The GHap Package (Version 1.2.2)

Yuri Tani Utsunomiya and Marco Milanesi

18 February 2017

Contents
Abstract e e 2
Tutorial 1 - Importing phased data 3
Tutorial 2 - Subsetting, exporting and merging phased objects 4
Tutorial 3 - Haplotyping o e 5
Tutorial 4 - Importing and manipulating haplotypedata 6
Tutorial 5 - Haplotype statistics. L e 7
Tutorial 6 - Relationship matrix and PCA 8
Tutorial 7 - Haplotype divergence analysis 9
Tutorial 8 - Haplotype ancestry e 10
Tutorial 9 - Linear mixed model analysis L L oo 11
Tutorial 10 - Association analysis 12
Tutorial 11 - BLUP of haplotypes 13
Tutorial 12 - Haplotype profiling 14
Methods 1 - Format o e 15
Methods 2 - Haplotyping algorithm 16
Methods 3 - Haplotype statistics 18
Methods 4 - Haplotype coding for regression and relationship matrix 19
Methods 5 - Regression treating haplotypes as fixed effects 21
Methods 6 - Regression treating haplotypes as random effects 22
Methods 7 - Fixation index L 23
Methods 8 - Ancestry assignment L. 24
Appendix 1 - Using GHap outputs in third-party software 25
Appendix 2 - Handling multiple chromosomes and analysis of single marker data 26
Appendix 3 - Benchmarking 27
References L 28

Abstract

The GHap R package was designed to call haplotypes from phased SNP data. Given user-defined haplotype
blocks (HapBlock), the package identifies the different haplotype alleles (HapAllele) present in the data and
scores sample haplotype allele genotypes (HapGenotype) based on copy number (i.e., 0, 1 or 2 copies). GHap
is an acronym for Genome-wide Haplotyping, and is pronounced G-Hap, not gap (although it is intended
to fill the gap of haplotype analyses).

Tutorial 1 - Importing phased data

Example input files can be created using the command:

Copy the example data in the current working directory
library (GHap)
ghap.makefile()

The dataset comprises genotypes from the International HapMap Project Phase 3 (The International HapMap
3 Consortium, 2010), which includes 1,011 subjects (from 11 populations) and 20,000 SNPs (randomly
sampled from chromosome 2) mapped to the NCBI build 36 (hgl8) assembly.

The ghap.loadphase() function is responsible for loading phased chromosomes from an input file and
converting them into a native GHap.phase object. A detailed describtion of this object can be found in the
documentation of the function. To load the example data in the package we can run:

#Load haplotype object

phase <- ghap.loadphase(
samples.file = "human.samples",
markers.file = "human.markers",
phase.file = "human.phase"

Reading in marker map information... Done.

A total of 20000 markers were found for chromosome 2.

Reading in sample information... Done.

A total of 1011 individuals were found in 11 populations.

Reading in phased genotypes... (may take a few minutes for large datasets)

H OH H H H H

Your GHap.phase object was successfully loaded without apparent errors.

The current version of the package only supports phased data of one chromosome at a time. However, once
haplotypes have been called, multiple chromosomes can be loaded.

Tutorial 2 - Subsetting, exporting and merging phased objects

The ghap.subsetphase() function can take any combination of markers and individuals and subset the
GHap.phase object. This is achieved by setting undesired markers and individuals to FALSE. Inactivated
individuals and markers are then ignored by all other functions taking a GHap.phase object as input.

For instance, we know that markers with low polymorphic information content may result in rare HapAlleles.
If downstream analyses do not benefit from rare HapAlleles (e.g., haplotype association), it may be beneficial
to prune these markers out prior to haplotyping. The code below shows how to subset markers with a minor
allele frequency of at least 5%:

Subset data - markers with maf > 0.05

maf <- ghap.maf (phase, ncores = 2)

markers <- phase$marker[maf > 0.05]

phase <- ghap.subsetphase(phase, unique(phase$id), markers)
Subsetting 1011 individuals and 17267 markers... Done.

Final data contains 1011 individuals and 17267 markers.

GHap.phase objects can also be exported to text files:

Output data
ghap.outphase (phase, "example")

Preparing example.markers... Done.
Preparing example.samples... Done.
Preparing example.phase... Done.

It is also possible to merge two distinct GHap.phase objects with the ghap.merge function. There are three
possible merging tasks:

1 - Objects 1 and 2 have the same set of markers but different individuals
2 - Objects 1 and 2 have different sets of markers (with potential overlaps) but the same individuals
3 - Objects 1 and 2 have different sets of markers and individuals (with potential overlaps)

Currently, GHap only supports task 1. This is because phase information may not derive from a consensus
marker panel in task 2, and task 3 has the additional problem of forcing missing genotypes.

Select ASW and CEU individuals
ASW.ids <- unique(phase$id[phase$pop=="ASW"])
CEU.ids <- unique(phase$id[phase$pop=="CEU"])

Subset data

phase.ASW <- ghap.subsetphase(phase, ASW.ids, markers)

Subsetting 63 individuals and 17267 markers... Done.

Final data contains 63 individuals and 17267 markers.
phase.CEU <- ghap.subsetphase(phase, CEU.ids, markers)

Subsetting 117 individuals and 17267 markers... Done.
Final data contains 117 individuals and 17267 markers.

Merge phase.ASW and phase.CEU

phase.merge <- ghap.mergephase(phase.ASW, phase.CEU)

Creating the new GHap.phase object... Done.

Your GHap.phase object was successfully merged without apparent errors.

Tutorial 3 - Haplotyping

In principle, the user can provide the coordinates of any arbitrary haplotype block (HapBlock). In GHap,
we provide means to generate coordinates for HapBlocks based on sliding windows of markers. This strategy
is particularly useful in genome-wide scans.

Generate blocks of 5 markers sliding 5 markers at a time
blocks.mkr <- ghap.blockgen(phase, windowsize = 5, slide = 5, unit = "marker")

Generate blocks of 100 kb sliding 100 kb at a time
blocks.kb <- ghap.blockgen(phase, windowsize = 100, slide = 100, unit = "kbp")

By default all blocks are constrained to a minimum of two markers. This behaviour can be adjusted by
setting the nsnp argument to a different value. The extent of overlap between consecutive blocks can be
controlled via the slide argument, depending on how fine the user wishes the genome-wide scan to be. Once
HapBlocks have been defined, haplotype genotypes (HapGenotypes) can be determined:

Generate matrix of haplotype genotypes

ghap.haplotyping(phase, blocks.mkr, batchsize = 100, ncores = 2, outfile = "human")
Processing 3453 blocks in:

1 batches of 53

34 batches of 100

3453 blocks written to file

By default all HapAlleles are included in the output. If intended, the user can exclude the minor HapAllele
by setting the drop.minor argument to TRUE. Additionally, the freq argument allows for exclusion of
HapAlleles outside of a specified frequency range. Control of memory usage and process parallelization is
achieved through the arguments batchsize and ncores.

Tutorial 4 - Importing and manipulating haplotype data

After HapAlleles have been scored, the data can be loaded into R using the ghap.loadhaplo function:

Load haplotype genotypes
haplo <- ghap.loadhaplo("human.hapsamples", "human.hapalleles", "human.hapgenotypes")

Reading in haplotype allele information... Done.
A total of 60002 haplotype alleles were found.
Reading in sample information... Done.

A total of 1000 individuals were found in 1 populations.
Reading in haplotype genotypes... (may take a few minutes for large datasets)
Your GHap.haplo object was successfully loaded without apparent errors.

H OH OH OH O H

Similar to the GHap.phase object, the user can also subset, merge and export GHap.haplo objects. For
instance:

Randomly select 500 individuals
ids <- sample(x = haplo$id, size = 500, replace = FALSE)

Subset data

haplo.sub <- ghap.subsethaplo(haplo,ids,haplo$allele.in)

Subsetting 500 individuals and 60002 haplotype alleles... Done.
Final data contains 500 individuals and 60002 haplotype alleles.

Output new GHap.haplo object
ghap.outhaplo(haplo = haplo.sub, outfile = "humansub")

Preparing humansub.hapsamples... Done.
Preparing humansub.hapalleles... Done.
Preparing humansub.hapgenotypes... Done.

Tutorial 5 - Haplotype statistics

For each HapAllele, the ghap.hapstats function retrieves absolute and relative frequencies, expected and
observed number of homozygotes, and different tests for deficit of homozygotes in comparison to Hardy-
Weinberg Equilibrium (HWE) expectations.

hapstats <- ghap.hapstats(haplo, ncores = 2)

str(hapstats)

'data.frame': 60002 obs. of 14 variables:

$ BLOCK : chr "CHR2_B1" "CHR2_B1" "CHR2_B1" "CHR2_B1"

$ CHR : chr "2m n2m wgn ngn

$ BP1 : num 18228 18228 18228 18228 18228 ...

$ BP2 : num 75360 75360 75360 75360 75360 ...

$ ALLELE : chr "ATAGT" "ATAAC" "ATGGC" "GGAAC"

$ N :num 2 4 5 10 42 ...

$ FREQ : num 0.000989 0.001978 0.002473 0.004946 0.020772 ...
$ 0.HOM :num 0 0 0 0 0 1 14 17 14 524 ...

$ 0.HET :num 2 4 5 10 42 56 123 142 170 328 ...

$ E.HOM : num 0.000989 0.003956 0.006182 0.024728 0.436202 ...
$ RATIO :num 1 1 1.01 1.02 1.44 ...

$ BIN.logP: num 0.00043 0.00172 0.00268 0.01074 0.18948 ...

$ POI.logP: num 0.00043 0.00172 0.00268 0.01074 0.18944 ...

$ TYPE : chr "MINOR" "REGULAR" "REGULAR" "REGULAR"

The function also assigns a TYPFE category to each HapAllele:

“ABSENT” = the frequency of the allele is 0;

“SINGLETON” = unique haplotype of its block with frequency 1 (i.e., monomorphic block);

“MINOR” = the least frequent haplotype of its block (in the case of ties, only the first haplotype is marked);
“MAJOR” = the most frequent hapotype of its block (ties are also resolved by marking the first haplotype);
“REGULAR” = the haplotype does not fall into any of the previous categories.

Categories “SINGLETON”, “MINOR” and “MAJOR” only apply to blocks where frequencies sum to 1.

The ghap.blockstats function summarizes HapAllele statistics per block and retrieves the expected het-
erozygosity and the number of alleles per HapBlock. For instance:

blockstats <- ghap.blockstats(hapstats, ncores = 2)
head(blockstats,n=2)

BLOCK CHR BP1 BP2 EXP.H N.ALLELES
1 CHR2_B1 2 18228 75360 0.5128683 10
11 CHR2_B2 2 90190 109437 0.7139595 15

Notice that calculation of expected heterozygosity will not be reliable when HapAlleles are prunned out by
frequency during haplotyping. Therefore, the function will return NA for blocks where HapAllele frequencies
do not sum to unity. Also, when the dataset contains multiple populations the expected heterozygosity and
the number of alleles will be very high.

Tutorial 6 - Relationship matrix and PCA

The example below computes a kinship matrix from HapGenotypes and plots the first two eigenvectors of
a principal components analysis of this matrix. Notice that absent, singleton and minor alleles should be
excluded from computations.

Subset major and regular alleles

haplo <- ghap.subsethaplo(haplo,haplo$id,hapstats$TYPE %in) c("REGULAR","MAJOR"))
Subsetting 1011 individuals and 56572 haplotype alleles... Done.

Final data contains 1011 individuals and 56572 haplotype alleles.

Compute Kinship matrix

K <- ghap.kinship(haplo, batchsize = 100)

Processing 56572 HapAlleles in 566 batches.
Inactive alleles will be ignored.
Preparing 1011 x 1011 kinship matrix.

56572 HapAlleles processed.

H H H

PCA analysis
pca <- ghap.pca(haplo,k)

Plot

plot(x=pca$eigenvec$PCl, y=pca$eigenvec$PC2, xlab="PC1", ylab="PC2", pch="")

pop <- pca$eigenvec$POP

pop.col <- as.numeric(as.factor (pop))

pop <- sort(unique(pop))

legend("bottomleft", legend = pop, col = 1l:length(pop), pch = l:length(pop), ncol = 3)
points(x=pca$eigenvec$PCl, y=pca$eigenvec$PC2, pch = pop.col, col = pop.col, cex = 1.2)

Tutorial 7 - Haplotype divergence analysis

The example below compares the CEU and CHB populations for HapBlocks on chromosome 2:

Compute haplotype allele statistics for each group

haplo <- ghap.subsethaplo(haplo,haplo$id,rep(TRUE,times=haplo$nalleles))
CHB.ids <- haplo$id[which(haplo$pop=="CHB")]

CEU.ids <- haplo$id[which(haplo$pop=="CEU")]

haplo <- ghap.subsethaplo(haplo,CHB.ids,haplo$allele.in)

CHB.hapstats <- ghap.hapstats(haplo,ncores = 2)

haplo <- ghap.subsethaplo(haplo,CEU.ids,haplo$allele.in)

CEU.hapstats <- ghap.hapstats(haplo,ncores = 2)

haplo <- ghap.subsethaplo(haplo,c(CHB.ids,CEU.ids) ,haplo$allele.in)
TOT.hapstats <- ghap.hapstats(haplo,ncores = 2)

haplo <- ghap.subsethaplo(haplo,haplo$id,rep(TRUE,times=haplo$nalleles))

Compute haplotype block statistics for each group

CHB.blockstats <- ghap.blockstats(CHB.hapstats, ncores = 2)
CEU.blockstats <- ghap.blockstats(CEU.hapstats, ncores = 2)
TOT.blockstats <- ghap.blockstats(TOT.hapstats, ncores = 2)

Calculate Fst
fst<-ghap.fst(CHB.blockstats, CEU.blockstats, TOT.blockstats)

Plot results
top.fst <- fst[fst$FST == max(£st$FST, na.rm=TRUE),]
plot(
x = (fst$BP1+fst$BP2)/2e+6,
y = fst$FST, pch = "",
ylab = expression(paste("Haplotype ", F[ST])),
xlab = "Chromosome 2 (in Mb)",
ylim=c(0,1)
)
abline(v=108.7, col="gray")
points(x = (f£st$BP1+fst$BP2)/2e+6, y = fst$FST, pch = 20, col="#471FAA99")
points(x = (top.fst$BPl+top.fst$BP2)/2e+6, y = top.fst$FST, pch = 20, col="red")
text(x = 125, y = max(fst$FST, na.rm=TRUE), "EDAR", col="red")

Ideally, similar to the case of HapAllele and HapBlock statistics, the Fgr analysis should be carried out on
the full set of HapAlleles, rather than a frequency-prunned subset.

Tutorial 8 - Haplotype ancestry

GHap offers a way to calculate the probability that a given HapAllele from a tested population was inherited
from one of the tested parental populations. For instance, using CEU and YRI as proxy parental populations
for ASW, we could assign HapAlleles in ASW to CEU or YRI using the following code:

Compute haplotype allele statistics for each group

haplo <- ghap.subsethaplo(haplo,haplo$id,rep(TRUE,times=haplo$nalleles))
ASW.ids <- unique(haplo$id[haplo$pop=="ASW"])

YRI.ids <- unique(haplo$id[haplo$pop=="YRI"])

CEU.ids <- unique(haplo$id[haplo$pop=="CEU"])

haplo <- ghap.subsethaplo(haplo,YRI.ids,haplo$allele.in)

YRI.hapstats <- ghap.hapstats(haplo,ncores = 2)

haplo <- ghap.subsethaplo(haplo,CEU.ids,haplo$allele.in)

CEU.hapstats <- ghap.hapstats(haplo,ncores = 2)

haplo <- ghap.subsethaplo(haplo,ASW.ids,haplo$allele.in)

ASW.hapstats <- ghap.hapstats(haplo,ncores = 2)

haplo <- ghap.subsethaplo(haplo,haplo$id,rep(TRUE,times=haplo$nalleles))

Find haplotype origin

ASW is the test population. YRI and CEU are used as parental populations

The frequency threshold is set to 0.05 and the probability of assignment to 0.60
ancestry <- ghap.ancestral (ASW.hapstats, YRI.hapstats, CEU.hapstats, 0.05, 0.60)
ancestry <- ancestryl[ancestry$FREQ.TEST > 0,]

str(ancestry)

'data.frame': 38561 obs. of 11 variables:

$ BLOCK : chr "CHR2_B1" "CHR2_B1" "CHR2_B1" "CHR2_B1"
$ CHR : chr "2 "M wgn won

$ BP1 : num 18228 18228 18228 18228 18228 ...

$ BP2 : num 75360 75360 75360 75360 75360 ...

$ ALLELE : chr "ATAAC" "ATAGC" "GGAAC" "GGAGC"

$ FREQ.TEST : num 0.00794 0.05556 0.01587 0.18254 0.07143 ...
$ FREQ.PARENT1: num O 0.087 0 0.1435 0.0783 ...

$ FREQ.PARENT2: num O 0.00855 0 0 O ...

$ PROB.PARENT1: num O 0.911 0 1 1

$ PROB.PARENT2: num 0 O 0 0 O ...

$ ORIGIN : chr "UNK" "PARENT1" "UNK" "PARENT1"

10

Tutorial 9 - Linear mixed model analysis

GHap implements a wrapper of the lme4 package (Bates et al., 2015) to fit generalized linear mixed models
of the form:

g(uy‘u) =Xb +Zu

where g(.) is a link function, sy, is the expectation of phenotypes conditional on random effects, b is a
vector of unobserved fixed effects, X is a matrix relating phenotypes to b, u is a vector of random effects
~ N(0,Ko?), and Z is an incidence matrix relating phenotypes to u. Random effects can be partitioned into
subgroups with different covariance matrices. For instance, if we let K be the HapAllele relationship matrix,
then u becomes the HapAllele-based polygenic effects/breeding values, and o2 becomes the variance due
to HapAlleles. Importantly, any arbitrary K matrix is admitted, such that one may fit models combining
pedigree and haplotype relationships (e.g., single-step GWAS analysis, see Wang et al., 2012).

In the example below we simulate a quantitative trait in Europeans with 50% heritability, where two major
HapAlleles account for 50% of the genetic variance. Repeated records are taken for each individual. However,
the dataset is unbalanced, such that subjects can have between 0 and 30 measurements.

Subset common haplotypes in Europeans

EUR.ids <- haplo$id[haplo$pop %in% c("TSI","CEU")]

haplo <- ghap.subsethaplo(haplo,EUR.ids,rep(TRUE,times=haplo$nalleles))
hapstats <- ghap.hapstats(haplo, ncores = 2)

common <- hapstats$TYPE %in% c("REGULAR","MAJOR") &

hapstats$FREQ > 0.05 &

hapstats$FREQ < 0.95

haplo <- ghap.subsethaplo(haplo,EUR.ids, common)

#Compute relationship matrix
K <- ghap.kinship(haplo, batchsize = 100)

Quantitative trait with 50% heritability

Unbalanced repeated measurements (0 to 30)

Two major haplotypes accounting for 50% of the genetic variance

myseed <- 123456789

set.seed(myseed)

major <- sample(which(haplo$allele.in == TRUE),size = 2)

g2 <- runif(n = 2, min = 0, max = 1)

g2 <- (g2/sum(g2))*0.5

sim <- ghap.simpheno(haplo, kinship = K, h2 = 0.5, g2 = g2, nrep = 30,
balanced = FALSE, major = major, seed = myseed)

#Fit model using REML
model <- ghap.lmm(fixed = phenotype ~ 1, random = ~ individual,
covmat = list(individual = K), data = sim$data)

#Estimated heritability and repeatability
model$vcp/sum(model$vep)

#True versus estimated breeding values

plot (model$random$individual ,sim$u,xlab="Estimated BV",ylab="True BV"); abline(0,1)
summary (Im(sim$u ~ as.numeric(model$random$individual)))

11

Tutorial 10 - Association analysis

The ghap.assoc() function regresses a response variable on one HapAllele at a time, treating HapAlleles as
fixed effects. The example below takes the simulated data from the previous tutorial and regresses residuals
and genomic estimated breeding values onto HapAlleles.

#HapAllele GWAS using GEBVs as response
pheno <- model$random$individual

gwasl <- ghap.assoc(response = pheno, haplo = haplo, ncores 4)

#HapAllele GWAS using GEBVs as response
#Weight observations by number of repeated measurements
pheno <- model$random$individual

w <- table(sim$data$individual)

w <- w + mean(w)

w <- w[names (pheno)]

gwas2 <- ghap.assoc(response = pheno, haplo

haplo, ncores = 4, weights = w)

#HapAllele GWAS using residuals as response
pheno <- model$residuals

names (pheno) <- sim$data$individual

gwas3 <- ghap.assoc(response = pheno, haplo

haplo, ncores 4)
#Plot results
plot(gwas1$BP1/1e+6,gwas1$logP,pch=20,col="darkgreen",ylim=c(0,20),
xlab="Position (in Mb)",ylab=expression(-log[10] (p)))
points(gwas2$BP1/1le+6,gwas2$logP,pch=20,col="gray")
points(gwas3$BP1/1le+6,gwas3$logP,pch=20,col="blue")
abline(v=haplo$bpl[major]/le+6,1ty=3)
abline(h=-10gl10(0.05/nrow(gwasl)),lty=3)
legend("topleft",legend = c("GEBVs","weighted GEBVs",'"residuals"),
pch = 20,col=c("darkgreen","gray","blue"))

12

Tutorial 11 - BLUP of haplotypes

HapAlleles can also be treated as random effects with the ghap.blup() function. Random effects can be
iteratively updated through the haploweights argument following the single-step GWAS approach (Wang et
al., 2012):

#BLUP GWAS

gebvs <- model$random$individual

gebvsw <- table(sim$data$individual)

gebvsw <- gebvsw + mean(gebvsw)

gebvsw <- gebvsw[names(gebvs)]

Kinv <- ghap.kinv(K)

gwas.blup <- ghap.blup(gebvs = gebvs, haplo = haplo, gebvsweights = gebvsw,
ncores = 4, invcov = Kinv)

plot(gwas.blup$BP1/1e+6,gwas.blup$pVAR*100,pch=20,

xlab="Position (in Mb)",ylab="Variance explained (%)")
abline(v=haplo$bpl[major]/le+6)

#BLUP with one update
w <- gwas.blup$VAR*nrow(gwas.blup)
K2 <- ghap.kinship(haplo=haplo,weights = w)
Kinv2 <- ghap.kinv(K2)
gwas.blup2 <- ghap.blup(gebvs = gebvs, haplo = haplo, invcov = Kinv2, ncores = 2,
gebvsweights = gebvsw, haploweights = w)
plot(gwas.blup2$BP1/1e+6,gwas.blup2$pVAR*100,pch=20,
xlab="Position (in Mb)",ylab="Variance explained (%)")
abline(v=haplo$bpl[major]/le+6)

13

Tutorial 12 - Haplotype profiling

The profile for each individual is calculated as:

m

> (hiay)

i=1

where relative to HapAllele ¢, h; is the number of copies and a; is a user-defined score. By default, if scores are
provided for only a subset of the HapAlleles, the missing alleles scores will be set to zero. This function has the
same spirit as the profiling routine implemented in the score option in PLINK (Purcell et al., 2007; Chang et
al., 2015). This function can be useful for analyses involving cross-validation of genomic predictions based on
BLUP solutions of HapAllele effects or scoring admixture proportions from the output of ghap.ancestral().
Below is an example using simulated scores from a normal distribution:

Create a score data.frame

score <- NULL

score$BLOCK <- haplo$block

score$CHR <- haplo$chr

score$BP1 <- haplo$bpl

score$BP2 <- haplo$bp2

score$ALLELE <- haplo$allele
set.seed(1988)

score$SCORE <- rnorm(length(score$ALLELE))
score <- data.frame(score,stringsAsFactors = FALSE)
score$CENTER <- 0

score$SCALE <- 1

Compute profiles
profile <- ghap.profile(score, haplo, ncores = 2)

head(profile)

POP ID PROFILE
1 ASW NA19904 -38.410381
2 ASW NA20340 -12.250027
3 ASW NA20297 -45.473774
4 ASW NA20281 -7.360974
5 ASW NA20348 -36.271198
6 ASW NA20300 40.912226

14

Methods 1 - Format

The supported format is composed of three files with suffix:

.samples = space-delimited file without header containing two columns: Population and ID. Please notice
that the Population column serves solely for the purpose of grouping samples, so the user can define any
arbitrary family/cluster /subgroup and use as a “population” tag.

.markers = space-delimited file without header containing five columns: Chromosome, Marker, Position
(in bp), Reference Allele (A0) and Alternative Allele (Al). Markers should be on a single chromosome and
sorted by position.

.phase = space-delimited file without header containing the phased genotype matrix. The dimension of the
matrix is expected to be m x 2n, where m is the number of markers and n is the number of individuals.
Alleles must be coded as 0 and 1. No missing values are allowed.

See below an example of five individuals from the ASW population with phased genotypes for five markers
on chromosome 2:

.samples file	.markers file	.phase file
ASW NA19904	2 rs13383216 18228 A G	1111111111
ASW NA20340	2 rs13386087 24503 GT	0000000000
ASW NA20297	2 rs10179984 33092 A G	1010000011
ASW NA20281	2 rs300761 60074 AG	0100110101
ASW NA20348	2 rs6749571 72820C G	0000000100

This format is conveniently obtained with very little manipulation from the output of widely used phasing
software, such as SHAPEIT2 (O’Connell et al., 2014). For instance, to format your SHAPEIT? files with
UNIX standard commands use:

tail -n +3 shapeit2_file.sample | cut -d' ' -f1,2 > GHapfile.samples
cut -d' ' -f1-5 shapeit2_file.haps > GHapfile.markers
cut -d' ' -f1-5 --complement shapeit2_file.haps > GHapfile.phase

15

Methods 2 - Haplotyping algorithm

Let a haplotype library (HapLibrary) be the collection of observed HapAlleles for a given HapBlock. The
haplotyping procedure implemented in GHap is straightforward: each HapAllele in the library is treated as
a pseudo-marker, and HapGenotypes are scored as 0, 1 or 2 HapAllele copies. Take the example:

.samples file	.markers file	.phase file
ASW NA19904	2 rs13383216 18228 A G	1111111111
ASW NA20340	2 rs13386087 24503 GT	0000000000
ASW NA20297	2 rs10179984 33092 A G	1010000011
ASW NA20281	2 rs300761 60074 AG	0100110101
ASW NA20348	2 rs6749571 72820C G	0000000100

Let’s assume the user wishes to call haplotypes for the first three markers. The algorithm works as follows:
First, we crop the matrix at the selected markers (for the sake of clarity, we will transpose the matrix and
represent subjects in rows and markers in columns):

POP ID rs13383216 rs13386087 rs10179984
ASW NA19904 0 1

ASW NA19904
ASW NA20340
ASW NA20340
ASW NA20297
ASW NA20297
ASW NA20281
ASW NA20281
ASW NA20348
ASW NA20348

e
O O O OO O OO
P P, O OOOORrOo

o

The HapLibrary is created based on the unique HapAlleles:

HapAllelel: 101 (GGG)
HapAllele2: 100 (GGA)

Then, for each HapAllele, individual HapGenotypes are scored based on the number of copies:

POP ID GGG GGA
ASW NA19904 1 1
ASW NA20340 1 1
ASW NA20297 0 2
ASW NA20281 0 2
ASW NA20348 2 0

The procedure is then repeated for each HapBlock. The haplotyping function outputs three files with suffix:
.hapsamples = space-delimited file without header containing two columns: Population and Individual ID.

.hapalleles = space-delimited file without header containing five columns: Block Name, Chromosome, Start
and End Position (in bp), and Haplotype Allele.

.hapgenotypes = space-delimited file without header containing the haplotype genotype matrix (coded as
0, 1 or 2 copies of the haplotype allele). The dimension of the matrix is m x n, where m is the number of
haplotype alleles and n is the number of subjects.

The example below was extracted from the first two HapBlocks for the HapMap data, using a random draw
of 3,000 markers:

16

.hapsamples file

.hapalleles file

.hapgenotypes file

ASW NA19904
ASW NA20340
ASW NA20297
ASW NA20281
ASW NA20348

CHR2_B4 2 1009753 2462617 CCAATGTGGG
CHR2_B6 2 2511429 3071611 CCACACCAAT
CHR2_B6 2 2511429 3071611 CCACACCGAT
CHR2_B6 2 2511429 3071611 CTACACCAAT
CHR2_B6 2 2511429 3071611 CTACACCGAT

O O O O O
O O O O O
= = O O O
O O O O O
O O O O O

17

Methods 3 - Haplotype statistics

Relative to HapAllele ¢, let p;, h; and n represent the relative frequency, the number of homozygotes, and the
number of subjects, respectively. Also, let S; be some test statistic or score for the HapAllele, representing
the goodness-of-fit of h; to HWE expectations. The ghap.hapstats() function computes three candidate
methods for S;:

Method 1. The number of homozygotes for haplotype i is expected to be E[h;] = np? under HWE. Provided
we observed O[h;] homozygotes, deviations from HWE expectations can be expressed in terms of the
expected-to-observed ratio:

E[hl] —+ (651

S = ———
O[hi] + as

where o and as are shrinkage parameters. The purpose of the shrinkage parameters is to regularize the
scores towards a ratio of o1, being particularly useful in cases where the number of observed homozygotes is
close to zero. As the null ratio value is 1 (i.e., expected and observed counts are equal), a reasonable choice of
shrinkage parameters is a; = as = 1 (the default in GHap), which in practice introduces a bias equivalent
to that of one additional expected and one additional observed homozygote. For a more detailed review on
shrinkage expected-to-observed (or observed-to-expected) ratio, see Norén et al. (2013).

Method 2. Under the null hypothesis of HWE, h; ~ Binomial(n,p?), with E[h;] = np? and VAR[h;] =
np?(1 — p?). Therefore, the probability of observing h; or less homozygotes given the haplotype is in HWE is:

n . .
PrX <h)=Y (.)p?(l Ay
j<h; M

where X is a random draw from the Binomial distribution.

Method 3. Provided n is large, h; ~ Poisson()\;), where \; = E[h;] = VAR[h;] = np?. This leads to
probability:

Pr(X < h;) =e &
J<hi

Note that the variance in the Binomial model is smaller than in the Poisson model, which in practice results
in more conservative probabilities in the latter case.

18

Methods 4 - Haplotype coding for regression and relationship matrix

Consider a multi-allelic locus and let alleles 1, 2, ..., h be ordered with frequencies p = [pl P2 ... ph]/
(from lowest to highest). Following Falconer and Mackay (1996), the genotypic value associated with genotype
ij can be decomposed into:

gij = K+ i + 0y

where p, u;; and d;; are the genotypic mean, the breeding value (BV) and the dominance deviation, respectively.
Here we will focus only on the BV, such that the dominance deviation will be treated as a residual effect.
Assuming Hardy-Weinberg Equilibrium (HWE), the BV can be partitioned into allelic effects (Da, 2015):

U = ijaij
J#i
where «; is the average effect of substituting allele ¢ by allele j. It follows that c; = 0 and o5 = —a4, such
that there are only h — 1 independent substitution effects to consider, which can be expressed as the effects
of replacing a reference allele by any other in the same locus. Da (2015) proposed setting the most frequent
allele as the reference. However, since the choice is arbitrary and do not affect the resulting BV, we will
consider at first the least frequent allele (i.e., allele 1) as the reference instead for later convenience. In this
setting, the BV can be expressed as:

h
U5 = Zmij,koélk
k=2
where m;; 1 is a scalar taking values:
—(0—2py), fori,j #k
—(1—2pg), fori£jbuti=korj=k
—(2—=2pg), fori=j=%k

So far all substitution effects a1 are expressed in the direction of allele 1. However, we wish to derive
substitution effects in the direction of each allele by treating them as the reference, and use allele 1 as the
basis for contrasts. Since we established that a1, = —ag1, we can re-write the BV as:

h
Uy = E —Mij kX1
k=2

where —m;; 1 is a scalar taking values:
0 — 2pyg, for O copies of allele k
1 — 2pg, for 0 copies of allele k
2 — 2py, for O copies of allele k&

Since the 2p; term represents the mean allele count when HWE is assumed, an alternative coding not
requiring HWE is obtained from replacing 2p; by the sample mean. This is the approach we adopted in
GHap. If the locus is bi-allelic, the allele coding collapses to the genotype coding used for SNP markers. In
fact, SNP-based regression is revealed here as a special case of haplotype-based regression, where HapBlocks
are bi-allelic and of size 1 bp. This coding also reveals that regression on HapAlleles is in fact equivalent
to fitting haplotypes as pseudo bi-allelic markers, provided that an arbitrary HapAllele (in this case the
minor HapAllele) has been discarded (i.e., set as the basis for contrasts). Without loss of generality, rare and
nearly fixed HapAlleles can also be discarded in order to reduce the number of predictors, procedure that is
analogous to exclusion of SNPs by minor allele frequency in SNP-based regression.

19

The coding presented above is also used to compute the haplotype-based relationship matrix. Briefly, cet
M be the centered N x H matrix of HapGenotypes, where N is the number of observations and H is the
number of HapAlleles. The HapAllele correlations among individuals can be computed as:

K = qMDM’

where D = diag(d;), d; is the weight of HapAllele i (default d; = 1), and ¢ = tr(MDM’')~!N. Notice that
this is a generalization of the SNP-based genomic relationship matrix (VanRaden, 2008).

20

Methods 5 - Regression treating haplotypes as fixed effects

The least squares regression procedure in GHap tests each HapAllele at a time for association with phenotypes.
The fixed effect, error variance and test statistic of a given HapAllele are estimated as:

&= (m'm)_lm’y
VAR(Q) = (m’m)%&g

A2
(6%
2= —

VAR(Q)

Under the null hypothesis that the regression coefficient is zero t> ~ x?(v = 1). Although nothing prevents
the user to fit raw phenotypes, the use of adjusted records accounting for covariates, polygenic effects and
other potential random effects is advisible. For instance, residuals from the mixed model analysis could be
used as the response variable for regression on HapAlleles. The user must be aware of two known caveats
associated with this approach:

1 - By pre-adjusting records instead of estimating HapAllele effects based on generalized least squares
equations we ignore covariance structure and therefore bias the estimates downwards (Svishcheva et al., 2012).

2 - Each HapAllele being tested is also included in the kinship matrix, such that the HapAllele is included
twice in the model: as fixed and random effect. This problem is known as proximal contamination (Listgarten
et al., 2012).

In the first case, we can use genomic control to recover p-values to an unbiased scale (Devlin and Roeder,
1999; Amin et al., 2007). However, not much can be done regarding the estimates of the effects. As a general
recommendation, if the user is only interested in p-values, the regression analysis discussed here should be
sufficient. When effect estimates are of interest, the user can select genome-wide significant HapAlleles and
include them as fixed effects in the full mixed model. For the second case, a leave-one-chromosome-out
(LOCO analysis) procedure can mitigate proximal contamination (Yang et al., 2014). An alternative to
these methods is to use polygenic effects as response instead of residuals. However, this can lead to a higher
false-positive rate (Ekine et al., 2014).

21

Methods 6 - Regression treating haplotypes as random effects

Recall that the generalized linear mixed model assumes:

u | O’i ~ N(O,KUZ)

If we let K = gMDM’, it follows that u = Ma. This means that we can convert between individual breeding
values and HapAllele effects (Strandén and Garrick, 2009):

& =¢DM'K'a

22

Methods 7 - Fixation index

Haplotype-based Fsr analyses are supported by the ghap.fst() function. Calculations are based on the
multi-allelic formula (Nei, 1973):

Fsr = (Hr — Hg)/Hr

where Hrp is the total gene diversity (i.e., expected heterozygosity in the population) and Hg is the sub-
population gene diversity (i.e., the average expected heterozygosity in the sub-populations).

23

Methods 8 - Ancestry assignment

The procedure follows the method described by Bolormaa et al. (2011):

Pparentl Pparent2

Pr(parentl) =

and Pr(parent2) =
Pparentl T Pparent2 Pparentl + Pparent2

where pparenti and pparent2 are the HapAllele frequencies in the first and second parental populations,
respectively. Assignments are performed as follows: if the probability of one of the parents exceeds a
user-defined threshold (default = 0.60), the HapAllele origin is assigned to that parental population. Parental
probabilities are set to zero if the HapAllele frequency in the parental populations are lower than a certain
threshold (default = 0.05).

24

Appendix 1 - Using GHap outputs in third-party software

When the haplotyping procedure is performed using very large datasets, post hoc analyses may be too
computationally demanding to be performed in R. Also, existing pipelines designed to analyze bi-allelic
SNP data can be extended to the analysis of haplotypes by simply incorporating the output generated by
the ghap.hap2tped () function in GHap. This function creates a set of files that mimic a standard PLINK
(Purcell et al., 2007; Chang et al., 2015) tped file, where HapAllele counts 0, 1 and 2 are recoded as NN, NH
and HH genotypes (N = NULL and H = haplotype allele), as if HapAlleles were bi-alelic markers. This coding
scheme is acceptable for any given analysis relying on genotype counts, as long as the user specifies that the
analysis should be done using the H allele as reference for counts. You can specify reference alleles using the
.tref file in PLINK with the reference-allele command. The name for each pseudo-marker is composed by a
concatenation (separated by “_“) of block name, start, end, and haplotype allele identity. Pseudo-marker
positions are computed as (start+end)/2. Of note, for applications such as GWAS it is advisible to output
only MAJOR and REGULAR HapAlleles, since SINGLETONS and MINOR HapAlleles will not contribute
to the analysis.

The following lines of code show one example of how the output from GHap can be articulated with analyses
that are routinely applied to unphased SNP marker data. First, we can export the GHap.haplo object to
use in PLINK:

Subset common haplotypes

hapstats <- ghap.hapstats(haplo, ncores = 2)

common <- hapstats$TYPE %in% c("REGULAR","MAJOR") &
hapstats$FREQ > 0.05 &

hapstats$FREQ < 0.95

haplo <- ghap.subsethaplo(haplo,unique(haplo$id) , common)

Output GHap.haplo object
ghap.outhaplo(haplo = haplo, outfile = "humansub")

Convert to tped

ghap.hap2tped(infile = "humansub", outfile = "humansub")

Then, we can use PLINK to perform a principal components analysis on our data:
#Converting the tped output to PLINK binary

plink --tfile humansub --reference-allele humansub.tref --make-bed --out humansub

#Performing PCA analysis in PLINK
#Correlations and scale with the GHap package are almost perfect (r = 0.999)
plink --bfile humansub --reference-allele humansub.tref --pca 2 --out humansub

25

Appendix 2 - Handling multiple chromosomes and analysis of single marker data

By default GHap works at single chromosome data, specially when it comes to the haplotyping procedure.
However, once HapAlleles have been called on each chromosome, the user can choose to load one chromosome
at a time or to load all chromosomes together with ghap.loadhaplo(). This can be typically achieved by the
use of the ghap.mergehaplo() function, or alternatively by concatenation of single chromosome files.

You can also fool GHap to take in single SNP data (say you wish to compare haplotype x single SNP
association results). To do so, you only need to see SNPs as distinct 1bp HapBlocks, and count number of
copies of a particular allele (e.g., minor or reference allele). Then, ghap.loadhaplo() will naturally load single
SNP data. Be aware that for some analyses special consideration may be required, so be sure that you know
exactly what you are doing!

26

Appendix 3 - Benchmarking

Benchmarking of the main tasks in the package was first performed in a Dell PowerEdge-T410 workstation
with 16 GB RAM and two 64-bit Intel Xeon 2.13 GHz CPUs, running R v3.2.5 under Ubuntu 10.04 LTS.
Performance was evaluated using the HapMap data with varying number of cores.

Benchmarking of GHap with varying numbers of cores.
1,011 samples and 20,000 markers were used.
Time was measured in seconds and averaged over 10 replicates.

| | Number of cores |

| Task |

| | 1 | 2 I 4 I 8 I
| Load data | 9.86+0.11 | - I - I - I
| Filtering* | 8.20+0.23 | 4.2020.14 | 2.60+£0.13 | 1.59+0.04 |
| Haplotyping | 169.50+1.01 | 82.47+0.22 | 42.00+0.33 | 23.00+0.19 |

*Minor allele frequency prunning and subsetting

Another benchmarking was conducted to assess the influence of dataset size on performance. This bench-
marking was done using a Dell T5500 workstation with 24 GB and 64-bit Intel Xeon 3.07GHz CPU, running
R v3.2.3 under Red Hat Enterprise Linux Workstation release 6.7.

Benchmarking of GHap with 8 cores and varying numbers of markers and subjects.
Time was measured in seconds and averaged over 10 replicates.

| | | Task |
| Markers | Samples |

| | | Load data | Filtering | Haplotyping |
| 10,000 | 1,000 | 2.62+0.01 | 0.34+0.04 | 6.29+0.10

	5,000	13.14+0.03	0.91+0.01	28.33+0.25
	10,000	26.04+0.07	1.49+0.05	57.42+0.41
	50,000	134.44:0.54	7.98x0.20	282.44+1.43
100,000	1,000	28.02+0.07	3.30+£0.09	76.64+0.31

| | 5,000 | 143.01+0.22 | 9.95+0.13 | 286.89+0.90 |
| | 10,000 | 281.83+0.91 | 26.73+0.51 | 561.97+1.48 |
| | 50,000% | - | - I - I

*The analysis of 50,000 samples and 100,000 markers consumed more than
the maximum RAM available (24GB) and was unfeasible using available hardware

In summary, GHap scales linearly as a function of markers or subjects. We noticed a limitation in the
analysis of a large number of individuals, but this was related to RAM availability. Analyses of such large
datasets may be accomplished using high-performance computing facilities or by subdividing the data in
batches with smaller sample sizes.

27

References

N. Amin et al. A Genomic Background Based Method for Association Analysis in Related Individuals. PLoS
ONE. 2007. 2:e1274.

D. Bates et al. Fitting Linear Mixed-Effects Models Using Ime4. J. Stat. Soft., 67:1-48.

S. Bolormaa et al. Detection of chromosome segments of zebu and taurine origin and their effect on beef
production and growth. J. Anim. Sci. 2011. 89:2050-2060.

C. C. Chang et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience.
2015. 4, 7.

Y. Da. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component
estimation using SNP markers. BMC Genet. 2015. 16:144.

B. Devlin and K. Roeder. Genomic control for association studies. Biometrics. 1999. 55:997-1004.

C. C. Ekine et al. Why breeding values estimated using familial data should not be used for genome-wide
association studies. G3. 2014. 4:341-347.

J. Listgarten et al. Improved linear mixed models for genome-wide association studies. Nat. Methods. 2012.
9:525-526.

M. Nei. Analysis of Gene Diversity in Subdivided Populations. PNAS. 1973. 70, 3321-3323.

G. N. Norén et al. Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern
discovery. Stat Methods Med Res. 2013. 22,57-69.

J. O’Connell et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLOS
Genetics. PLOS Genet. 2014. 10:¢1004234.

S. Purcell et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am.
J. Hum. Genet. 2007. 81, 559-575.

I. Strandén and D.J. Garrick. Technical note: derivation of equivalent computing algorithms for genomic
predictions and reliabilities of animal merit. J Dairy Sci. 2009. 92:2971-2975.

G. R. Svishcheva et al. Rapid variance components-based method for whole-genome association analysis.
Nat Genet. 2012. 44:1166-1170.

The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human
populations. Nature. 2010. 467, 52-58.

P. M. VanRaden. Efficient methods to compute genomic predictions. J. Dairy. Sci. 2008. 91:4414-4423.

H. Wang et al. Genome-wide association mapping including phenotypes from relatives without genotypes.
Genet Res. 2012. 94:73-83.

J. Yang et al. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet.
2014. 46: 100-106.

28

	Abstract
	Tutorial 1 - Importing phased data
	Tutorial 2 - Subsetting, exporting and merging phased objects
	Tutorial 3 - Haplotyping
	Tutorial 4 - Importing and manipulating haplotype data
	Tutorial 5 - Haplotype statistics
	Tutorial 6 - Relationship matrix and PCA
	Tutorial 7 - Haplotype divergence analysis
	Tutorial 8 - Haplotype ancestry
	Tutorial 9 - Linear mixed model analysis
	Tutorial 10 - Association analysis
	Tutorial 11 - BLUP of haplotypes
	Tutorial 12 - Haplotype profiling
	Methods 1 - Format
	Methods 2 - Haplotyping algorithm
	Methods 3 - Haplotype statistics
	Methods 4 - Haplotype coding for regression and relationship matrix
	Methods 5 - Regression treating haplotypes as fixed effects
	Methods 6 - Regression treating haplotypes as random effects
	Methods 7 - Fixation index
	Methods 8 - Ancestry assignment
	Appendix 1 - Using GHap outputs in third-party software
	Appendix 2 - Handling multiple chromosomes and analysis of single marker data
	Appendix 3 - Benchmarking
	References

