A Handbook of Statistical Analyses
Using R

Brian S. Everitt and Torsten Hothorn

CHAPTER 8

Recursive Partitioning: Large
Companies and Glaucoma Diagnosis

8.1 Introduction

8.2 Recursive Partitioning
8.3 Analysis Using R

8.3.1 Forbes 2000 Data

For some observations the profit is missing and we first remove those compa-
nies from the list

R> data("Forbes2000", package = "HSAUR")

R> Forbes2000 <- subset(Forbes2000, !is.na(profits))

The rpart function from rpart can be used to grow a regression tree. The
response variable and the covariates are defined by a model formula in the
same way as for 1m, say. By default, a large initial tree is grown.

R> library("rpart")

R> forbes_rpart <- rpart(profits

assets + marketvalue + sales, data = Forbes2000)
A print method for rpart objects is available, however, a graphical represen-
tation shown in Figure 8.1 is more convenient. Observations which satisfy the
condition shown for each node go to the left and observations which don’t are
element of the right branch in each node. The numbers plotted in the leaves
are the mean profit for those observations satisfying the conditions stated
above. For example, the highest profit is observed for companies with a mar-
ket value greater than 89.33 billion US dollars and with more than 91.92 US
dollars sales. To determine if the tree is appropriate or if some of the branches
need to be subjected to pruning we can use the cptable element of the rpart
object:

R> print(forbes_rpart$cptable)

CP nsplit rel error xerror xstd
1 0.23748446 0 1.0000000 1.0010339 0.1946331
2 0.04600397 1 0.7625155 0.8397144 0.2174245
3 0.04258786 2 0.7165116 0.8066685 0.2166339
4 0.02030891 3 0.6739237 0.7625940 0.2089684
5 0.01854336 4 0.6536148 0.7842574 0.2093683
6 0.01102304 5 0.6350714 0.7925891 0.2106088
7 0.01076006 6 0.6240484 0.7931405 0.2128048
8 0.01000000 7 0.6132883 0.7902771 0.2128037

4 RECURSIVE PARTITIONING

R> plot(forbes_rpart, uniform = TRUE, margin = 0.1, branch = 0.5, compress = TRUE)
R> text(forbes_rpart)

marketvalue< 89.33

marketvalyde< 32.72 salesk 91.92

assets#=329
5.211 11.82

marketvalue< 7.895 salesy 42.94

-3.366 -0.5994

0.07812 0.5045 1.872 4.633

Figure 8.1 Large initial tree for Forbes 2000 data.

R> opt <- which.min(forbes_rpart$cptable[,"xerror"])

The xerror column contains of estimates of cross-validated prediction error
for different numbers of splits (nsplit). The best tree has three splits. Now
we can prune back the large initial tree using

R> cp <- forbes_rpart$cptablelopt, "CP"]
R> forbes_prune <- prune(forbes_rpart, cp = cp)

The result is shown in Figure 8.2. This tree is much smaller. From the sample
sizes and boxplots shown for each leaf we see that the majority of companies
is grouped together. However, a large market value, more that 32.72 billion
US dollars, seems to be a good indicator of large profits.

ANALYSIS USING R 5

R>
R>
R>
R>
R>
R>
R>
R>
+

+

R>
R>
R>

layout (matrix(1:2, nc = 1))

plot(forbes_prune, uniform = TRUE, margin = 0.1, branch = 0.5, compress = TRUE)

text (forbes_prune)

rn <- rownames (forbes_prune$frame)

lev <- rn[sort(unique(forbes_prune$where))]

where <- factor(rn[forbes_prune$where], levels = lev)

n <- tapply(Forbes2000$profits, where, length)

boxplot (Forbes2000$profits ~ where, varwidth = TRUE,
ylim = range(Forbes2000$profit) * 1.3, pars = list(axes =
FALSE), ylab = "Profits in US dollars")

abline(h = 0, 1ty = 3)

axis(2)
text(1:length(n), max(Forbes2000$profit) * 1.2, paste("n = ", n))
marketvalue< 89.33
-3.366 0.1964
n= 10 n= 1835 n= 117 n= 24 n=9
o _ T
N 1
L
4 =
T E L
o T e e e e e eee—. ..\ _‘_ ...
i ;
L o
o
\T| — -]
(o] o
o
AN — -]
| o
o
o
CTJ —

Figure 8.2 Pruned regression tree for Forbes 2000 data with the distribution of

the profit in each leaf depicted by a boxplot.

6 RECURSIVE PARTITIONING
8.3.2 Glaucoma Diagnosis

R> data("GlaucomaM", package = "ipred")

R> glaucoma_rpart <- rpart(Class ~ ., data = Glaucomal,
+ control = rpart.control(xval = 100))
R> glaucoma_rpart$cptable

CP nsplit rel error xXerror xstd
1 0.65306122 0 1.0000000 1.5306122 0.06054391
2 0.07142857 1 0.3469388 0.3877551 0.05647630
3 0.01360544 2 0.2755102 0.3775510 0.05590431
4 0.01000000 5 0.2346939 0.4489796 0.05960655

R> opt <- which.min(glaucoma_rpart$cptablel[,"xerror"])
R> cp <- glaucoma_rpart$cptable[opt, "CP"]
R> glaucoma_prune <- prune(glaucoma_rpart, cp = cp)

As we discussed earlier, the choice of the appropriate sized tree is not a triv-
ial problem. For the glaucoma data, the above choice of three leaves is very
unstable across multiple runs of cross-validation. As an illustration of this
problem we repeat the very same analysis as shown above and record the
optimal number of splits as suggested by the cross-validation runs.

R> nsplitopt <- vector(mode = "integer", length = 25)
R> for (i in 1:length(usplitopt)) {

+ cp <- rpart(Class ~ ., data = GlaucomaM)$cptable
+ nsplitopt[i] <- cplwhich.min(cp[,"xerror"]), "nsplit"]
+}
R> table(nsplitopt)
nsplitopt
1 2 5
14 7 4

Although for 14 runs of cross-validation a simple tree with one split only is
suggested, larger trees would have been favored in 11 of the cases. This short
analysis shows that we should not trust the tree in Figure 8.3 too much. One
way out of this dilemma is the aggregation of multiple trees via bagging. In R,
the bagging idea can be implemented by three or four lines of code. Case count
or weight vectors representing the bootstrap samples can be drawn from the
multinominal distribution with parameters n and py = 1/n,...,p, = 1/n via
the rmultinom function. For each weight vector, one large tree is constructed
without pruning and the rpart objects are stored in a list, here called trees:

R> trees <- vector(mode = "list", length = 25)
R> n <- nrow(GlaucomaM)
R> bootsamples <- rmultinom(length(trees), n, rep(l, n)/n)

R> mod <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval

R> for (i in 1:length(trees))
+ trees[[i]] <- update(mod, weights = bootsamples[,i])

0))

ANALYSIS USING R 7

R> layout(matrix(1:2, nc = 1))

R> plot(glaucoma_prune, uniform = TRUE, margin = 0.1, branch = 0.5, compress = TRUE)
R> text(glaucoma_prune, use.n = TRUE)

R> rn <- rownames(glaucoma_prune$frame)

R> lev <- rn[sort(unique(glaucoma_prune$where))]

R> where <- factor(rn[glaucoma_prune$where], levels = lev)

R> mosaicplot(table(where, GlaucomaM$Class), main = "", xlab = "", las = 1)

varg<,0.209
I

glaucoma
70/6

glaucoma normal
7/0 21/92

2 6
} . | -

normal
Figure 8.3 Pruned classification tree of the glaucoma data with class distribution
in the leaves depicted by a mosaicplot.

8 RECURSIVE PARTITIONING

The update function re-evaluates the call of mod, however, with the weights
being altered, i.e., fits a tree to a bootstrap sample specified by the weights.
It is interesting to have a look at the structures of the multiple trees. For
example, the variable selected for splitting in the root of the tree is not unique
as can be seen by

R> table(sapply(trees, function(x) as.character(x$frame$var[1])))

phcg varg vari vars
1 14 9 1

Although varg is selected most of the time, other variables such as vari oc-
cur as well — a further indication that the tree in Figure 8.3 is questionable
and that hard decisions are not appropriate for the glaucoma data. In order
to make use of the ensemble of trees in the list trees we estimate the con-
ditional probability of suffering from glaucoma given the covariates for each
observation in the original data set by

R> classprob <- matrix(0, nrow = n, ncol = length(trees))
R> for (i in 1:length(trees)) {

+ classprob[,i] <- predict(trees[[i]], newdata = GlaucomaM) [,2]
+ classprob[bootsamples[,i] > 0,i] <- NA
+ 3

Thus, for each observation we get 25 estimates. However, each observation has
been used for growing one of the trees with probability 0.632 and thus was not
used with probability 0.368. Consequently, the estimate from a tree where an
observation was not used for growing is better for judging the quality of the
predictions and we label the other estimates with NA. Now, we can average the
estimates and we vote for glaucoma when the average of the estimates of the
conditional glaucoma probability exceeds 0.5. The comparison between the
observed and the predicted classes does not suffer from overfitting since the
predictions are computed from those trees for which each single observation
was not used for growing.

R> avg <- rowMeans(classprob, na.rm = TRUE)
R> predictions <- factor(avg > 0.5, labels = levels(GlaucomaM$Class))
R> predtab <- table(predictions, GlaucomaM$Class)

R> predtab

predictions glaucoma normal
glaucoma 78 15
normal 20 83

Thus, an honest estimate of the probability of a glaucoma prediction when
the patient is actually suffering from glaucoma is

R> round(predtab[1,1] / colSums(predtab) [1] * 100)

glaucoma
80

per cent. For

ANALYSIS USING R 9

R> library("lattice")
R> gdata <- data.frame(avg = rep(avg, 2),

+ class = rep(as.numeric(GlaucomaM$Class), 2),
+ obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]),
+ var = factor(c(rep("varg", nrow(GlaucomaM)), rep("vari", nrow(Gl:
R> panelf <- function(x, y) {
+ panel.xyplot(x, y, pch = gdata$class)
+ panel.abline(h = 0.5, 1ty = 2)
+ }
R> print(xyplot(avg ~ obs | var, data = gdata,
+ panel = panelf,
+ scales = "free", xlab = "",
+ ylab = "Estimated Class Probability Glaucoma"))
varg vari
e] e]
g % A C) %m 2a
) A&§ A A o D A
o AO
3 @ | N A A | o _| A A
8 S A A A oS %A@% AL A A
© a N
2 A A %A Ao D
Z o ° A Q4 AO@ A % A
S o & OOAA o Ao% Do TA
O Rt S I S g
)
831 oA 31 248
O L IVYN &° A
° o %
8 ~ | o © A ~ | o A
= O 0 ? o ° o
© [8 %o A
g g";ﬁ B} 0 o0
Do | e o | Aegls
o o
| | | | | | | | |
0.0 0.5 1.0 0.00 0.05 0.10 0.15 0.20 0.25

Figure 8.4 Glaucoma data: Estimated class probabilities depending on two im-
portant variables. The 0.5 cut-off for the estimated glaucoma proba-
bility is depicted as horizontal line. Glaucomateous eyes are plotted
as circles and normal eyes are triangles.

R> round(predtab[2,2] / colSums(predtab) [2] * 100)

normal
85

per cent of normal eyes, the ensemble does not predict a glaucomateous dam-
age. The bagging procedure is a special case of a more general approach called
random forest (Breiman, 2001). The package randomForest (Breiman et al.,
2006) can be used to compute such ensembles via

10 RECURSIVE PARTITIONING
R> plot(glaucoma_ctree)

vari
p <0.001

<0.059 >0.059

vasg
p <0.001

<0.046 >0.046

vart
5= 0001 70.066 >—o<s

<0.005 >0.005

Node 4 (n =51, ode 5 (n =22 ode 6 (n =14 ode 8 (n = 65; ode 9 (n = 44
14 14 14 14 14
0.8 1 0.8 0.8 1 0.8 1 0.8 1
0.6 1 0.6 1 0.6 1 0.6 1 0.6 1
0.4 — 0.4 0.4 0.4 0.4
0.2 0.2 1 0.2 1 ’_‘ 0.2 1 0.2 1 ’_‘
0 T T 0 T m 0 T T o 0 T T
glaucoma glaucoma glaucoma glaucoma glaucoma

Figure 8.5 Glaucoma data: Conditional inference tree with the distribution of
glaucomateous eyes shown for each terminal leaf.

R> library("randomForest")
R> rf <- randomForest(Class ~ ., data = GlaucomaM)

and we obtain out-of-bag estimates for the prediction error via
R> table(predict(rf), GlaucomaM$Class)

glaucoma normal
glaucoma 81 11
normal 17 87

For the glaucoma data, such a conditional inference tree can be computed
using the ctree function

R> library("party")
R> glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM)

and a graphical representation is depicted in Figure 8.5 showing both the
cutpoints and the p-values of the associated independence tests for each node.
The first split is performed using a cutpoint defined with respect to the volume
of the optic nerve above some reference plane, but in the inferior part of the
eye only (vari).

Bibliography

Breiman, L. (2001), “Random forests,” Machine Learning, 45, 5-32.

Breiman, L., Cutler, A., Liaw, A., and Wiener, M. (2006), randomForest:
Breiman and Cutler’s Random Forests for Classification and Regression,
URL http://stat-www.berkeley.edu/users/breiman/RandomForests,
R package version 4.5-16.

http://stat-www.berkeley.edu/users/breiman/RandomForests

	Recursive Partitioning
	Introduction
	Recursive Partitioning
	Analysis Using R

