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Abstract

The GHap R package was designed to call haplotypes from phased SNP data. Given user-defined haplotype
blocks (HapBlock), the package identifies the different haplotype alleles (HapAllele) present in the data and
scores sample haplotype allele genotypes (HapGenotype) based on copy number (i.e., 0, 1 or 2 copies). GHap
is an acronym for Genome-wide Haplotyping, and is pronounced as G-Hap, not gap (although it is intended
to fill the gap of haplotype analyses).



Importing phased data

An example input file can be created using the command:

# Copy the example data in the current working directory
library (GHap)
ghap.makefile()

These genotypes derive from the International HapMap Project Phase 3 (The International HapMap 3
Consortium, 2010), and comprise 1,011 subjects (from 11 populations) and 20,000 SNPs (randomly sampled
from chromosome 2) mapped to the NCBI build 36 (hgl8) assembly. The supported format is composed of
three files with suffix:

.samples = space-delimited file without header containing two columns: Population and ID. Please notice
that the Population column serves solely for the purpose of grouping samples, so the user can define any
arbitrary family/cluster /subgroup and use as a “population” tag.

.markers = space-delimited file without header containing five columns: Chromosome, Marker, Position
(in bp), Reference Allele (A0) and Alternative Allele (Al). Markers should be on a single chromosome and
sorted by position.

.phase = space-delimited file without header containing the phased genotype matrix. The dimension of the
matrix is expected to be m x 2n, where m is the number of markers and n is the number of individuals.
Alleles must be coded as 0 and 1. No missing values are allowed.

See below an example of five individuals from the ASW population with phased genotypes for five markers
on chromosome 2:

| .samples file | .markers file | .phase file |
| ASW NA19904 | 2 rs13383216 18228 A G | 1111111111 |
| ASW NA20340 | 2 rs13386087 24503 GT | 0000000000 |
| ASW NA20297 | 2 rs10179984 33092 A G | 1010000011 |
| ASW NA20281 | 2 rs300761 60074 AG | 0100110101 |
| ASW NA20348 | 2 rs6749571 72820 C G | 0000000100 |

This format is conveniently obtained with very little manipulation from the output of widely used phasing
software, such as SHAPEIT2 (O’Connell et al., 2014). For instance, to format your SHAPEIT?2 files with
UNIX standard commands use:

tail -n +3 shapeit2_file.sample | cut -d' ' -f1,2 > GHapfile.samples
cut -d' ' -f1-5 shapeit2_file.haps > GHapfile.markers
cut -d' ' -f1-5 --complement shapeit2_file.haps > GHapfile.phase

The ghap.loadphase() function is responsible for loading phased chromosomes from an input file and
converting them into a native GHap.phase object. A detailed describtion of this object can be found in the
documentation of the function. To load the example data in the package we can run:

#Load haplotype object

phase <- ghap.loadphase(
samples.file = "human.samples",
markers.file = "human.markers",



phase.file = "human.phase"

Reading in marker map information... Done.

A total of 20000 markers were found for chromosome 2.

Reading in sample information... Done.

A total of 1011 individuals were found in 11 populations.

Reading in phased genotypes... (may take a few minutes for large datasets)
Your GHap.phase object was successfully loaded without apparent errors.
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Subsetting, merging and exporting GHap.phase objects

The ghap.subsetphase() function can take any combination of markers and individuals and subset the
GHap.phase object. This is achieved by setting undesired markers and individuals to FALSE. Inactivated
individuals and markers are then ignored by all other functions taking a GHap.phase object as input.

For instance, we know that markers with low polymorphic information content may result in rare HapAlleles.
If downstream analyses do not benefit from rare HapAlleles (e.g., haplotype association), it may be beneficial
to prune these markers out prior to haplotyping. The code below shows how to subset 3,000 randomly
selected markers with a minor allele frequency of at least 2%:

# Subset data - randomly select 3000 markers with maf > 0.02

maf <- ghap.maf (phase, ncores = 2)

set.seed(1988)

markers <- sample(phase$marker[maf > 0.02], 3000, replace = FALSE)
phase <- ghap.subsetphase(phase, unique(phase$id), markers)

#  Subsetting 1011 samples and 3000 markers... done.

# Final data contains 1011 samples and 3000 markers.

It is also possible to merge two distinct GHap.phase objects. There are three possible merging tasks:
1 - Objects 1 and 2 have the same set of markers but different individuals

2 - Objects 1 and 2 have different sets of markers (with potential overlaps) but the same individuals

3 - Objects 1 and 2 have different sets of markers and individuals (with potential overlaps)

Currently, GHap only supports task 1. This is because phase information may not derive from a consensus
marker panel in task 2, and task 3 has the additional problem of forcing missing genotypes. The example
below shows how to bind two GHap.phase objects with different individuals:

# Select ASW and CEU individuals
ASW.ids <- unique(phase$id[phase$pop=="ASW"])
CEU.ids <- unique(phase$id[phase$pop=="CEU"])

# Subset data

phase.ASW <- ghap.subsetphase(phase = phase, ids = ASW.ids, markers = markers)
# Subsetting 63 individuals and 3000 markers... Done.

# Final data contains 63 individuals and 3000 markers.

phase.CEU <- ghap.subsetphase(phase = phase, ids = CEU.ids, markers
# Subsetting 117 individuals and 3000 markers... Done.

# Final data contains 117 individuals and 3000 markers.

markers)

# Merge phase.ASW and phase.CEU

phase.merge <- ghap.mergephase(phase.l = phase.ASW, phase.2 = phase.CEU)

# Creating the new GHap.phase object...

# Your GHap.phase object was successfully merged without apparent errors.



GHap.phase objects can also be exported to text files:

# Output data
ghap.outphase(phase, "example")

#  Preparing example.markers... Done.
# Preparing example.samples... Done.
#  Preparing example.phase... Done.

Defining HapBlocks

The user can provide the coordinates of any specific/arbitrary block to compute haplotype statistics. HapBlocks
may also be defined based on LD structure. For instance, the algorithm created by Gabriel et al. (2002)
implemented in PLINK v1.07/v1.9 (Purcell et al., 2007; Chang et al., 2015) can be used to estimate haplotype
blocks based on the D’ measure of LD. In GHap, we provide means to generate coordinates for HapBlocks
based on sliding windows of markers. This strategy is particularly useful in genome-wide scans. We define
HapBlocks here as user-defined sets of adjacent markers. An example of HapBlocks comprising ten markers,
sliding five markers at a time, is provided below:

# Generate block coordinates based on windows of 10 markers, sliding 5 marker at a time
blocks <- ghap.blockgen(phase, 10, 5, "marker")

The user can also specify window and step size based on segment size in kilo-bases.

# Generate block coordinates based on windows of 500 kb, sliding 100 kb at a time
blocks <- ghap.blockgen(phase, 500, 100, "kb")

Haplotyping procedure

Let a haplotype library (HapLibrary) be the collection of observed HapAlleles for a given HapBlock. The
haplotyping procedure implemented in GHap is straightforward: each HapAllele in the library is treated as
a pseudo-marker, and HapGenotypes are scored as 0, 1 or 2 HapAllele copies. For instance, let’s recall the
example data provided in section 2:

| .samples file | .markers file | .phase file

| ASW NA19904 | 2 1rs13383216 18228 AG | 1111111111 |
| ASW NA20340 | 2 rs13386087 24503 GT | 0000000000 |
| ASW NA20297 | 2 rs10179984 33092 AG | 1010000011 |
| ASW NA20281 | 2 rs300761 60074 AG | 0100110101 |
| ASW NA20348 | 2 rs6749571 72820 CG | 0000000100 |

Let’s assume the user wishes to call haplotypes for the HapBlock comprising the first three markers. The
algorithm works as follows: First, we crop the matrix at the selected markers (for the sake of clarity, we will
transpose the matrix and represent animals in rows and markers in columuns):



POP ID rs13383216 rs13386087 rs10179984

ASW NA19904 1 0 1
ASW NA19904 1 0 0
ASW NA20340 1 0 1
ASW NA20340 1 0 0
ASW NA20297 1 0 0
ASW NA20297 1 0 0
ASW NA20281 1 0 0
ASW NA20281 1 0 0
ASW NA20348 1 0 1
ASW NA20348 1 0 1

The HapLibrary is created based on the unique HapAlleles:

HapAllelel: 101 (GGG)
HapAllele2: 100 (GGA)

Then, for each HapAllele, individual HapGenotypes are scored based on the number of copies:

POP ID GGG GGA
ASW NA19904
ASW NA20340
ASW NA20297
ASW NA20281
ASW NA20348
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The procedure is then repeated for each HapBlock. Below is an example with the test data, where HapGeno-
types are called based on blocks of 10 markers with overlaps of 5 markers between blocks:

# Generate matrix of haplotype genotypes

ghap.haplotyping(phase, blocks, batchsize = 100, ncores = 2, freq = 0.05, outfile = "example")
#  Processing 599 blocks in:

# 1 batches of 99

# 5 batches of 100

# 599 blocks written to file

The user can control memory usage and process parallelization through the arguments batchsize and ncores,
respectively. Notice that in the case above only HapAlleles with frequency > 0.05 will be retrieved. The
function outputs three files with suffix:

.hapsamples = space-delimited file without header containing two columns: Population and Individual ID.

.hapalleles = space-delimited file without header containing five columns: Block Name, Chromosome, Start
and End Position (in bp), and Haplotype Allele.

.hapgenotypes = space-delimited file without header containing the haplotype genotype matrix (coded as
0, 1 or 2 copies of the haplotype allele). The dimension of the matrix is m x n, where m is the number of
haplotype alleles and n is the number of samples.

The example below was extracted from the first two HapBlocks for the HapMap data, using a random draw
of 3,000 markers:



| .hapsamples file | .hapalleles file | .hapgenotypes file

ASW NA19904
ASW NA20340
ASW NA20297
ASW NA20281
ASW NA20348

CHR2_B4 2 1009753 2462617 CCAATGTGGG
CHR2_B6 2 2511429 3071611 CCACACCAAT
CHR2_B6 2 2511429 3071611 CCACACCGAT
CHR2_B6 2 2511429 3071611 CTACACCAAT
CHR2_B6 2 2511429 3071611 CTACACCGAT

O O O O O
O O O O O
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Importing HapAllele data

After HapAlleles have been scored, the data can be loaded into R using the ghap.loadhaplo function:

# Load haplotype genotypes

haplo <- ghap.loadhaplo("example.hapsamples", "example.hapalleles", "example.hapgenotypes")
Reading in haplotype allele information... Done.

A total of 1750 haplotype alleles were found.

Reading in sample information... Done.

A total of 1011 individuals were found in 11 populations.

Reading in haplotype genotypes... (may take a few minutes for large datasets)

Your GHap.haplo object was successfully loaded without apparent errors.
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Subsetting, merging and exporting HapAllele data

Similar to the GHap.phase object, the user can also subset, merge and export GHap.haplo objects. For
instance:

# Select CEU and ASW individuals
CEU.ids <- haplo$id[which(haplo$pop=="CEU")]
ASW.ids <- haplo$id[which(haplo$pop=="ASW")]

# Randomly select a set of HapAlleles
random.allele <- sample(x=c(TRUE, FALSE), size=haplo$nalleles, replace = TRUE)

# Subset data

haplo.CEU <- ghap.subsethaplo(haplo,ASW.ids,random.allele)

# Subsetting 63 samples and 865 haplotype alleles... Done.

# Final data contains 63 samples and 865 haplotype alleles.
haplo.ASW <- ghap.subsethaplo(haplo,CEU.ids,random.allele)

# Subsetting 117 samples and 865 haplotype alleles... Done.
# Final data contains 117 samples and 865 haplotype alleles.

# Merge haplo.CEU and haplo.ASW
haplo.merge <- ghap.mergehaplo(haplo.l = haplo.CEU, haplo.2 = haplo.ASW, type = "individual")

# Output new GHap.haplo object

ghap.outhaplo(haplo = haplo.merge, outfile = "subset")
# Preparing subset.hapsamples... Done.

# Preparing subset.hapalleles... Done.

# Preparing subset.hapgenotypes... Done.



HapAllele statistics

The statistics include absolute and relative frequencies, expected and observed number of homozygotes, and
different tests for deficit of homozygotes in comparison to Hardy-Weinberg Equilibrium (HWE) expectations,
which are described below.

Relative to HapAllele i, let p;, h; and n represent the relative frequency, the number of homozygotes, and
the total number of observed chromosomes, respectively. Also, let S; be some test statistic or score for
the HapAllele, representing the goodness-of-fit of h; to HWE expectations. The ghap.hapstats() function
computes three candidate methods for S;:

Method 1. The number of homozygotes for haplotype i is expected to be E[h;] = np? under HWE. Provided
we observed Ol[h;] homozygotes, deviations from HWE expectations can be expressed in terms of the
expected-to-observed ratio:

Elh;] + on

S = oL
O[hi} + (65)

where oy and as are shrinkage parameters. The purpose of the shrinkage parameters is to regularize the
scores towards a ratio of 3—;, being particularly useful in cases where the number of observed homozygotes is
close to zero. As the null ratio value is 1 (i.e., expected and observed counts are equal), a reasonable choice of
shrinkage parameters is a; = as = 1 (the default in GHap), which in practice introduces a bias equivalent
to that of one additional expected and one additional observed homozygote. For a more detailed review on
shrinkage expected-to-observed (or observed-to-expected) ratio, see Norén et al. (2013).

Method 2. Under the null hypothesis of HWE, h; ~ Binomial(n,p?), with E[h;] = np? and VAR[h;] =
np?(1 — p?). Therefore, the probability of observing h; or less homozygotes given the haplotype is in HWE is:

Prix <m) =3 (M) st

i<h;

where X is a random draw from the Binomial distribution.

Method 3. Provided n is large, h; ~ Poisson()\;), where \; = E[h;] = VAR[h;] = np?. This leads to
probability:

Pr(X <h)=e™ =
i<h;

Note that the variance in the Binomial model is smaller than in the Poisson model, which in practice results
in more conservative probabilities in the latter case. The summary statistics for the first two blocks in CEU
can be obtained as:

CEU.hapstats <- ghap.hapstats(haplo, ncores = 2)
head (CEU.hapstats[,c(1,5:13)],n=5)

# BLOCK ALLELE N FREQ 0.HOM O.HET E.HOM RATIO BIN.logP POI.logP
# 1 CHR2_B4 CCAATGTGGG 27 0.11538462 5 17 1.5576923 0.4262821 0.002160378 0.002319618
# 2 CHR2_B6 CCACACCAAT 20 0.08547009 1 18 0.8547009 0.9273504 0.102810150 0.102917993
# 3 CHR2_B6 CCACACCGAT 5 0.02136752 0 5 0.0534188 1.0534188 0.023204789 0.023199492
# 4 CHR2_B6 CTACACCAAT 11 0.04700855 0 11 0.2585470 1.2585470 0.112409787 0.112285539
# 5 CHR2_B6 CTACACCGAT 0 0.00000000 0 0 0.0000000 1.0000000 0.000000000 0.000000000



HapBlock statistics

The ghap.blockstats function summarizes HapAllele statistics per block and retrieves the expected het-
erozygosity and the number of alleles per HapBlock. For instance:

CEU.blockstats <- ghap.blockstats(CEU.hapstats, ncores = 2)
head (CEU.blockstats,n=2)

# BLOCK CHR BP1 BP2 EXP.H N.ALLELES
# 1 CHR2_B4 2 1009753 2462617 0.9866864 1
# 2 CHR2_B6 2 2511429 3071611 0.9900285 4

Please notice that when HapAlleles are prunned out by frequency the block statistics can retrieve high
expected heterozygosity with small number of HapAlleles. The ideal situation would be computing both
HapAllele and HapBlock statistics based on the entire set of HapAlleles.

HapAllele relationship matrix and PCA

Briefly, let H be the centered n x m matrix of HapGenotypes, where n is the number of observations and m
is the number of HapAlleles. The HapAllele covariance among individuals can be computed as:

K = ¢HDH’

where D = diag(d;), d; is the weight of HapAllele ¢ (default d; = 1), and ¢ is the inverse weighted sum of
variances in the columns of H. Notice that this is a generalization of the SNP-based genomic relationship
matrix (VanRaden, 2008). The example below computes a kinship matrix from HapGenotypes and plots the
first two eigenvectors of a singular value decomposition (principal components analysis) of this matrix.

# Reactivate all samples

haplo <- ghap.subsethaplo(haplo,haplo$id,haplo$allele.in)

#  Subsetting 1011 samples and 1750 haplotype alleles... done.
# Final data contains 1011 samples and 1750 haplotype alleles.

# Compute Kinship matrix
K <- ghap.kinship(haplo, batchsize = 100)

# PCA analysis
pca <- ghap.pca(haplo,K)

# Plot

plot (x=pca$eigenvec$PCl, y=pca$eigenvec$PC2, xlab="PC1", ylab="PC2", pch="")

pop <- pca$eigenvec$POP

pop.col <- as.numeric(as.factor(pop))

pop <- sort(unique(pop))

legend("bottomright", legend = pop, col = 1l:length(pop), pch = 1:length(pop), ncol = 3)
points(x=pca$eigenvec$PCl, y=pca$eigenvec$PC2,, pch = pop.col, col = pop.col, cex = 1.2)

Selection signatures analysis

Haplotype-based Fgr analyses are supported by the ghap.fst() function. Calculations are based on the
multi-allelic formula



Fsr = (Hr — Hg)/Hr

where Hrp is the total gene diversity (i.e., expected heterozygosity in the population) and Hg is the sub-
population gene diversity (i.e., the average expected heterozygosity in the sub-populations). For instance, the
example below compares the CEU and CHB populations for HapBlocks on chromosome 2:

# Compute haplotype allele statistics for each group

CHB.ids <- haplo$id[which(haplo$pop=="CHB")]

CEU.ids <- haplo$id[which(haplo$pop=="CEU")]

haplo <- ghap.subsethaplo(haplo,CHB.ids,haplo$allele.in)

#  Subsetting 84 samples and 1750 haplotype alleles... done.

# Final data contains 84 samples and 1750 haplotype alleles.
CHB.hapstats <- ghap.hapstats(haplo,ncores = 2)

haplo <- ghap.subsethaplo(haplo,CEU.ids,haplo$allele.in)

#  Subsetting 117 samples and 1750 haplotype alleles... done.
# Final data contains 117 samples and 1750 haplotype alleles.
CEU.hapstats <- ghap.hapstats(haplo,ncores = 2)

haplo <- ghap.subsethaplo(haplo,c(CHB.ids,CEU.ids) ,haplo$allele.in)
#  Subsetting 201 samples and 1750 haplotype alleles... done.
# Final data contains 201 samples and 1750 haplotype alleles.
TOT.hapstats <- ghap.hapstats(haplo,ncores = 2)

# Compute haplotype block statistics for each group

CHB.blockstats <- ghap.blockstats(CHB.hapstats, ncores = 2)
CEU.blockstats <- ghap.blockstats(CEU.hapstats, ncores = 2)
TOT.blockstats <- ghap.blockstats(TOT.hapstats, ncores = 2)

# Calculate Fst
fst<-ghap.fst(CHB.blockstats, CEU.blockstats, TOT.blockstats)

# Plot results
top.fst <- fst[fst$FST == max(£fst$FST, na.rm=TRUE),]
plot(

x = (fst$BP1+fst$BP2)/2e+6,

y = fst$FST, pch = "",

ylab = expression(paste("Haplotype ", F[ST])),

xlab = "Chromosome 2 (in Mb)",

ylim=c(0,1)

)

abline(v=108.7, col="gray")
points(x = (fst$BP1+fst$BP2)/2e+6, y = £st$FST, pch = 20, col="#471FAA99")
points(x = (top.fst$BPl+top.fst$BP2)/2e+6, y = top.fst$FST, pch = 20, col="red")
text(x = 125, y = max(fst$FST, na.rm=TRUE), "EDAR", col="red")
CEU.hapstats[CEU.hapstats$BLOCK == top.fst$BLOCK & CEU.hapstats$FREQ > 0,1:9]

# BLOCK CHR BP1 BP2 ALLELE N FREQ 0.HOM O.HET
# 893 CHR2_B291 2 108769202 108948789 TATTACCCCG 149 0.63675214 45 59
# 894 CHR2_B291 2 108769202 108948789 TATTACCCTA 14 0.05982906 0 14
CHB.hapstats[CHB.hapstats$BLOCK == top.fst$BLOCK & CHB.hapstats$FREQ > 0,1:9]

# BLOCK CHR BP1 BP2 ALLELE N FREQ O0.HOM O.HET
# 892 CHR2_B291 2 108769202 108948789 TATCACCGTA 2 0.01190476 0 2
# 894 CHR2_B291 2 108769202 108948789 TATTACCCTA 2 0.01190476 0 2
# 895 CHR2_B291 2 108769202 108948789 TATTGCCCTA 155 0.92261905 71 13



Ideally, similar to the case of HapAllele and HapBlock statistics, the Fgr analysis should be carried out on
the full set of HapAlleles, rather than a frequency-prunned subset.

Ancestry estimation

GHap offers a way to calculate the probability that a given HapAllele from a tested population was inherited
from one of the tested parental populations. The procedure follows the method described by Bolormaa et al.
(2011):

Pparentl Pparent2

Pr(parentl) = and Pr(parent2) =

Pparentl + Pparent2 Pparentl + DPparent2

where pparenti and DPparent2 are the HapAllele frequencies in the first and second parental populations,
respectively. Assignments are performed as follows: if the probability of one of the parents exceeds a
user-defined threshold (default = 0.60), the HapAllele origin is assigned to that parental population. Parental
probabilities are set to zero if the HapAllele frequency in the parental populations are lower than a certain
threshold (default = 0.05). For instance, using CEU and YRI as proxy parental populations for ASW, we
could assign HapAlleles in ASW to CEU or YRI using the following code:

# Subset data - randomly select 3000 markers with maf > 0.02

ASW.ids <- unique(phase$id[phase$pop=="ASW"])

YRI.ids <- unique(phase$id[phase$pop=="YRI"])

CEU.ids <- unique(phase$id[phase$pop=="CEU"])

phase <- ghap.subsetphase(phase, c(ASW.ids,YRI.ids,CEU.ids), phase$marker)
#  Subsetting 295 samples and 20000 markers... done.

# Final data contains 295 samples and 20000 markers.

maf <- ghap.maf (phase, ncores = 2)

set.seed(1988)

markers <- sample(phase$marker[maf > 0.02], 3000, replace = FALSE)
phase <- ghap.subsetphase(phase, c(ASW.ids,YRI.ids,CEU.ids), markers)
#  Subsetting 295 samples and 3000 markers... done.

# Final data contains 295 samples and 3000 markers.

# Generate block coordinates based on windows of 10 markers, sliding 5 marker at a time
blocks <- ghap.blockgen(phase, 10, 5, "marker")

# Generate matrix of haplotype genotypes

ghap.haplotyping(phase, blocks, batchsize = 100, ncores = 2, freq = 0, outfile = "example")
# Processing 599 blocks in:

# 1 batches of 99

# 5 batches of 100

# 599 blocks written to file

# Load haplotype genotypes
haplo <- ghap.loadhaplo('"example.hapsamples", "example.hapalleles", "example.hapgenotypes")

Reading in haplotype allele information... Done.
A total of 65307 haplotype alleles were found.
Reading in sample information... Done.

A total of 295 individuals were found in 3 populations.
Reading in haplotype genotypes... Done.
Your GHap.haplo object was successfully loaded without apparent errors.
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# Compute haplotype allele statistics for each group
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haplo <- ghap.subsethaplo(haplo,YRI.ids,haplo$allele.in)

#
#

Subsetting 115 samples and 65307 haplotype alleles...
Final data contains 115 samples and 65307 haplotype alleles.

YRI.hapstats <- ghap.hapstats(haplo,ncores = 2)
haplo <- ghap.subsethaplo(haplo,CEU.ids,haplo$allele.in)

#
#

Subsetting 117 samples and 65307 haplotype alleles...
Final data contains 117 samples and 65307 haplotype alleles.

CEU.hapstats <- ghap.hapstats(haplo,ncores = 2)
haplo <- ghap.subsethaplo(haplo,ASW.ids,haplo$allele.in)

#
#

Subsetting 63 samples and 65307 haplotype alleles...
Final data contains 63 samples and 65307 haplotype alleles.

ASW.hapstats <- ghap.hapstats(haplo,ncores = 2)

# Find haplotype origin
# ASW is the test population. YRI and CEU are used as parental populations

done.

done.

done.

# The frequency threshold is set to 0.05 and the probability of assignment to 0.60
ancestry <- ghap.ancestral (ASW.hapstats, YRI.hapstats, CEU.hapstats, 0.05, 0.60)
head(ancestry[ancestry$0RIGIN != "UNK" & ancestry$FREQ.TEST > 0,-c(2:4)1)

# BLOCK ALLELE  FREQ.TEST FREQ.PARENT1 FREQ.PARENT2 PROB.PARENT1 PROB.PARENT2 ORIGIN
# CHR2_B1 TCCCTGCTCC 0.047619048 0.052173913  0.00000000 1 0.0000000 PARENT1
# CHR2_B1 TCTGTGCTCC 0.031746032 0.056521739  0.00000000 1 0.0000000 PARENT1
# CHR2_B1 TTCCTACCCG 0.007936508 0.000000000 0.10683761 0 1.0000000 PARENT2
# CHR2_B1 TTCCTACTCC 0.023809524 0.013043478 0.06837607 0 0.8397992 PARENT2
# CHR2_B1 TTCCTGCCCC 0.031746032 0.004347826 0.05128205 0 0.9218437 PARENT2
# CHR2_B1 TTCCTGTTCG 0.007936508 0.000000000  0.05555556 0 1.0000000 PARENT2

Linear mixed model analysis

The linear mixed model procedure in GHap is implemented under two different frameworks: 1 - Bayesian
estimation via Gibbs sampling, inspired by similar models and algorithms described elsewhere (Wang et al.,
1994; Sorensen et al., 1995; Pérez and de Los Campos, 2015); and 2 - frequentist estimation via maximum
likelihood. Greater details of these frameworks can be found in the Appendix. The targeted model is:

y=Xb+Zu+Zp+e

where X is a n x p matrix relating the n records in y to the p fixed effects in b, Z is a n x m incidence
matrix relating the n records in y to the m random effects in u (with variance-covariance Ko2) and p (with
variance-covariance Ia%), and e is the vector of residuals (with variance-covariance Wo?). Here we assume
residuals are independent, such that W = diag(w;). Also, if we let K be the HapAllele relationship matrix,
then u becomes the HapAllele-based polygenic effects/breeding values, and 02 becomes the variance due
to HapAlleles. Importantly, any arbitrary K matrix is admitted, such that one may fit models combining
pedigree and haplotype relationships (e.g., single-step GWAS analysis). Although including permanent
environmental effects p may be beneficial for the analysis of repeated measurements, the user can decide

whether these should be included (the default model does not include these effects).

When variance components are known, solutions of fixed and random effects can be obtained with the
ghap.mme () function using Henderson’s mixed model equations:

X'W-1X X'W-1Z X'W-1zZ

2 b X'W-ly
ZWX ZW1'Z+K 1'% ZWZ i W1
o2 e = Z'W~y
ZW~X ZW1Z ZW-'Z+1%| [P Z’'W~ly
P

11



Otherwise, the Bayesian framework implemented in ghap.blmm() or the frequentist framework implemented
in ghap.1lmm() can be used to obtain estimates of model parameters. For the frequentist approach, the
likelihood of the data given the parameters is assumed:

y | b,u,p,05,07,02 ~ N(Xb,V)

where V = ZKZ'0; + ZZ'07 + Wo?. The negative log-likelihood is minimized using a quasi-Newton method
with box constraints.

In the case of the Bayesian method, the likelihood of the data given the parameters is assumed:

y | b,u,p,02,0% 0% ~ N(Xb + Zu + Zp, Wo?)

D

2

In this setting, the parameters we wish to estimate are b, u, p, o,

following prior distributions:

o2 and o?, for which we assign the

b o constant
u| o2~ N(0,Ko?)
p| O’Z ~ N(O,Iag)

on ~ X (vu, S7)
012) ~ X_2(vas;2;)

Og ~ X_Q(Veﬂgg)

The hyper-parameters vy, vp, Ve, S2, Sf, and S? are the random effects and residual variance degrees of
freedom and scale parameters, respectively. Following Bayes’ Theorem, we have:

posterior  likelihood x prior

such that the full posterior distribution can be written as:

Pr(b,u,p,oi,ai,az |y) < Pr(y | b,u,p,ai,ai,az)Pr(u | o) Pr(p | aﬁ)Pr(oi)Pr(of))Pr(ag)

The ghap.blmm() function uses a Gibbs sampling algorithm to obtain samples from the marginal conditional
posterior distribution of each parameter. The Markov Chain is ran for a user-specified number of Monte
Carlo simulations, and estimates for the posterior means of the parameters are obtained by averaging over
simulations. As the Makov Chain is allowed to walk over the entire domain of the posterior distribution,
effects of local maxima are mitigated by averaging over simulations, such that parameter estimates may
better represent the values under the global maxima.

Different from other GWAS tools, GHap accommodates repeated measurements through Z and heteroskedas-
tic residuals through W. The package can also deal with ordered categorical data as response under the
Bayesian framework. This is achieved by assuming that categories emerge from thresholds of a latent
normal variable (i.e., “liability”). We use data augmentation to sample thresholds and observations from the
underlying latent variable, which we then treat as responses in the main algorithm.

In the example below we simulate a quantitative trait with 50% heritability, where a major HapAllele
accounts for 30% of the genetic variance. We use the same data to illustrate a binary trait that emerged from
thresholding an underlying quantitative trait.
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# Quantitative trait with 50\ heritability
# One major haplotype accounting for 30\ of the genetic variance
sim <- ghap.simpheno(haplo = haplo, K = K, h2 = 0.5, g2 = 0.3, major = 1000,seed=1988)

# Binary trait from the previous example

# 0 if observation is below the 70\’ percentile

# 1 otherwise

thr <- quantile(x = sim$data$phenotype, probs = 0.7)
sim$data$phenotype2 <- sim$data$phenotype
sim$data$phenotype2[sim$data$phenotype < thr] <- 0
sim$data$phenotype2[sim$data$phenotype >= thr] <- 1

In the example below, we fit the simulated phenotypes including only an intercept as fixed effect. If we
assume known variances:

#Henderson's mixed model equations

model <- ghap.mme(fixed = phenotype ~ 1, random = "individual", data = sim$data, K = K
varcomp = c(sim$vare,sim$varu))

plot(model$u,sim$u, ylab="True Breeding Value", xlab="Estimated Breeding Value")

cor (model$u,sim$u)

With unkwown variances we have to estimate model parameters with either ghap.1lmm() or ghap.blmm().
With ghap.1mm(), the model is fitted by running:

#Continuous model

model <- ghap.lmm(fixed = phenotype ~ 1, random = "individual", data = sim$data, K = K)
model$h2

plot(model$u,sim$Pu, ylab="True Breeding Value", xlab="Estimated Breeding Value")

cor (model$u,sim$u)

Please notice that currently ghap.lmm() can only handle quantitative traits. Alternatively, we can use
ghap.blmm(). Here a single Markov chain is ran with 500 Monte Carlo simulations and a thinning interval of
1. Analyses of empirical data may require larger numbers, and we recommend using at least 100 simulations
as burn-in, 1000 main simulations and a minimum thinning interval of 2. Also, running two or more parallel
Markov chains may be beneficial to speed up computations and assess variance across independent runs (i.e.,
evaluate posterior convergence).

#Continuous model

model <- ghap.blmm(fixed = phenotype ~ 1, random = "individual", data = sim$data, K = K)
model$h2

plot(model$u,sim$u, ylab="True Breeding Value", xlab="Estimated Breeding Value")

cor (model$u,sim$u)

#Threshold model
model2 <- ghap.blmm(fixed = phenotype2 ~ 1, random = "individual",
ordinal = TRUE, data = sim$data, K = K)
model2$h2
plot(model2$u,sim$u, ylab="True Breeding Value", xlab="Estimated Breeding Value")
cor (model2$u,sim$u)
model2$thresholds[2]
quantile(x = scale(sim$data$phenotype), probs = 0.7)

Future implementations of GHap will consider more flexible models, especially regarding the definition of
random effects.
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GWAS treating HapAlleles as fixed effects

Consider the residuals from the linear mixed model analysis:

é=y—Xb-Zt-Zp

These residuals can be viewed as adjusted records accounting for covariates, polygenic effects and permanent
environmental effects, i.e. y.q; = & We can then conduct least squares regression to test each HapAllele at a
time for association with phenotypes. The fixed effect, error variance and test statistic of a given HapAllele
are estimated using least square equations:

a; = (hjh;) " 'hly.q;
VAR(a;) = (hih;) 162
12 = &712
' VAR(a;)

Under the null hypothesis that the regression coefficient is zero t? ~ x2(v = 1). Given a Ghap.blmm object,
the ghap.assoc() function regresses adjusted records on each HapAllele. As the linear mixed model admits
repeated measures through Z, the adjusted records are dully mapped against the vector of HapGenotypes in
ghap.assoc(). The example below takes the simulated phenotype data and regress adjusted records agains
HapAlleles.

#HapAllele GWAS
gwas.allele <- ghap.assoc(blmm = model, haplo = haplo, type = "HapAllele", gc = TRUE, ncores=2)

#Plot

gwas.allele$P0S <- (gwas.allele$BPl+gwas.allele$BP2)/2e+6

plot(gwas.allele$P0S,gwas.allele$logP, xlab="Chromosome 2 position (in Mb)",
ylab=expression(-log[10] (p)), pch=20, col="#471FAA99")

abline (v=(haplo$bp1[1000]+haplo$bp2[1000]) /2e+6,1ty=3)

The user must be aware of two known caveats associated with this approach:

1 - By pre-adjusting records instead of estimating HapAllele effects based on generalized least squares
equations we ignore covariance structure and therefore bias the estimates downwards (Svishcheva et al., 2012).

2 - Each HapAllele being tested is also included in the kinship matrix, such that the HapAllele is included
twice in the model: as fixed and random effect. This problem is known as proximal contamination (Listgarten
et al., 2012).

In the first case, we can use genomic control to recover p-values to an unbiased scale (Devlin and Roeder,
1999; Amin et al., 2007). However, not much can be done regarding the estimates of the effects. As a general
recommendation, if the user is only interested in p-values, the ghap.assoc() analysis should be sufficient.
When effect estimates are of interest, the user can select genome-wide significant HapAlleles and include them
as fixed effects in the full model in ghap.mme (). For the second case, a leave-one-chromosome-out (LOCO
analysis) procedure can mitigate proximal contamination (Yang et al., 2014).

GWAS treating HapBlocks as fixed effects

GHap also supports HapBlock-based association. If the argument type in ghap.assoc() is supplied with
the option “HapBlock” instead of the default “HapAllele”, blocks are tested using the parameterization
suggested by Da (2015). Briefly, for a given HapBlock, let HapAlleles 1, 2, ..., m have frequencies pi, p2,
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.., Pm. Also, let a1; be the average effect of substituting HapAllele 1 by HapAllele j, such that there are
m — 1 independent substitution effects to be estimated. Under this framework, least squares estimates of
substitution effects are obtained as:

&= (M'M)"'M'yaq;

where M is a n x (m — 1) centered HapGenotypes matrix for the HapAlleles within the block. Each entry
my; of this matrix takes values 2p;, —(1 — 2p;) and —2(1 — p;) for HapGenotypes 0, 1 and 2, respectively. If
the HapAllele frequencies sum to 1 (i.e., no frequency prunning was used by the user during haplotyping),
the ghap.assoc() takes HapAllele 1 to be the one presenting the smallest frequency within each block.
Otherwise, the function assumes that the substitution effects of the pruned HapAlleles are known to be zero,
and the contrast is carried out based on a phantom HapAllele 1.

Then, given the explained (ESS) and the residual (RSS) sum of squares, an F test is computed instead of
the chi-squared test:

o ESS/Z/l
~ RSS/uvy

ESS = (Md - ﬂy)/(M@ - ﬂy)
RSS = (yadj — M&)’(yadj — Md)

1 n
ﬂy: N;yz

m=m-—1

F

v=n—m-—1

Under the null hypothesis VAR(Ma) = 0 (i.e, variance due to the HapBlock is zero) we have F' ~ F(vq,v3).

#HapBlock GWAS
gwas.block <- ghap.assoc(blmm = model, haplo = haplo, type = "HapBlock", ncores=2)

#Plot

gwas.block$POS <- (gwas.block$BPl+gwas.block$BP2)/2e+6

plot(gwas.block$P0S,gwas.block$logP, xlab="Chromosome 2 position (in Mb)",
ylab=expression(-log[10] (p)), pch=20, col="#471FAA99")

abline (v=(haplo$bp1[1000] +haplo$bp2[1000])/2e+6,1ty=3)

GWAS treating HapAlleles as random effects

Recall the linear mixed model:

y=Xb+Zu+Zp+e

This model is equivalent to:

y=Xb+ZHa+Zp+e

Assuming;:
u| o2~ N(0,Ko?)
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K = ¢HDH’

u = Ha

This means that we can convert between individual breeding values and HapAllele effects (Strandén and
Garrick, 2009):

a=¢DHK 'a

#BLUP solutions for HapAllele effects

blup <- ghap.blup(blmm = model, haplo = haplo, ncores=2)

blup$P0S <- (blup$BP1+blup$BP2)/2e+6

plot (blup$P0S, 100*%blup$pVAR, xlab="Chromosome 2 position (in Mb)",
ylab="Haplotype variance explained (%)", pch=20, col="#471FAA99")

abline(v=(haplo$bp1[1000]+haplo$bp2[1000])/2e+6,1ty=3)

Since we cannot test random effects in the same way we do for fixed effects, GHap offers a permutation test
to assess significance of potential major HapAlleles. The permutation procedure consists in randomizing the
vector of estimated breeding values and computing the null statistic max(4). The permutation p-value is
computed as the number of times the HapAllele effect was smaller than the null statistic.

#Permutation test

blup <- ghap.blup(blmm = model, haplo = haplo, ncores=2, nperm = 1000)

blup$P0S <- (blup$BP1+blup$BP2)/2e+6

plot (blup$P0S,-1ogl0(blup$P), xlab="Chromosome 2 position (in Mb)",
ylab=expression(-log[10] (p)), pch=20, col="#471FAA99")

abline(v=(haplo$bp1[1000]+haplo$bp2[1000])/2e+6,1ty=3)

abline(h=-10g10(0.05))

It has been suggested that recallibrating estimates based on an iterative re-weighting procedure could aliviate
the effects of shrinkage and improve estimation of random effects (Wang et al., 2012). Briefly, the method
consists in computing HapAllele weights based on the BLUP solutions, computing a new weighted relationship
matrix, fitting the linear mixed model with the new matrix, and converting the new estimated breeding
values in updated BLUP solutions for HapAlleles. The example below shows that a single iteration in the
simulated data can substantially improve the estimate of our major HapAllele effect. It has been suggested
that 2 to 4 updates may be required.

#HapAllele weights
w <- nrow(blup)*blup$pVAR

#Weighted relationship matrix

K <- ghap.kinship(haplo, weights = w, batchsize = 100)

#Linear mixed model fitting
model <- ghap.mme(fixed = phenotype ~ 1, random = "individual", data = sim$data, K = K
varcomp = c(model$vare,model$varu))

#Re-weighted BLUP solutions
blup <- ghap.blup(blmm = model, haplo = haplo, weights = w, ncores=2)

#Plot

blup$P0S <- (blup$BP1+blup$BP2)/2e+6
plot (blup$P0S, 100*xblup$pVAR, xlab="Chromosome 2 position (in Mb)",
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ylab="Haplotype variance explained (%)", pch=20, col="#471FAA99")
abline(v=(haplo$bpl[1000] +haplo$bp2[1000]) /2e+6,1ty=3)

#Estimated x Simulated
sim$major.effect
blup$SCORE [1000]

HapAllele profiling

The profile for each individual is calculated as:

m

> (hiay)

i=1

where relative to HapAllele ¢, h; is the number of copies and a; is a user-defined score. By default, if scores are
provided for only a subset of the HapAlleles, the missing alleles scores will be set to zero. This function has the
same spirit as the profiling routine implemented in the score option in PLINK (Purcell et al., 2007; Chang et
al., 2015). This function can be useful for analyses involving cross-validation of genomic predictions based on
BLUP solutions of HapAllele effects or scoring admixture proportions from the output of ghap.ancestral().
Below is an example using simulated scores from a normal distribution:

# Create a score data.frame

score <- NULL

score$BLOCK <- haplo$block

score$CHR <- haplo$chr

score$BP1 <- haplo$bpl

score$BP2 <- haplo$bp2

score$ALLELE <- haplo$allele

set.seed(1988)

score$SCORE <- rnorm(length(score$ALLELE))

score <- data.frame(score,stringsAsFactors = FALSE)

# Compute profiles

profile <- ghap.profile(score, haplo, ncores = 2)
head(profile)

# POP ID PROFILE

ASW NA19904 -38.410381

ASW NA20340 -12.250027

ASW NA20297 -45.473774

ASW NA20281 -7.360974

ASW NA20348 -36.271198

ASW NA20300 40.912226

HOH OH OH B
DO WN -

Using GHap outputs in third-party software

When the haplotyping procedure is performed using very large datasets, post hoc analyses may be too
computationally demanding to be performed in R. Also, existing pipelines designed to analyze bi-allelic
SNP data can be extended to the analysis of haplotypes by simply incorporating the output generated by
the ghap.hap2tped () function in GHap. This function creates a set of files that mimic a standard PLINK
(Purcell et al., 2007; Chang et al., 2015) tped file, where HapAllele counts 0, 1 and 2 are recoded as NN,
NH and HH genotypes (N = NULL and H = haplotype allele), as if HapAlleles were bi-alelic markers. This
codification is acceptable for any given analysis relying on genotype counts, as long as the user specifies that
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the analysis should be done using the H allele as reference for counts. You can specify reference alleles using
the .tref file in PLINK with the reference-allele command.The name for each pseudo-marker is composed by
a concatenation (separated by “_“) of block name, start, end, and haplotype allele identity. Pseudo-marker
positions are computed as (start+end)/2.

The following lines of code show one example of how the output from GHap can be articulated with analyses
that are routinely applied to unphased SNP marker data. First, we can export the GHap.haplo object to
use in PLINK:

# Convert to tped

ghap.hap2tped(infile = "example", outfile = "example")
# Creating .tfam file...Done.

# Creating .tref file...Done.

# Creating .tped file for 1750 haplotype alleles.

# 1750 haplotype alleles converted.

Then, we can use PLINK to perform a principal components analysis on our data:

#Converting the tped output to PLINK binary
plink --tfile example --reference-allele example.tref --make-bed --out example

#Performing PCA analysis in PLINK
#Correlations and scale with the GHap package are almost perfect (r = 0.999)
plink --bfile example —--reference-allele example.tref --pca 2 --out example

Notes on handling multiple chromosomes and analysis of single marker data

By default GHap works at single chromosome data, specially when it comes to the haplotyping procedure.
However, once HapAlleles have been called on each chromosome, the user can choose to load one chromosome
at a time or to load all chromosomes together with ghap.loadhaplo(). This can be typically achieved by the
use of the ghap.mergehaplo() function, or alternatively by concatenation of single chromosome files.

You can also fool GHap to take in single SNP data (say you wish to compare haplotype x single SNP
association results). To do so, you only need to see SNPs as distinct 1bp HapBlocks, and count number of
copies of a particular allele (e.g., minor or reference allele). Then, ghap.loadhaplo() will naturally load single
SNP data. Be aware that for some analyses special consideration may be required, so be sure that you know
exactly what you are doing!

18



Benchmarking

Benchmarking of the main tasks in the package was first performed in a Dell PowerEdge-T410 workstation
with 16 GB RAM and two 64-bit Intel Xeon 2.13 GHz CPUs, running R v3.2.5 under Ubuntu 10.04 LTS.
Performance was evaluated using the HapMap data with varying number of cores.

Benchmarking of GHap v1.2.0 with varying numbers of cores.
1,011 samples and 20,000 markers were used.
Time was measured in seconds and averaged over 10 replicates.

| | Number of cores |

| Task |

| | 1 | 2 | 4 | 8 |
| Load data | 9.86+0.11 | - | - | -

| Filtering* | 8.20£0.23 | 4.20£0.14 | 2.6020.13 | 1.5920.04 |
| Haplotyping | 169.50+1.01 | 82.47+0.22 | 42.00+0.33 | 23.00+0.19 |

*Minor allele frequency prunning and subsetting

Another benchmarking was conducted to assess the influence of dataset size on performance. This bench-
marking was done using a Dell T5500 workstation with 24 GB and 64-bit Intel Xeon 3.07GHz CPU, running
R v3.2.3 under Red Hat Enterprise Linux Workstation release 6.7.

Benchmarking of GHap v1.2.0 with 8 cores and varying numbers of markers and subjects.
Time was measured in seconds and averaged over 10 replicates.

I | | Task I
|  Markers | Samples |

| | | Load data | Filtering | Haplotyping |
| 10,000 | 1,000 | 2.62£0.01 |  0.3420.04 | 6.29+0.10

| | 5,000 | 13.1420.03 | 0.91%0.01 | 28.33%0.25 |
| | 10,000 | 26.04+0.07 | 1.49+0.05 | 57.42+0.41 |
| | 50,000 | 134.44+0.54 | 7.98+0.20 | 282.44+1.43 |
| 100,000 | 1,000 | 28.02+0.07 | 3.30+0.09 | 76.64+0.31 |
| | 5,000 | 143.01+0.22 | 9.95+0.13 | 286.89+0.90 |
| | 10,000 | 281.83+0.91 | 26.73+0.51 | 561.97+1.48 |
| [ 50,000% | - | - I - I

*The analysis of 50,000 samples and 100,000 markers consumed more than
the maximum RAM available (24GB) and was unfeasible using available hardware

In summary, GHap scales linearly as a function of markers or samples. We noticed a limitation in the
analysis of a large number of individuals, but this was related to RAM availability. Analyses of such large
datasets may be accomplished using high-performance computing facilities or by subdividing the data in
batches with smaller sample sizes. If no HapAllele frequency filter is determined, batching by sample will not
affect haplotyping since HapGenotypes are called individually.
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Appendix 1 - Frequentist linear mixed model

General formulation

Consider the model:

y=Xb+Zu+Zp+e

with likelihood:

y | b,u,p,02,0% 0% ~ N(Xb, V)

w’r Y po

and variance-covariance matrix:

V =ZKZ'o + 27 0, + 1o}

Likelihood
The log-likelihood function is defined as:

1
log[Pr(y | b,u, p, 0, 07, 02)] = — | nlog(2) +log | V| + (y — Xb)'V ™! (y — Xb)
It is useful to define:

V =UDU’
v !'=UD'U
U = eigvec(V) = eigvec(ZKZ' + ZZ' +1)
D = diag(d)
d = eigval(V) = eigval(ZKZ')o, + eigval(ZZ')o;. + eigval(I)o?

=ao’ + baf7 + 10?2
Vi=]]d
i=1

And re-write the log-likelihood as:

1 ~q;
2 2 2 !
log[Pr(y | b,u,p,03,0,,0¢)] ) [Zlog(di) + Z di]

i=1 i=1

where q = U’(y — Xb). With this formulation, we avoid expensive matrix inversions by computing U, a
and b only once. The negative log-likelihood is minimized using the L-BFGS-B method implemented in the
optim() function in the stats package. Estimates of variance components from the minimization procedure
are then used in Henderson’s mixed model equations to find BLUE and BLUP solutions for fixed and random
effects.
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Appendix 2 - Bayesian linear mixed model
General formulation
Consider the model:
y=Xb+Zu+e

with likelihood:

2 2 2

Yi | b,u,ou,ae ~ N(niaae)
p m

N = injbj + Z ZikUk
j=1 k=1

And prior densities for the parameters:

b; oc constant
ur | oy ~ N(0,0)
O—Z ~ Xﬁz(l/ua SZ)

00 ~ X (Ves 5¢)

Also recall the normal and scaled inverse chi-squared probability density functions:

2 _ 2y _ 2\—1/2 . (z — p)?
X ~ N(p,0%), Pr(X =2 | p,0°) = (2m0) ™/ “exp a7
o

S2u/2)w/2) vS?
X o v-2(y. S2). Pr(X — oy _ (/25 ey s
T P A

Likelihood

For a single observation y; we have:

M. )2
Pr(ys | by, 02, 0%) = <2mz>-1/2exp{ _ (y”)}

2
202

And for all n observations:

Pr(y | b,u,0%,0%) = [ Priy: | b.u,03,0%) = H<2ms>—1/2exp{ - “’2’”}

i=1 i=1

2
202

= (2m§)—n/2eXp{ - w}

Prior for random effects

For a single random effect u;, we have:
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m 9
= (QWUZ)_m/2eXp{ — 7Zk:1 Yk }

2
207

Prior for variance of random effects

2y _ S0/ o syag ) vuSh
PT(O'u) - F(I/u/2) (Uu) exp 20-2

Prior for residual variance

52y, /2)ve/2) (v Ve S2
Prio?) = F(Ii }2) (o) oy — 50

e

Full and conditional posterior distributions

Here we simply present the posterior distributions, which are derived in greater detail later.

Pr(b,u,02,0% |y) x Pr(y | b,u,o

rYur Ve

o2)Pr(u| og)Pr(oy) Pr(o?)

7u’

n () — s 2
Pr(b; | ELSE) o< N 2in Lij (yl2 mj)’ S
D1 i >t Lij

n ] . )
Pr(ug | ELSE) N<Zi=1 Zik (Yi 77112)7 o2 2 >
<Z?:1 Z’Qk) + ;L; (Z?:l 2121«) + ZT%

m 2 52
Pr(0? | ELSE) x y 2 <m ¥, Zk—lukJrV“u)
m —+ vy

n C_m. )2 52
PT(CTE | ELSE) X X*2 <n 4 Va, Zzzl(yz 771) + Ve e)
n+ Ve
where 7;; is simply 1; computed based on all effects except b;, and 7, is simply 1; computed based on all

effects except ug. As the expected value of a scaled inverse chi-squared distribution is E[X] = Zf 22, we define

2 2
S2 = %“_2) for an arbitrarily value of v,,. Likewise, S2 = M for an arbitrarily value of v,.
Gibbs sampler
For each parameter, the algorithm works as follows:

1 - At iteration ¢ = 0 initialize all parameters with a starting guess.
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2 - For each parameter, take a sample from the respective conditional posterior distribution and add to the
cumulative posterior estimates.

3 - Increment ¢ = ¢ + 1.
4 - Repeat 2 and 3 until the maximum number of simulations is reached.

5 - Once the maximum number of simulations is reached, divide the cumulative posterior estimates by the
effective number of simulations (number of simulations divided by the thinning interval).

An initial guess for the variance components can be given by the user through the heritability argument.
Starting guesses for fixed effects are taken from ordinary least squares estimates, whereas all random effects
start with value zero. At every iteration, parameters are sampled in the following order: liabilities, thresholds,
fixed effects, random effects and variance components. During burn-in, samples are not added to the
cumulative posterior estimates and the iteration number is not incremented. Similarly, samples within
thinning intervals are not added to the cumulative posterior estimates.

Model with permanent environmental effects and correlated random effects

The conditional posterior distribution of permanent environmental effects is identical to the uncorrelated
effects discussed in this appendix. We can also incorporate covariance of random effects into the model
without effectively changing the full and conditional posterior distributions. The targeted model assumes:

y=Xb+Zu+Zp+e
u~ N(0,Ko?)
p ~ N(0,I07)
e~ N(0,Wa?)

If we define:
K=LL'
7" =7L
uw =L 'u

then we can fit the equivalent model

y=Xb+Z*u" +Zp+e

which assumes

u* ~ N(0,102)
Once the model is fitted, we can solve for & = La*.
Fitting categorical data

Let the response variable be an ordered categorical variable such that y € {1,2, ..., K'}. We assume categories
represent classifications imposed by thresholds 7 of an unobserved Gaussian random variable z (“liability”),
such that:

yi =k, if v < 2 <y

We assume v; = —oo and g1 = 0o. At each Monte Carlo simulation, z; is sampled from a normal
distribution with mean 7; and variance 1, truncated at v; and yx41. Notice that, in the way we have defined
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the likelihood of the data, this is equivalent to setting the residual variance to one. Then, the sampling
algorithm continues as z; was the actual response variable.

Derivation for the conditional posterior of fixed effects

We start by marginalizing b; from the likelihood function. This is achieved by computing n; based on all
effects except the targeted effect b; or equivalently:

Nij =1 — Tijb;

Then we define:

Yij = Yi — Nij

Such that:

2
202

(Wi —isby)?
p(b; | ELSE) (ZWUZ)_H/QQXP{ - W}

Now, we will try to keep on dropping all terms that do not depend on b;. We can start by dropping (2#03)*"/ 2

and express the quadratic term in vector form:
i Wiy — wiiby)® = (y; — x505)' (y; — x;b)
we can now expand the quadratic to obtain

Y5'Yi — 2%5'y b +%;'%;b3

Since y;'y; does not depend on b;, we can drop it without compromising the proportionality. If we factor
x;'x; out we obtain:

x;'%;1b3 — 2(%;'%;) 1%y by

Let a; = (x;/x;)7'x,"y;. Now we have:

x;'%;[b] — 2a;b;]

It seems b? — 2a;b; is a quadratic expansion of (b; — aj)2 missing the a? term, that is:
2

s (B2 b 2 _
x;'x;[b7 — 2a;b; + af — a;

Therefore, we can now write:

2

x;'x;[(bj — a;)* — a3]

Again, af does not depend on b; so we can drop it:

x;'%[(b; — a;)?]

Back to the full expression:

p(b; | ELSE) o exP{ _ X' [g);jg_aj)z] }

We can conveniently write v3 = (x;'x;) " 0 to obtain:
p(b; | ELSE) exp{ — U)J;IZJ)Z}

Therefore, the conditional posterior distribution for b; is proportional to:

N(aj, UJQ)
where
n
0y = (/%)) 1y ly; = e T2

i=1"1J
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2
2 (g )12 _ O
vj = (x5'x;) Uefzr:lxlgj

Derivation for the conditional posterior of random effects

The rationale here is similar to that from the fixed effects. We marginalize u from the likelihood function by
computing 7); based on all effects except the targeted effect uy. This is equivalent to computing:

Nik = Tk — ZikUk
Then we define:
Yik = Yi — Nik
Such that:

2\—n/2 ETL: (yik—zik“k)2 2\—1/2 u?
p(ug | ELSE) « (2707) expy — &=l ——— b X (270y) expy — 5

We can drop (2702)~"/? and (2r02)~"/? rearrange the expression:

Z:/:l(yikfzikuk)2+ui:7‘§
p(ug | ELSE) o< exps — 552 “

If we perform similar manipulation of the quadratic term here as we did for the fixed effects we obtain:

p(Uk ‘ ELSE) o exp{ _ (uk%%k)Q}

Which is proportional to:
N (ax,v3)

where

2 n
E . ZikYik
e i=1

— / e N\—1 / —
ap = (zi'zr + 35) 21 yE = » -
(T 2)+3

2 2

2 (o4, Ton—1.2 _ o;
vp = (2'z; + 55) 7ol = < 2
u n 2 e
i=1%ik ) T5E

Derivation for the conditional posterior of variance of random effects

The marginal posterior distribution for the variance of random effects is:

202 I'(vw/2) u

™2 vy
p(o? | ELSE) (2wag)m/26xp{ ~ 2y k} x (Saw/20e/? (02)(”“”)/2@(10{ - V“Si}

We can drop terms not depending on o2 and rearrange the expression to obtain:

p(o.i | ELSE) o (Ui)—(77L+yu+2)/QeXp{ . o1 ui4v,S2 }

2
202

If we let d, = m + v, and s2 = (3}, ui + 1, S2)/dy, then:

p(oy | ELSE) o (o)~ (@ 2/ ZGXP{ - dzfﬁ}

Which is proportional to:
Xﬁz(du, 51%)
Derivation for the conditional posterior of residual variance

The marginal posterior distribution for the residual variance is:
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_ " (yi— Z_)z 2. (ve/2) (v Ve S2
p(0? | ELSE) o (2702) "/%xp{ S MR } e oy (o) <e+2>/2exp{ - S}

We can follow the case of the variance of the random effects and conduct similar term dropping and expression
rearrangements:

P
202

n )2 41, S2
p(0? | ELSE) (a§)<”+”u+2>/2exp{ _ et Se}
If we let de = m + v, and s2 = (3, (yi — mi)? + veS?)/de, then:
2

p(0? | ELSE) ox (02)~(e+2)/ p{ B d}

Which is proportional to:

X72(de»sg)
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Appendix 3 - Model with heteroskedastic residuals

We can incorporate heteroskedastic residuals into the model without effectively changing the fitting algorithms.
The targeted model assumes:

y=Xb+Zu+Zp+e
u~ N(0,Ko?)
p ~ N(0,I07)
e~ N(0,Wa?)
W = diag(w;)

If we define:

W—l _ W—l/Qw—1/2
w2 = diag(l/\/wi)

y* _ W—1/2y
X =W /X
Z- =W '/?%Z
e =W 12

then we can fit the equivalent model

vy =X'b+Z'u+Z'p+e*

which assumes
e* ~ N(0,102)

Once the model is fitted, we can solve for & = W1/2g*.
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