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CHAPTER 10

Scatterplot Smoothers and Generalised
Additive Models: The Men’s Olympic
1500m, Air Pollution in the USA, and

Risk Factors for Kyphosis

10.1 Introduction

10.2 Scatterplot Smoothers and Generalised Additive Models

10.3 Analysis Using R

10.3.1 Olympic 1500m Times

To begin we will construct a scatterplot of winning time against year the games
were held. The R code and the resulting plot are shown in Figure˜10.1. There
is very clear downward trend in the times over the years, and, in addition there
is a very clear outlier namely the winning time for 1896. We shall remove this
time from the data set and now concentrate on the remaining times. First
we will fit a simple linear regression to the data and plot the fit onto the
scatterplot. The code and the resulting plot are shown in Figure˜10.2. Clearly
the linear regression model captures in general terms the downward trend in
the times. Now we can add the fits given by the lowess smoother and by a cubic
spline smoother; the resulting graph and the extra R code needed are shown
in Figure˜10.3. Both non-parametric fits suggest some distinct departure from
linearity, and clearly point to a quadratic model being more sensible than a
linear model here. And fitting a parametric model that includes both a linear
and a quadratic effect for year gives a prediction curve very similar to the non-
parametric curves; see Figure˜10.4. Here use of the non-parametric smoothers
has effectively diagnosed our linear model and pointed the way to using a more
suitable parametric model; this is often how such non-parametric models can
be used most effectively. For these data, of course, it is clear that the simple
linear model cannot be suitable if the investigator is interested in predicting
future times since even the most basic knowledge of human physiology will
tell us that times cannot continue to go down. There must be some lower
limit to the time man can run 1500m. But in other situations use of the non-
parametric smoothers may point to a parametric model that could not have
been identified a priori. It is of some interest to look at the predictions of
winning times in future Olympics from both the linear and quadratic models.
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R> plot(time ~ year, data = men1500m)
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Figure 10.1 Scatterplot of year and winning time.

For example, for 2008 and 2012 the predicted times and their 95% confidence
intervals can be found using the following code

R> predict(men1500m_lm,

+ newdata = data.frame(year = c(2008, 2012)),

+ interval = "confidence")

fit lwr upr
1 208 205 211
2 207 203 210

R> predict(men1500m_lm2,

+ newdata = data.frame(year = c(2008, 2012)),

+ interval = "confidence")

fit lwr upr
1 214 210 218
2 214 210 219

For predictions far into the future both the quadratic and the linear model fail;
we leave readers to get some more predictions to see what happens. We can
compare the first prediction with the time actually recorded by the winner
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R> men1500m1900 <- subset(men1500m, year >= 1900)

R> men1500m_lm <- lm(time ~ year, data = men1500m1900)

R> plot(time ~ year, data = men1500m1900)

R> abline(men1500m_lm)
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Figure 10.2 Scatterplot of year and winning time with fitted values from a simple
linear model.

of the men’s 1500m in Beijing 2008, Rashid Ramzi from Brunei, who won
the event in 212.94 seconds. The confidence interval obtained from the simple
linear model does not include this value but the confidence interval for the
prediction derived from the quadratic model does.

10.3.2 Air Pollution in US Cities

Unfortunately, we cannot fit an additive model for describing the SO2 concen-
tration based on all six covariates because this leads to more parameters than
cities, i.e., more parameters than observations when using the default param-
eterisation of mgcv. Thus, before we can apply the gam function from package
mgcv, we have to decide which covariates should enter the model and which
subset of these covariates should be allowed to deviate from a linear regression
relationship. As briefly discussed in Section˜??, we can fit an additive model
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R> x <- men1500m1900$year

R> y <- men1500m1900$time

R> men1500m_lowess <- lowess(x, y)

R> plot(time ~ year, data = men1500m1900)

R> lines(men1500m_lowess, lty = 2)

R> men1500m_cubic <- gam(y ~ s(x, bs = "cr"))

R> lines(x, predict(men1500m_cubic), lty = 3)
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Figure 10.3 Scatterplot of year and winning time with fitted values from a smooth
non-parametric model.

using the iterative boosting algorithm as described by Bühlmann and Hothorn
(2007). The complexity of the model is determined by an AIC criterion, which
can also be used to determine an appropriate number of boosting iterations to
choose. The methodology is available from package mboost (Hothorn et˜al.,
2009). We start with a small number of boosting iterations (100 by default)
and compute the AIC of the corresponding 100 models:

R> library("mboost")

R> USair_boost <- gamboost(SO2 ~ ., data = USairpollution)

R> USair_aic <- AIC(USair_boost)

R> USair_aic
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R> men1500m_lm2 <- lm(time ~ year + I(year^2),

+ data = men1500m1900)

R> plot(time ~ year, data = men1500m1900)

R> lines(men1500m1900$year, predict(men1500m_lm2))
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Figure 10.4 Scatterplot of year and winning time with fitted values from a
quadratic model.

[1] 6.81
Optimal number of boosting iterations: 40
Degrees of freedom (for mstop = 40): 9.05

The AIC suggests that the boosting algorithm should be stopped after 40
iterations. The partial contributions of each covariate to the predicted SO2

concentration are given in Figure˜10.5. The plot indicates that all six covari-
ates enter the model and the selection of a subset of covariates for modelling
isn’t appropriate in this case. However, the number of manufacturing enter-
prises seems to add linearly to the SO2 concentration, which simplifies the
model. Moreover, the average annual precipitation contribution seems to de-
viate from zero only for some extreme observations and one might refrain
from using the covariate at all. As always, an inspection of the model fit via
a residual plot is worth the effort. Here, we plot the fitted values against the
residuals and label the points with the name of the corresponding city. Fig-
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R> USair_gam <- USair_boost[mstop(USair_aic)]

R> layout(matrix(1:6, ncol = 3))

R> plot(USair_gam, ask = FALSE)
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Figure 10.5 Partial contributions of six exploratory covariates to the predicted
SO2 concentration.

ure˜10.6 shows at least two extreme observations. Chicago has a very large
observed and fitted SO2 concentration, which is due to the huge number of
inhabitants and manufacturing plants (see Figure˜10.5 also). One smaller city,
Providence, is associated with a rather large positive residual indicating that
the actual SO2 concentration is underestimated by the model. In fact, this
small town has a rather high SO2 concentration which is hardly explained by
our model. Overall, the model doesn’t fit the data very well, so we should
avoid overinterpreting the model structure too much. In addition, since each
of the six covariates contributes to the model, we aren’t able to select a smaller
subset of the covariates for modelling and thus fitting a model using gam is
still complicated (and will not add much knowledge anyway).

10.3.3 Risk Factors for Kyphosis

Before modelling the relationship between kyphosis and the three exploratory
variables age, starting vertebral level of the surgery and number of vertebrae
involved, we investigate the partial associations by so-called spinograms, as
introduced in Chapter˜2. The numeric exploratory covariates are discretised
and their empirical relative frequencies are plotted against the conditional fre-
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R> SO2hat <- predict(USair_gam)

R> SO2 <- USairpollution$SO2

R> plot(SO2hat, SO2 - SO2hat, type = "n", xlim = c(0, 110))

R> text(SO2hat, SO2 - SO2hat, labels = rownames(USairpollution),

+ adj = 0)

R> abline(h = 0, lty = 2, col = "grey")
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Figure 10.6 Residual plot of SO2 concentration.

quency of kyphosis in the corresponding group. Figure˜10.7 shows that kypho-
sis is absent in very young or very old children, children with a small starting
vertebral level and high number of vertebrae involved. The logistic additive
model needed to describe the conditional probability of kyphosis given the
exploratory variables can be fitted using function gam. Here, the dimension
of the basis (k) has to be modified for Number and Start since these vari-
ables are heavily tied. As for generalised linear models, the family argument
determines the type of model to be fitted, a logistic model in our case:
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R> layout(matrix(1:3, nrow = 1))

R> spineplot(Kyphosis ~ Age, data = kyphosis,

+ ylevels = c("present", "absent"))

R> spineplot(Kyphosis ~ Number, data = kyphosis,

+ ylevels = c("present", "absent"))

R> spineplot(Kyphosis ~ Start, data = kyphosis,

+ ylevels = c("present", "absent"))

Age

K
yp

ho
si

s

0 20 80 120 160

pr
es

en
t

ab
se

nt

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number

K
yp

ho
si

s

2 3 4 5 7

pr
es

en
t

ab
se

nt

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Start

K
yp

ho
si

s

0 4 8 12 14 16

pr
es

en
t

ab
se

nt

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 10.7 Spinograms of the three exploratory variables and response variable
kyphosis.

R> kyphosis_gam <- gam(Kyphosis ~ s(Age, bs = "cr") +

+ s(Number, bs = "cr", k = 3) + s(Start, bs = "cr", k = 3),

+ family = binomial, data = kyphosis)

R> kyphosis_gam

Family: binomial
Link function: logit

Formula:
Kyphosis ~ s(Age, bs = "cr") + s(Number, bs = "cr", k = 3) +

s(Start, bs = "cr", k = 3)

Estimated degrees of freedom:
2.2267 1.2190 1.8421 total = 6.29

UBRE score: -0.234

The partial contributions of each covariate to the conditional probability of
kyphosis with confidence bands are shown in Figure˜10.8. In essence, the same
conclusions as drawn from Figure˜10.7 can be stated here. The risk of kyphosis
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R> trans <- function(x)

+ binomial()$linkinv(x)

R> layout(matrix(1:3, nrow = 1))

R> plot(kyphosis_gam, select = 1, shade = TRUE, trans = trans)

R> plot(kyphosis_gam, select = 2, shade = TRUE, trans = trans)

R> plot(kyphosis_gam, select = 3, shade = TRUE, trans = trans)
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Figure 10.8 Partial contributions of three exploratory variables with confidence
bands.

being present decreases with higher starting vertebral level and lower number
of vertebrae involved. Children about 100 months old are under higher risk
compared to younger or older children.

Summary

Additive models offer flexible modelling tools for regression problems. They
stand between generalised linear models, where the regression relationship is
assumed to be linear, and more complex models like random forests (see Chap-
ter˜9) where the regression relationship remains unspecified. Smooth functions
describing the influence of covariates on the response can be easily interpreted.
Variable selection is a technically difficult problem in this class of models;
boosting methods are one possibility to deal with this problem.

Exercises

Ex. 10.1 Consider the body fat data introduced in Chapter˜9, Table˜??.
First fit a generalised additive model assuming normal errors using function
gam. Are all potential covariates informative? Check the results against a
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generalised additive model that underwent AIC-based variable selection
(fitted using function gamboost).

Ex. 10.2 Try to fit a logistic additive model to the glaucoma data discussed
in Chapter˜9. Which covariates should enter the model and how is their
influence on the probability of suffering from glaucoma?
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