359
rho 0.970 0.936 0.986
Note: estimates and confidence intervals for sigma, rho have been back-transformed.

Because these parameters are constrained (e.g. strictly positive), they uncertainty is by default com-
puted after transformation (e.g. log) and then backtransformed.

2.7.2 Linear combination of the model coefficients

The anova method can be use to test one or several linear combinations of the model coefficients using
Wald tests. For instance whether there is a change in average weight just after taking the treatment:
anova(eUN.lmm, effects = c("timeA1_week-timeB1_week=0"), ci = TRUE)

** User-specified hypotheses **
- F-test
statistic df.num df.denom p.value
43.14135 1 17.87455 3.723358e-06

- P-values and confidence interval
estimate lower upper p.value

timeA1_week - timeB1_week -3.905721 -5.155643 -2.655799 3.723358e-06

When testing transformed variance or correlation parameters, parentheses (as in log(k).B1_week)
cause problem for recognizing parameters:
try(

anova(eUN.lmm,
effects = c("log(k).B1_week=0","log(k).A1_week=0","log(k).A3_months=0"))

)

Error in .anova_Wald(object, effects = effects, rhs = rhs, df = df, ci = ci, :
Possible mispecification of the argument ’effects’ as running mulcomp::glht lead to the following error:

Error in parse(text = ex[i]) : <text>:1:7: uventet symbol
1: log(k).B1_week

^

11



It is then advised to build a contrast matrix, e.g.:
name.coef <- rownames(confint(eUN.lmm, effects = "all", backtransform = FALSE))
name.varcoef <- grep("log(k)",name.coef, value = TRUE, fixed = TRUE)
C <- matrix(0, nrow = 3, ncol = length(name.coef), dimnames = list(name.varcoef, name.coef))
diag(C[name.varcoef,name.varcoef]) <- 1
C

(Intercept) timeB1_week timeA1_week timeA3_months glucagon log(sigma)
log(k).B1_week 0 0 0 0 0 0
log(k).A1_week 0 0 0 0 0 0
log(k).A3_months 0 0 0 0 0 0

log(k).B1_week log(k).A1_week log(k).A3_months atanh(rho(B3_months,B1_week))
log(k).B1_week 1 0 0 0
log(k).A1_week 0 1 0 0
log(k).A3_months 0 0 1 0

atanh(rho(B3_months,A1_week)) atanh(rho(B3_months,A3_months))
log(k).B1_week 0 0
log(k).A1_week 0 0
log(k).A3_months 0 0

atanh(rho(B1_week,A1_week)) atanh(rho(B1_week,A3_months))
log(k).B1_week 0 0
log(k).A1_week 0 0
log(k).A3_months 0 0

atanh(rho(A1_week,A3_months))
log(k).B1_week 0
log(k).A1_week 0
log(k).A3_months 0

And then call the anova method specifying the null hypothesis via the contrast matrix:
anova(eUN.lmm, effects = C)

** User-specified hypotheses **
- F-test
statistic df.num df.denom p.value
6.203161 3 17.99456 0.004417117
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2.8 Baseline adjustment
The lmm contains an "experimental" feature to drop non-identifiable effects from the model. For instance,
let us define two (artifical) groups of patients:
gastricbypassL$group <- c("1","2")[as.numeric(gastricbypassL$id) %in% 15:20 + 1]

We would like to model group differences only after baseline (i.e. only at 1 week and 3 months after).
For this we will define a treatment variable being the group variable except before baseline where it is
"none":
gastricbypassL$treat <- baselineAdjustment(gastricbypassL, variable = "group",

repetition = ∼time|id, constrain = c("B3_months","B1_week"),
new.level = "none")

table(treat = gastricbypassL$treat, time = gastricbypassL$time, group = gastricbypassL$group)

, , group = 1

time
treat B3_months B1_week A1_week A3_months

none 14 14 0 0
1 0 0 14 14
2 0 0 0 0

, , group = 2

time
treat B3_months B1_week A1_week A3_months

none 6 6 0 0
1 0 0 0 0
2 0 0 6 6

Here we will be able to estimate a total of 6 means and therefore can at most identify 6 effects. However
the design matrix for the interaction model:
colnames(model.matrix(weight ∼ treat*time, data = gastricbypassL))

[1] "(Intercept)" "treat1" "treat2" "timeB1_week"
[5] "timeA1_week" "timeA3_months" "treat1:timeB1_week" "treat2:timeB1_week"
[9] "treat1:timeA1_week" "treat2:timeA1_week" "treat1:timeA3_months" "treat2:timeA3_months"

contains 12 parameters (i.e. 6 too many). The lmm function will internally remove the one that cannot
be identified and fit a simplified model:
eC.lmm <- lmm(weight ∼ treat*time, data = gastricbypassL,

repetition = ∼time|id, structure = "UN")

Advarselsbesked:
I .model.matrix_regularize(formula, data) :

Constant values in the design matrix in interactions "treat:time"
Coefficients "treat1" "treat2" "timeA1_week" "timeA3_months" "treat1:timeB1_week" "treat2:timeB1_week" will be removed from the design matrix.

Consider defining manually the interaction, e.g. via droplevels(interaction(.,.)) to avoid this warning.
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with the following coefficients:
coef(eC.lmm, effects = "mean")

(Intercept) timeB1_week treat1:timeA1_week treat2:timeA1_week
128.97000 -7.73000 -12.83949 -14.27452

treat1:timeA3_months treat2:timeA3_months
-27.07620 -25.50553

One can vizualize the baseline adjustment via the autoplot function:
autoplot(eC.lmm, color = "group", ci = FALSE, size.text = 20)
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To more easily compare the two groups, one could set the baseline treatment to the treatment in the
control arm by omitting the argument new.level:
gastricbypassL$treat2 <- baselineAdjustment(gastricbypassL, variable = "group",

repetition = ∼time|id, constrain = c("B3_months","B1_week"))
table(treat = gastricbypassL$treat2, time = gastricbypassL$time, group = gastricbypassL$group)

windows
2

, , group = 1

time
treat B3_months B1_week A1_week A3_months

1 14 14 14 14
2 0 0 0 0

, , group = 2

time
treat B3_months B1_week A1_week A3_months

1 6 6 0 0
2 0 0 6 6
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Fitting the model
eC2.lmm <- suppressWarnings(lmm(weight ∼ treat2*time, data = gastricbypassL,

repetition = ∼time|id, structure = "UN"))

will directly output group differences (last two coefficients):
confint(eC2.lmm, effects = "mean", columns = c("estimate","lower","upper","p.value"))

estimate lower upper p.value
(Intercept) 128.97 119.48 138.46 0.00e+00
timeB1_week -7.73 -9.19 -6.27 1.00e-09
timeA1_week -12.84 -14.64 -11.04 2.02e-12
timeA3_months -27.08 -30.66 -23.50 3.20e-13
treat22:timeA1_week -1.44 -2.75 -0.12 3.43e-02
treat22:timeA3_months 1.57 -3.64 6.78 5.32e-01

It is also possible to get the estimated mean at each timepoint, using an equivalent mean structure:
eC3.lmm <- suppressWarnings(lmm(weight ∼ 0+treat2:time, data = gastricbypassL,

repetition = ∼time|id, structure = "UN"))
confint(eC3.lmm)

estimate lower upper
treat21:timeB3_months 129 119.5 138
treat21:timeB1_week 121 112.4 130
treat21:timeA1_week 116 107.5 125
treat22:timeA1_week 115 106.1 123
treat21:timeA3_months 102 93.8 110
treat22:timeA3_months 103 94.9 112

or the baseline mean and the change since baseline:
eC4.lmm <- suppressWarnings(lmm(weight ∼ treat2:time, data = gastricbypassL,

repetition = ∼time|id, structure = "UN"))
confint(eC4.lmm)

estimate lower upper
(Intercept) 128.97 119.48 138.46
treat21:timeB1_week -7.73 -9.19 -6.27
treat21:timeA1_week -12.84 -14.64 -11.04
treat22:timeA1_week -14.27 -16.23 -12.32
treat21:timeA3_months -27.08 -30.66 -23.50
treat22:timeA3_months -25.51 -30.32 -20.69
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2.9 Marginal means
The lmm function can be used in conjonction with the emmeans package to compute marginal means.
Consider the following model:
e.group <- lmm(weight ∼ time*group, data = gastricbypassL,

repetition = ∼time|id, structure = "UN")

We can for instance compute the average value over time assuming balanced groups:
library(emmeans)
emmeans(e.group, specs=∼time)

NOTE: Results may be misleading due to involvement in interactions
time emmean SE df lower.CL upper.CL
B3_months 130 5.05 18.0 119.3 141
B1_week 122 4.69 18.0 112.5 132
A1_week 117 4.55 18.0 107.0 126
A3_months 104 4.20 18.1 94.9 113

Results are averaged over the levels of: group
Confidence level used: 0.95

This differs from the average value over time over the whole sample:
df.pred <- cbind(gastricbypassL, predict(e.group, newdata = gastricbypassL))
summarize(formula = estimate∼time, data = df.pred)

outcome time observed missing mean sd min median max
1 estimate B3_months 20 0 128.970 2.270212 127.5214 127.5214 132.35
2 estimate B1_week 20 0 121.240 2.726942 119.5000 119.5000 125.30
3 estimate A1_week 20 0 115.700 2.014981 114.4143 114.4143 118.70
4 estimate A3_months 20 0 102.365 3.146729 100.3571 100.3571 107.05

as the groups are not balanced:
table(group = gastricbypassL$group, time = gastricbypassL$time)

time
group B3_months B1_week A1_week A3_months

1 14 14 14 14
2 6 6 6 6

The "emmeans" approach gives equal "weight" to the expected value of both group 2 (instead of less
weight for group 2). By hand:
mu.group1 <- as.double(coef(e.group)["(Intercept)"])
mu.group2 <- as.double(coef(e.group)["(Intercept)"] + coef(e.group)["group2"])
p.group1 <- 14/20
p.group2 <- 6/20
c(emmeans = (mu.group1+mu.group2)/2,

predict = mu.group1 * p.group1 + mu.group2 * p.group2)
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emmeans predict
129.9357 128.9700

Which one is relevant depends on the application. The emmeans function can also be used to display
expected value in each group over time:
emmeans.group <- emmeans(e.group, specs = ∼group|time)
emmeans.group

time = B3_months:
group emmean SE df lower.CL upper.CL
1 128 5.53 18.0 115.9 139
2 132 8.45 18.0 114.6 150

time = B1_week:
group emmean SE df lower.CL upper.CL
1 120 5.14 18.0 108.7 130
2 125 7.85 18.0 108.8 142

time = A1_week:
group emmean SE df lower.CL upper.CL
1 114 4.99 18.0 103.9 125
2 119 7.62 18.0 102.7 135

time = A3_months:
group emmean SE df lower.CL upper.CL
1 100 4.60 18.1 90.7 110
2 107 7.03 18.1 92.3 122

Confidence level used: 0.95
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Using the pair function displays the differences:
epairs.group <- pairs(emmeans.group, reverse = TRUE)
epairs.group

time = B3_months:
contrast estimate SE df t.ratio p.value
2 - 1 4.83 10.10 18.0 0.478 0.6383

time = B1_week:
contrast estimate SE df t.ratio p.value
2 - 1 5.80 9.38 18.0 0.618 0.5441

time = A1_week:
contrast estimate SE df t.ratio p.value
2 - 1 4.29 9.11 18.0 0.471 0.6435

time = A3_months:
contrast estimate SE df t.ratio p.value
2 - 1 6.69 8.40 18.1 0.797 0.4361

One can adjust for multiple comparison via the adjust argument and display confidence intervals
setting the argument infer to TRUE:
summary(epairs.group, by = NULL, adjust = "mvt", infer = TRUE)

contrast time estimate SE df lower.CL upper.CL t.ratio p.value
2 - 1 B3_months 4.83 10.10 18.0 -18.0 27.7 0.478 0.7498
2 - 1 B1_week 5.80 9.38 18.0 -15.4 27.0 0.618 0.6488
2 - 1 A1_week 4.29 9.11 18.0 -16.3 24.9 0.471 0.7552
2 - 1 A3_months 6.69 8.40 18.1 -12.3 25.7 0.797 0.5284

Confidence level used: 0.95
Conf-level adjustment: mvt method for 4 estimates
P value adjustment: mvt method for 4 tests

This should also work when doing baseline adjustment (because of baseline adjustment no difference
is expected at the first two timepoints):
summary(pairs(emmeans(eC2.lmm , specs = ∼treat2|time), reverse = TRUE), by = NULL)

Note: adjust = "tukey" was changed to "sidak"
because "tukey" is only appropriate for one set of pairwise comparisons
contrast time estimate SE df t.ratio p.value
2 - 1 B3_months 0.00 0.000 NaN NaN NaN
2 - 1 B1_week 0.00 0.000 NaN NaN NaN
2 - 1 A1_week -1.44 0.621 16.2 -2.311 0.1303
2 - 1 A3_months 1.57 2.463 16.3 0.638 0.9522

P value adjustment: sidak method for 4 tests
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2.10 Predictions
Two types of predictions can be performed with the predict method:

• static predictions that are only conditional on the covariates:

news <- gastricbypassL[gastricbypassL$id==1,]
news$glucagon <- 0
predict(eCS.lmm, newdata = news)

estimate se df lower upper
1 129.3691 4.225632 20.03432 120.55555 138.1826
2 121.7496 4.235605 20.22155 112.92049 130.5787
3 114.8740 4.271415 20.89949 105.98847 123.7595
4 102.3176 4.215043 19.83701 93.52057 111.1147

which can be computing by creating a design matrix:
X.12 <- model.matrix(formula(eCS.lmm), news)
X.12

(Intercept) timeB1_week timeA1_week timeA3_months glucagon
1 1 0 0 0 0
21 1 1 0 0 0
41 1 0 1 0 0
61 1 0 0 1 0
attr(,"assign")
[1] 0 1 1 1 2
attr(,"contrasts")
attr(,"contrasts")$time
[1] "contr.treatment"

and then multiplying it with the regression coefficients:
X.12 %*% coef(eCS.lmm)

[,1]
1 129.3691
21 121.7496
41 114.8740
61 102.3176
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• dynamic predictions that are conditional on the covariates and the outcome measured at other
timepoints. Consider two subjects for who we would like to predict the weight 1 week before the
intervention based on the weight 3 months before the intervention:

newd <- rbind(
data.frame(id = 1, time = "B3_months", weight = coef(eCS.lmm)["(Intercept)"], glucagon = 0),
data.frame(id = 1, time = "B1_week", weight = NA, glucagon = 0),
data.frame(id = 2, time = "B3_months", weight = 100, glucagon = 0),
data.frame(id = 2, time = "B1_week", weight = NA, glucagon = 0)

)
predict(eCS.lmm, newdata = newd, type = "dynamic", keep.newdata = TRUE)

id time weight glucagon estimate se df lower upper
1 1 B3_months 129.3691 0 NA NA NA NA NA
2 1 B1_week NA 0 121.74961 1.046825 Inf 119.69787 123.8013
3 2 B3_months 100.0000 0 NA NA NA NA NA
4 2 B1_week NA 0 93.26352 5.603475 Inf 82.28091 104.2461

The first subjects has the average weight while the second has a much lower weight. The predicted
weight for the first subject is then the average weight one week before while it is lower for the second
subject due to the positive correlation over time. The predicted value is computed using the formula of
the conditional mean for a Gaussian vector:
mu1 <- coef(eCS.lmm)[1]
mu2 <- sum(coef(eCS.lmm)[1:2])
Omega_11 <- getVarCov(eCS.lmm)["B3_months","B3_months"]
Omega_21 <- getVarCov(eCS.lmm)["B1_week","B3_months"]
as.double(mu2 + Omega_21 * (100 - mu1) / Omega_11)

[1] 93.26352
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3 Data generation
Simulate some data in the wide format:
set.seed(10) ## ensure reproductibility
n.obs <- 100
n.times <- 4
mu <- rep(0,4)
gamma <- matrix(0, nrow = n.times, ncol = 10) ## add interaction
gamma[,6] <- c(0,1,1.5,1.5)
dW <- sampleRem(n.obs, n.times = n.times, mu = mu, gamma = gamma, format = "wide")
head(round(dW,3))

id X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1 Y2 Y3 Y4
1 1 1 0 1 1 0 -0.367 1.534 -1.894 1.729 0.959 1.791 2.429 3.958 2.991
2 2 1 0 1 2 0 -0.410 2.065 1.766 0.761 -0.563 2.500 4.272 3.002 2.019
3 3 0 0 2 1 0 -1.720 -0.178 2.357 1.966 1.215 -3.208 -5.908 -4.277 -5.154
4 4 0 0 0 1 0 0.923 -2.089 0.233 1.307 -0.906 -2.062 0.397 1.757 -1.380
5 5 0 0 2 1 0 0.987 5.880 0.385 0.028 0.820 7.963 7.870 7.388 8.609
6 6 0 0 1 1 2 -1.075 0.479 2.202 0.900 -0.739 0.109 -1.602 -1.496 -1.841

Simulate some data in the long format:
set.seed(10) ## ensure reproductibility
dL <- sampleRem(n.obs, n.times = n.times, mu = mu, gamma = gamma, format = "long")
head(dL)

id visit Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
1 1 1 1.791444 1 0 1 1 0 -0.3665251 1.533815 -1.894425 1.7288665 0.9592499
2 1 2 2.428570 1 0 1 1 0 -0.3665251 1.533815 -1.894425 1.7288665 0.9592499
3 1 3 3.958350 1 0 1 1 0 -0.3665251 1.533815 -1.894425 1.7288665 0.9592499
4 1 4 2.991198 1 0 1 1 0 -0.3665251 1.533815 -1.894425 1.7288665 0.9592499
5 2 1 2.500179 1 0 1 2 0 -0.4097541 2.065413 1.765841 0.7613348 -0.5630173
6 2 2 4.272357 1 0 1 2 0 -0.4097541 2.065413 1.765841 0.7613348 -0.5630173
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4 Modifying default options
The LMMstar.options method enable to get and set the default options used by the package. For instance,
the default option for the information matrix is:
LMMstar.options("type.information")

$type.information
[1] "observed"

To change the default option to "expected" (faster to compute but less accurate p-values and confidence
intervals in small samples) use:
LMMstar.options(type.information = "expected")

To restore the original default options do:
LMMstar.options(reinitialise = TRUE)
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5 R session
Details of the R session used to generate this document:
sessionInfo()

R version 4.1.1 (2021-08-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)

Matrix products: default

locale:
[1] LC_COLLATE=Danish_Denmark.1252 LC_CTYPE=Danish_Denmark.1252 LC_MONETARY=Danish_Denmark.1252
[4] LC_NUMERIC=C LC_TIME=Danish_Denmark.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] emmeans_1.6.3 LMMstar_0.3.0 nlme_3.1-152 ggplot2_3.3.5 spelling_2.2
[6] roxygen2_7.1.1 butils.base_1.2 Rcpp_1.0.7 data.table_1.14.0 devtools_2.4.2

[11] usethis_2.0.1

loaded via a namespace (and not attached):
[1] pkgload_1.2.1 splines_4.1.1 remotes_2.4.0 sessioninfo_1.1.1
[5] globals_0.14.0 numDeriv_2016.8-1.1 pillar_1.6.3 lattice_0.20-44
[9] glue_1.4.2 digest_0.6.27 colorspace_2.0-2 sandwich_3.0-1

[13] qqtest_1.2.0 plyr_1.8.6 Matrix_1.3-4 pkgconfig_2.0.3
[17] listenv_0.8.0 purrr_0.3.4 xtable_1.8-4 mvtnorm_1.1-2
[21] scales_1.1.1 processx_3.5.2 lava_1.6.10 tibble_3.1.4
[25] farver_2.1.0 generics_0.1.0 ellipsis_0.3.2 TH.data_1.1-0
[29] cachem_1.0.6 withr_2.4.2 cli_3.0.1 survival_3.2-11
[33] magrittr_2.0.1 crayon_1.4.1 memoise_2.0.0 estimability_1.3
[37] ps_1.6.0 fs_1.5.0 fansi_0.5.0 future_1.22.1
[41] parallelly_1.28.1 MASS_7.3-54 xml2_1.3.2 pkgbuild_1.2.0
[45] tools_4.1.1 prettyunits_1.1.1 lifecycle_1.0.1 multcomp_1.4-17
[49] stringr_1.4.0 munsell_0.5.0 callr_3.7.0 compiler_4.1.1
[53] rlang_0.4.11 grid_4.1.1 labeling_0.4.2 testthat_3.0.4
[57] gtable_0.3.0 codetools_0.2-18 reshape2_1.4.4 R6_2.5.1
[61] zoo_1.8-9 knitr_1.33 dplyr_1.0.7 fastmap_1.1.0
[65] future.apply_1.8.1 utf8_1.2.2 rprojroot_2.0.2 desc_1.3.0
[69] stringi_1.7.4 parallel_4.1.1 vctrs_0.3.8 tidyselect_1.1.1
[73] xfun_0.25 coda_0.19-4
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Appendix A Likelihood in a linear mixed model

A.1 Log-likelihood
Denote by Y a vector ofm outcomes, X a vector of p covariates, µ(Θ,X) the modeled mean, and Ω(Θ,X)
the modeled residual variance-covariance. The restricted log-likelihood in a linear mixed model can then
be written:

L(Θ|Y ,X) =p2 log(2π)− 1
2 log

(∣∣∣∣∣
n∑
i=1

X iΩ−1
i (Θ)Xᵀ

i

∣∣∣∣∣
)

+
n∑
i=1

(
−m2 log(2π)− 1

2 log |Ωi(Θ)| − 1
2(Y i − µ(Θ,X i))Ωi(Θ)−1(Y i − µ(Θ,X i))ᵀ

)
(A)

This is what the logLik method is computing for the REML criteria. The red term is specific to the
REML criteria and prevents from computing individual contributions to the likelihood2. The blue term is
what logLik outputs for the ML criteria when setting the argument indiv to TRUE.

A.2 Score
Using that ∂ log(det(X)) = tr(X−1∂(X)), the score is obtained by derivating once the log-likelihood, i.e.,
for θ ∈ Θ:

S(θ) =∂L(Θ|Y ,X)
∂θ

= 1
2tr
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.

This is what the score method is computing for the REML criteria. The red term is specific to the
REML criteria and prevents from computing the score relative to each cluster. The blue term is what
score outputs for the ML criteria when setting the argument indiv to TRUE.

2The REML is the likelihood of the observations divided by the prior on the es-
timated mean parameters Θ̂µ ∼ N (µ,

(
XΩ−1(Θ)Xᵀ)−1). This corresponds to

1√
2πp
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(Θ)Xᵀ
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Since µ will be estimated to be

Θµ, the exponential term equals 1 and thus does not contribute to the log-likelihood. One divided by the other term gives√
2πp

(∣∣∑n
i=1 XiΩ−1

i (Θ)Xᵀ
i

∣∣)−1. The log of this term equals the red term
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A.3 Hessian
Derivating a second time the log-likelihood gives the hessian, H(Θ), with element3:

H(θ, θ′) = ∂2L(Θ|Y ,X)
∂θ∂θ′
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∂θ′
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where εi(Θ) = Y i − µ(Θ,X i).

The information method will (by default) return the (observed) information which is the opposite of
the hessian. So multiplying the previous formula by -1 gives what information output for the REML
criteria. The red term is specific to the REML criteria and prevents from computing the information
relative to each cluster. The blue term is what information outputs for the ML criteria (up to a factor
-1) when setting the argument indiv to TRUE.

A possible simplification is to use the expected hessian at the maximum likelihood. Indeed for any
deterministic matrix A:

• E [A(Y i − µ(Θ,X i))ᵀ|X i] = 0

• E [(Y i − µ(Θ,X i))A(Y i − µ(Θ,X i))ᵀ||X i] = tr(AVar(Y i − µ(Θ,X i)))

when E [Y i − µ(Θ,X i)] = 0. This leads to:
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This is what information output when the argument type.information is set to "expected" (up to
a factor -1).

3if one is relative to the mean and the other to the variance then they are respectively θ and θ′
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A.4 Degrees of freedom
Degrees of freedom are computed using a Satterthwaite approximation, i.e. for an estimate coefficient
β̂ ∈ Θ̂ with standard error σ

b̂eta
, the degree of freedom is:

df
(
σ
β̂

)
=

2σ
β̂

Var
[
σ̂
β̂

]
Using a first order Taylor expansion we can approximate the variance term as:

Var
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ÎΘ̂

)−1 ∂ÎΘ̂
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(
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)−1
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ᵀ
(
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)−1 ∂ÎΘ̂
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ᵀ (
ÎΘ̂

)−1
cβ

where ΣΘ is the variance-covariance matrix of all model coefficients, IΘ the information matrix for
all model coefficients, cβ a matrix used to select the element relative to β in the first derivative of the
information matrix, and ∂.

∂Θ denotes the vector of derivatives with respect to all model coefficients.

The derivative of the information matrix (i.e. negative hessian) can then be computed using numerical
derivatives or using analytical formula. To simplify the derivation of the formula we will only derive them
at the maximum likelihood, i.e. when E

[
∂H(θ,θ′|X)

∂θ′′

]
= ∂E[H(θ,θ′|X)]

∂θ′′ where the expectation is taken over X.
We can therefore take the derivative of formula (B). We first note that its derivative with respect to the
mean parameters is 0. So we just need to compute the derivative with respect to a variance parameter θ′′:
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Appendix B Likelihood ratio test with the REML criterion
The blue term of Equation A in the log-likelihood is invariant to re-parameterisation while the red term
is not. This means that a re-parametrisation of X into X̃ = BX with B invertible would not change the
likelihood when using ML but would decrease the log-likelihood by log(|B|) when using REML.
LMMstar.options(optimizer = "FS",

param.optimizer = c(n.iter = 1000, tol.score = 1e-3, tol.param = 1e-5))

Let’s take an example:
## data(gastricbypassL, package = "LMMstar")
dfTest <- gastricbypassL
dfTest$glucagon2 <- dfTest$glucagon*2

where we multiply one column of the design matrix by 2. As mentionned previously this does not affect
the log-likelihood when using ML:
logLik(lmm(weight ∼ glucagon, data = dfTest, structure = UN(∼time|id), method = "ML"))
logLik(lmm(weight ∼ glucagon2, data = dfTest, structure = UN(∼time|id), method = "ML"))

[1] -245.7909
[1] -245.7909

but it does when using REML:
logLik(lmm(weight ∼ glucagon, data = dfTest, structure = UN(∼time|id), method = "REML"))
logLik(lmm(weight ∼ glucagon2, data = dfTest, structure = UN(∼time|id), method = "REML"))
log(2)

[1] -245.0382
[1] -245.7313
[1] 0.6931472

Therefore, when comparing models with different mean effects there is a risk that the difference (or
part of it) in log-likelihood is due to a new parametrisation and no only to a difference in model fit. This
would typically be the case when adding an interaction where we can have a smaller restricted log-likehood
when considering a more complex model:
set.seed(10)
dfTest$ff <- rbinom(NROW(dfTest), size = 1, prob = 0.5)
logLik(lmm(weight ∼ glucagon, data = dfTest, structure = UN(∼time|id), method = "REML"))
logLik(lmm(weight ∼ glucagon*ff, data = dfTest, structure = UN(∼time|id), method = "REML"))

[1] -245.0382
[1] -239.2056

This is quite counter-intuitive as more complex model should lead to better fit and would never happen
when using ML:
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logLik(lmm(weight ∼ glucagon, data = dfTest, structure = UN(∼time|id), method = "ML"))
logLik(lmm(weight ∼ glucagon*ff, data = dfTest, structure = UN(∼time|id), method = "ML"))

[1] -245.7909
[1] -237.3642

This is why, unless one knows what he/she is doing, it is not recommanded to use likelihood ratio test
to assess relevance of mean parameters in mixed models estimated with REML.
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