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CHAPTER 6

Simple and Multiple Linear Regression:
How Old is the Universe and Cloud

Seeding

6.1 Introduction

? give the relative velocity and the distance of 24 galaxies, according to mea-
surements made using the Hubble Space Telescope – the data are contained
in the gamair package accompanying ?, see Table˜6.1. Velocities are assessed
by measuring the Doppler red shift in the spectrum of light observed from the
galaxies concerned, although some correction for ‘local’ velocity components
is required. Distances are measured using the known relationship between the
period of Cepheid variable stars and their luminosity. How can these data be
used to estimate the age of the universe? Here we shall show how this can be
done using simple linear regression.

Table 6.1: hubble data. Distance and velocity for 24 galaxies.

galaxy velocity distance galaxy velocity distance

NGC0300 133 2.00 NGC3621 609 6.64
NGC0925 664 9.16 NGC4321 1433 15.21

NGC1326A 1794 16.14 NGC4414 619 17.70
NGC1365 1594 17.95 NGC4496A 1424 14.86
NGC1425 1473 21.88 NGC4548 1384 16.22
NGC2403 278 3.22 NGC4535 1444 15.78
NGC2541 714 11.22 NGC4536 1423 14.93
NGC2090 882 11.75 NGC4639 1403 21.98
NGC3031 80 3.63 NGC4725 1103 12.36
NGC3198 772 13.80 IC4182 318 4.49
NGC3351 642 10.00 NGC5253 232 3.15
NGC3368 768 10.52 NGC7331 999 14.72

Source: From Freedman W. L., et al., The Astrophysical Journal, 553, 47–72,
2001. With permission.
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4 SIMPLE AND MULTIPLE LINEAR REGRESSION

Table 6.2: clouds data. Cloud seeding experiments in Florida –
see text for explanations of the variables.

seeding time sne cloudcover prewetness echomotion rainfall

no 0 1.75 13.4 0.274 stationary 12.85
yes 1 2.70 37.9 1.267 moving 5.52
yes 3 4.10 3.9 0.198 stationary 6.29
no 4 2.35 5.3 0.526 moving 6.11

yes 6 4.25 7.1 0.250 moving 2.45
no 9 1.60 6.9 0.018 stationary 3.61
no 18 1.30 4.6 0.307 moving 0.47
no 25 3.35 4.9 0.194 moving 4.56
no 27 2.85 12.1 0.751 moving 6.35

yes 28 2.20 5.2 0.084 moving 5.06
yes 29 4.40 4.1 0.236 moving 2.76
yes 32 3.10 2.8 0.214 moving 4.05
no 33 3.95 6.8 0.796 moving 5.74

yes 35 2.90 3.0 0.124 moving 4.84
yes 38 2.05 7.0 0.144 moving 11.86
no 39 4.00 11.3 0.398 moving 4.45
no 53 3.35 4.2 0.237 stationary 3.66

yes 55 3.70 3.3 0.960 moving 4.22
no 56 3.80 2.2 0.230 moving 1.16

yes 59 3.40 6.5 0.142 stationary 5.45
yes 65 3.15 3.1 0.073 moving 2.02
no 68 3.15 2.6 0.136 moving 0.82

yes 82 4.01 8.3 0.123 moving 1.09
no 83 4.65 7.4 0.168 moving 0.28

Weather modification, or cloud seeding, is the treatment of individual clouds
or storm systems with various inorganic and organic materials in the hope of
achieving an increase in rainfall. Introduction of such material into a cloud
that contains supercooled water, that is, liquid water colder than zero degrees
of Celsius, has the aim of inducing freezing, with the consequent ice particles
growing at the expense of liquid droplets and becoming heavy enough to fall
as rain from clouds that otherwise would produce none. The data shown in
Table˜6.2 were collected in the summer of 1975 from an experiment to in-
vestigate the use of massive amounts of silver iodide (100 to 1000 grams per
cloud) in cloud seeding to increase rainfall (?). In the experiment, which was
conducted in an area of Florida, 24 days were judged suitable for seeding on
the basis that a measured suitability criterion, denoted S-Ne, was not less than
1.5. Here S is the ‘seedability’, the difference between the maximum height
of a cloud if seeded and the same cloud if not seeded predicted by a suitable
cloud model, and Ne is the number of hours between 1300 and 1600 G.M.T.
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with 10 centimetre echoes in the target; this quantity biases the decision for
experimentation against naturally rainy days. Consequently, optimal days for
seeding are those on which seedability is large and the natural rainfall early
in the day is small. On suitable days, a decision was taken at random as to
whether to seed or not. For each day the following variables were measured:

seeding: a factor indicating whether seeding action occurred (yes or no),

time: number of days after the first day of the experiment,

cloudcover: the percentage cloud cover in the experimental area, measured
using radar,

prewetness: the total rainfall in the target area one hour before seeding (in
cubic metres ×107),

echomotion: a factor showing whether the radar echo was moving or station-
ary,

rainfall: the amount of rain in cubic metres ×107,

sne: suitability criterion, see above.

The objective in analysing these data is to see how rainfall is related to the
explanatory variables and, in particular, to determine the effectiveness of seed-
ing. The method to be used is multiple linear regression.

6.2 Simple Linear Regression

6.3 Multiple Linear Regression

6.3.1 Regression Diagnostics

6.4 Analysis Using R

6.4.1 Estimating the Age of the Universe

Prior to applying a simple regression to the data it will be useful to look at a
plot to assess their major features. The R code given in Figure˜6.1 produces
a scatterplot of velocity and distance. The diagram shows a clear, strong rela-
tionship between velocity and distance. The next step is to fit a simple linear
regression model to the data, but in this case the nature of the data requires
a model without intercept because if distance is zero so is relative speed. So
the model to be fitted to these data is

velocity = β1distance + ε.

This is essentially what astronomers call Hubble’s Law and β1 is known as
Hubble’s constant; β−1

1 gives an approximate age of the universe. To fit this
model we are estimating β1 using formula (??). Although this operation is
rather easy

R> sum(hubble$distance * hubble$velocity) /

+ sum(hubble$distance^2)

[1] 76.6
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R> plot(velocity ~ distance, data = hubble)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

5 10 15 20

50
0

10
00

15
00

distance

ve
lo

ci
ty

Figure 6.1 Scatterplot of velocity and distance.

it is more convenient to apply R’s linear modelling function

R> hmod <- lm(velocity ~ distance - 1, data = hubble)

Note that the model formula specifies a model without intercept. We can now
extract the estimated model coefficients via

R> coef(hmod)

distance
76.6

and add this estimated regression line to the scatterplot; the result is shown
in Figure˜6.2. In addition, we produce a scatterplot of the residuals yi −
ŷi against fitted values ŷi to assess the quality of the model fit. It seems
that for higher distance values the variance of velocity increases; however, we
are interested in only the estimated parameter β̂1 which remains valid under
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R> layout(matrix(1:2, ncol = 2))

R> plot(velocity ~ distance, data = hubble)

R> abline(hmod)

R> plot(hmod, which = 1)
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Figure 6.2 Scatterplot of velocity and distance with estimated regression line
(left) and plot of residuals against fitted values (right).

variance heterogeneity (in contrast to t-tests and associated p-values). Now
we can use the estimated value of β1 to find an approximate value for the age
of the universe. The Hubble constant itself has units of km × sec−1 × Mpc−1.
A mega-parsec (Mpc) is 3.09 × 1019km, so we need to divide the estimated
value of β1 by this amount in order to obtain Hubble’s constant with units of
sec−1. The approximate age of the universe in seconds will then be the inverse
of this calculation. Carrying out the necessary computations

R> Mpc <- 3.09 * 10^19

R> ysec <- 60^2 * 24 * 365.25

R> Mpcyear <- Mpc / ysec

R> 1 / (coef(hmod) / Mpcyear)

distance
1.28e+10

gives an estimated age of roughly 12.8 billion years.
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6.4.2 Cloud Seeding

Again, a graphical display highlighting the most important aspects of the data
will be helpful. Here we will construct boxplots of the rainfall in each category
of the dichotomous explanatory variables and scatterplots of rainfall against
each of the continuous explanatory variables. Both the boxplots (Figure˜6.3)
and the scatterplots (Figure˜6.4) show some evidence of outliers. The row
names of the extreme observations in the clouds data.frame can be identified
via

R> rownames(clouds)[clouds$rainfall %in% c(bxpseeding$out,

+ bxpecho$out)]

[1] "1" "15"

where bxpseeding and bxpecho are variables created by boxplot in Fig-
ure˜6.3. Now we shall not remove these observations but bear in mind during
the modelling process that they may cause problems. In this example it is
sensible to assume that the effect of some of the other explanatory variables
is modified by seeding and therefore consider a model that includes seeding
as covariate and, furthermore, allows interaction terms for seeding with each
of the covariates except time. This model can be described by the formula

R> clouds_formula <- rainfall ~ seeding +

+ seeding:(sne + cloudcover + prewetness + echomotion) +

+ time

and the design matrix X? can be computed via

R> Xstar <- model.matrix(clouds_formula, data = clouds)

By default, treatment contrasts have been applied to the dummy codings of
the factors seeding and echomotion as can be seen from the inspection of
the contrasts attribute of the model matrix

R> attr(Xstar, "contrasts")

$seeding
[1] "contr.treatment"

$echomotion
[1] "contr.treatment"

The default contrasts can be changed via the contrasts.arg argument to
model.matrix or the contrasts argument to the fitting function, for example
lm or aov as shown in Chapter˜5. However, such internals are hidden and
performed by high-level model-fitting functions such as lm which will be used
to fit the linear model defined by the formula clouds_formula:

R> clouds_lm <- lm(clouds_formula, data = clouds)

R> class(clouds_lm)

[1] "lm"

The results of the model fitting is an object of class lm for which a summary

method showing the conventional regression analysis output is available. The
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R> data("clouds", package = "HSAUR2")

R> layout(matrix(1:2, nrow = 2))

R> bxpseeding <- boxplot(rainfall ~ seeding, data = clouds,

+ ylab = "Rainfall", xlab = "Seeding")

R> bxpecho <- boxplot(rainfall ~ echomotion, data = clouds,

+ ylab = "Rainfall", xlab = "Echo Motion")
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Figure 6.3 Boxplots of rainfall.
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R> layout(matrix(1:4, nrow = 2))

R> plot(rainfall ~ time, data = clouds)

R> plot(rainfall ~ cloudcover, data = clouds)

R> plot(rainfall ~ sne, data = clouds, xlab="S-Ne criterion")

R> plot(rainfall ~ prewetness, data = clouds)
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Figure 6.4 Scatterplots of rainfall against the continuous covariates.

output in Figure˜6.5 shows the estimates β̂? with corresponding standard
errors and t-statistics as well as the F -statistic with associated p-value.
Many methods are available for extracting components of the fitted model.
The estimates β̂? can be assessed via

R> betastar <- coef(clouds_lm)

R> betastar

(Intercept)
-0.3462

seedingyes
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R> summary(clouds_lm)

Call:
lm(formula = clouds_formula, data = clouds)

Residuals:
Min 1Q Median 3Q Max

-2.53 -1.15 -0.27 1.04 4.39

Coefficients:
Estimate Std. Error t value

(Intercept) -0.3462 2.7877 -0.12
seedingyes 15.6829 4.4463 3.53
time -0.0450 0.0251 -1.80
seedingno:sne 0.4198 0.8445 0.50
seedingyes:sne -2.7774 0.9284 -2.99
seedingno:cloudcover 0.3879 0.2179 1.78
seedingyes:cloudcover -0.0984 0.1103 -0.89
seedingno:prewetness 4.1083 3.6010 1.14
seedingyes:prewetness 1.5513 2.6929 0.58
seedingno:echomotionstationary 3.1528 1.9325 1.63
seedingyes:echomotionstationary 2.5906 1.8173 1.43

Pr(>|t|)
(Intercept) 0.9031
seedingyes 0.0037
time 0.0959
seedingno:sne 0.6274
seedingyes:sne 0.0104
seedingno:cloudcover 0.0984
seedingyes:cloudcover 0.3885
seedingno:prewetness 0.2745
seedingyes:prewetness 0.5744
seedingno:echomotionstationary 0.1268
seedingyes:echomotionstationary 0.1776

Residual standard error: 2.2 on 13 degrees of freedom
Multiple R-squared: 0.716, Adjusted R-squared: 0.497
F-statistic: 3.27 on 10 and 13 DF, p-value: 0.0243

Figure 6.5 R output of the linear model fit for the clouds data.

15.6829
time

-0.0450
seedingno:sne

0.4198
seedingyes:sne

-2.7774
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seedingno:cloudcover
0.3879

seedingyes:cloudcover
-0.0984

seedingno:prewetness
4.1083

seedingyes:prewetness
1.5513

seedingno:echomotionstationary
3.1528

seedingyes:echomotionstationary
2.5906

and the corresponding covariance matrix Cov(β̂?) is available from the vcov

method

R> Vbetastar <- vcov(clouds_lm)

where the square roots of the diagonal elements are the standard errors as
shown in Figure˜6.5

R> sqrt(diag(Vbetastar))

(Intercept)
2.7877

seedingyes
4.4463

time
0.0251

seedingno:sne
0.8445

seedingyes:sne
0.9284

seedingno:cloudcover
0.2179

seedingyes:cloudcover
0.1103

seedingno:prewetness
3.6010

seedingyes:prewetness
2.6929

seedingno:echomotionstationary
1.9325

seedingyes:echomotionstationary
1.8173

In order to investigate the quality of the model fit, we need access to the
residuals and the fitted values. The residuals can be found by the residuals

method and the fitted values of the response from the fitted (or predict)
method

R> clouds_resid <- residuals(clouds_lm)

R> clouds_fitted <- fitted(clouds_lm)
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R> psymb <- as.numeric(clouds$seeding)

R> plot(rainfall ~ sne, data = clouds, pch = psymb,

+ xlab = "S-Ne criterion")

R> abline(lm(rainfall ~ sne, data = clouds,

+ subset = seeding == "no"))

R> abline(lm(rainfall ~ sne, data = clouds,

+ subset = seeding == "yes"), lty = 2)

R> legend("topright", legend = c("No seeding", "Seeding"),

+ pch = 1:2, lty = 1:2, bty = "n")
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Figure 6.6 Regression relationship between S-Ne criterion and rainfall with and
without seeding.
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R> plot(clouds_fitted, clouds_resid, xlab = "Fitted values",

+ ylab = "Residuals", type = "n",

+ ylim = max(abs(clouds_resid)) * c(-1, 1))

R> abline(h = 0, lty = 2)

R> text(clouds_fitted, clouds_resid, labels = rownames(clouds))
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Figure 6.7 Plot of residuals against fitted values for clouds seeding data.

Now the residuals and the fitted values can be used to construct diagnostic
plots; for example the residual plot in Figure˜6.7 where each observation is
labelled by its number. Observations 1 and 15 give rather large residual values
and the data should perhaps be reanalysed after these two observations are
removed. The normal probability plot of the residuals shown in Figure˜6.8
shows a reasonable agreement between theoretical and sample quantiles, how-
ever, observations 1 and 15 are extreme again. An index plot of the Cook’s
distances for each observation (and many other plots including those con-
structed above from using the basic functions) can be found from applying
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R> qqnorm(clouds_resid, ylab = "Residuals")

R> qqline(clouds_resid)
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Figure 6.8 Normal probability plot of residuals from cloud seeding model
clouds_lm.

the plot method to the object that results from the application of the lm

function. Figure˜6.9 suggests that observations 2 and 18 have undue influence
on the estimated regression coefficients, but the two outliers identified previ-
ously do not. Again it may be useful to look at the results after these two
observations have been removed (see Exercise 6.2).
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R> plot(clouds_lm)
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Figure 6.9 Index plot of Cook’s distances for cloud seeding data.
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