DTSEA User Guide

Yinchun Su, Junwei Han

library(DTSEA)
#> This package SHOULD NOT BE USED UNDER INTEL MATH KERNEL LIBRARY ON ANY OCCASION.
#> There is an avoidable but critical bug with Intel Math Kernel Library (MKL) on various operating systems.
#> 
#> ======================================
#> For better performance, we recommend not using RStudio on Windows because RStudio cannot take advantage of the multi-core capabilities available on modern computers.

Introduction

The Drug Target Set Enrichment Analysis (DTSEA) is a novel tool used to identify the most effective drug set against a particular disease based on the Gene Set Enrichment Analysis (GSEA).

The central hypothesis of DTSEA is that the targets of potential candidates for a specific disease (e.g., COVID-19) ought to be close to each other, or at least not so far away from the disease. The DTSEA algorithm determines whether a drug is potent for the chosen disease by the proximity between drug targets and the disease-related genes. Under the central hypothesis of DTSEA, the DTSEA consists of two main parts:

  1. Evaluate the influence of the specific disease in the PPI network by the random walk with restart algorithm.

To evaluate the influence, we compute the disease-node distance by using the random walk with restart (RwR) algorithm, then rank the nodes reversely.

  1. Evaluate the drug-disease associations based on GSEA.

The GSEA approach is adopted in this part to identify whether candidate drug targets are disease-related (top) or disease-unrelated (bottom) on the human PPI list. The specific disease gene list is normalized by the median and is set zero as the arbitrary cutoff point to classify the relations manually.

This vignette illustrates how to use the DTSEA easily. Here, using functions in this package, users could identify potential drugs for disease by the DTSEA algorithm.

Example 1: Calculate the enrichment scores of drugs.

The function DTSEA is used to calculate the enrichment scores of drugs. The parameters are as follows:

#> Random walking...
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |=========                                                             |  12%
  |                                                                            
  |===============                                                       |  21%
  |                                                                            
  |====================                                                  |  29%
  |                                                                            
  |==========================                                            |  37%
  |                                                                            
  |==============================                                        |  43%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |============================================                          |  63%
  |                                                                            
  |================================================                      |  69%
  |                                                                            
  |=====================================================                 |  75%
  |                                                                            
  |=========================================================             |  82%
  |                                                                            
  |=============================================================         |  88%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |======================================================================| 100%
#> Doing GSEA enrichment...
#> Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize, gseaParam, : There are ties in the preranked stats (11.74% of the list).
#> The order of those tied genes will be arbitrary, which may produce unexpected results.

You can arrange the positive results by NES

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
select(result, -leadingEdge) %>%
  arrange(desc(NES)) %>%
  filter(NES > 0 & pval < .05)
#> # A tibble: 0 × 7
#> # … with 7 variables: drug_id <chr>, pval <dbl>, padj <dbl>, log2err <dbl>,
#> #   ES <dbl>, NES <dbl>, size <int>

Example 2. Get the influence of the specific disease in the PPI network

The function random.walk calculates the pt vector. The parameters are as follows:

# Calculate p0
p0 <- calculate_p0(nodes = example_ppi, disease = example_disease_list)

# Then perform random walk
random.walk(network = example_ppi, p0 = p0)
#>       STAT1      IL1RAP       MYD88      MAPK14        JAK2       IRAK1 
#>  4.38701169  4.30737409  4.25188979  4.16908854  4.16503271  4.15789286 
#>       TRAF1        TLR4        IL1B       IL2RA         AGT       IRAK2 
#>  4.15178891  4.11965253  4.11770168  4.06488697  4.03783534  4.03336011 
#>         IL6        JAK1         PML        C1QA        ETS1          C2 
#>  4.01463662  4.00768863  4.00596675  4.00213414  3.99983386  3.99847197 
#>        NT5E    SERPING1        IRF7        TLR2        C1QB        MBL2 
#>  3.98335137  3.97970848  3.97851989  3.97616137  3.96910325  3.96673811 
#>       IFI16       CCND3       C1QBP       IL2RG       PRKCD      TOLLIP 
#>  3.95323306  3.94642847  3.94432859  3.94280132  3.94220196  3.94070406 
#>      NFATC3      CDKN1A       IL23A      NFKBIA       CD247       CASP1 
#>  3.93970313  3.93796030  3.93647457  3.93523591  3.93140067  3.92811064 
#>          F2       STAT4        CCR5      STING1        IRF5       GAPDH 
#>  3.92750167  3.92561996  3.91887581  3.91576054  3.90930125  3.90469456 
#>         MBP       SOCS1       PTGS2       MALT1       NLRP3        IL7R 
#>  3.90376816  3.90285509  3.90193402  3.90057877  3.90023935  3.89351485 
#>        CCR2        CCR6       ITGAM       IRAK3       CD274       CSF3R 
#>  3.89296010  3.89296010  3.89290581  3.89268002  3.89093980  3.88928847 
#>       PTAFR       LTB4R         LTF       IFIH1      IL18R1        CD46 
#>  3.88895931  3.88680801  3.88524107  3.88505320  3.87774449  3.87771671 
#>         SKI        TLR5       IL1RN        TCF7        IRF4        CD28 
#>  3.87521895  3.87462430  3.87433760  3.87234853  3.87102120  3.87044348 
#>         MAF     TNFRSF9         BAX       TGFB1      PECAM1       CD163 
#>  3.86986001  3.86919740  3.86861504  3.86689863  3.86026731  3.85883368 
#>         ACE         ADA       EEF1G      FCER1G         C8A        IL16 
#>  3.85833543  3.85800541  3.85780874  3.85565345  3.85549815  3.85319778 
#>        TAP1       FKBP5       PSMC2        XBP1      S100A9         MX1 
#>  3.85214404  3.85077421  3.85028943  3.84954512  3.84867092  3.84838877 
#>       MS4A1        BST2      B3GAT1        LTBR      CX3CR1   TNFRSF10C 
#>  3.84763941  3.84644867  3.84618465  3.84589444  3.84537511  3.84496091 
#>       ICAM3       LAIR1      LILRA6      LILRB4        ATG7      IFITM1 
#>  3.84315301  3.84302474  3.84262790  3.84262790  3.84239112  3.84168233 
#>      CD40LG      ADGRE5       NFKB1         SYK         SRC        TP53 
#>  3.84105370  3.83965498  3.67472363  3.57733466  3.26402290  3.22414317 
#>          C3        ESR1         CSK      PIK3R1        TBK1         TNF 
#>  3.04802687  2.93527627  2.90788374  2.88969069  2.87025710  2.86434047 
#>       PRKCQ        JAK3       IKBKE        SDC2       APOA1        EGFR 
#>  2.84667962  2.81566863  2.80198798  2.79253555  2.77076326  2.75539424 
#>       MAPK1       MAPK3        MTOR      MAPK13       CALM1         LCK 
#>  2.74091869  2.71134443  2.67836336  2.66053057  2.62877491  2.60600596 
#>       HIF1A       IKBKB        KNG1         FYN        CHUK      PIK3CA 
#>  2.58173530  2.56795038  2.56051772  2.55854267  2.54630160  2.53579939 
#>         LYN     CSNK2A1      MAP3K1       IRAK4         APP        AKT1 
#>  2.49121008  2.42586569  2.40630756  2.40290900  2.37670015  2.35348677 
#>        TUBB      PIK3CB       MAPK9      MAPK10      STAT5B      PIK3R2 
#>  2.33273555  2.26342349  2.26331332  2.25217495  2.24130437  2.24050626 
#>      PIK3CD         C4B         C4A        SNCA      PIK3R3        PTK2 
#>  2.23863782  2.20060511  2.19504960  2.19358930  2.15812888  2.15582429 
#>       RIPK2          C5        ERN1       PRKCG        HBA1         HBB 
#>  2.15533667  2.14044941  2.13130165  2.11331085  2.09246440  2.09246440 
#>         C1S       HIPK2        C1QC        TYK2        SOD1       RIPK1 
#>  2.06078674  2.03519288  2.02961417  2.01331274  2.00808897  2.00089712 
#>          CP       PDIA3       GSK3B         MYC       CCND1       NR3C1 
#>  1.98812109  1.98058938  1.97141850  1.97090086  1.95009823  1.90365863 
#>          AR      PIK3CG       CASP3        NOS2      PRKACA        FCN3 
#>  1.89367014  1.89144514  1.88787914  1.86914056  1.82219486  1.82037801 
#>         BTK         VTN      MAP2K6       ANXA1         C1R      PIK3R5 
#>  1.81567558  1.81508004  1.80113028  1.78611129  1.78218134  1.76966374 
#>     CSNK2A2        AKT3        PAK1        AKT2      S100A8         JUP 
#>  1.76887994  1.76423639  1.74844321  1.74578839  1.71003926  1.70419801 
#>      MAP2K3        ACE2      BDKRB1       PDPK1       CREB1       IL2RB 
#>  1.64606502  1.63924393  1.63177562  1.62644211  1.59974425  1.59136733 
#>        DRD1         PGR      PDGFRB         IL3      MTNR1A        YES1 
#>  1.58812108  1.58255185  1.58146911  1.57837052  1.56997662  1.55950959 
#>      MAP3K3       ERBB2      CAMK2B        CDK4      CSF2RB       PTK2B 
#>  1.53804063  1.53736870  1.53256669  1.51455270  1.51073272  1.49719504 
#>        TLR9      PDGFRA        MMP2       HSPA8        TLR7      GRIN2B 
#>  1.45916893  1.45078223  1.43340822  1.42441869  1.42071789  1.41094675 
#>         C8G      GRIN2A         C8B      CAMK2A         FN1      CSF2RA 
#>  1.39983503  1.38000317  1.37970886  1.37817395  1.36791859  1.35880873 
#>      GRIN2D      TGFBR1      PRKACB      FCGR3A       IL3RA         CFI 
#>  1.34084145  1.33426021  1.32955896  1.32821020  1.31434794  1.31293402 
#>         KIT      TUBA3C         CFB      FCGR3B      ADRA1B      EEF1A1 
#>  1.30936131  1.29528036  1.28476211  1.21594994  1.20513355  1.19768769 
#>        CDK1      IFNAR1       HTR2A       VEGFA       PRKD1         HCK 
#>  1.18981104  1.18198983  1.18113584  1.18111479  1.16063919  1.15702306 
#>       PARP1        PCNA       OPRD1      TUBB4A       PRKCI       EDNRA 
#>  1.15532616  1.15055644  1.14426586  1.14119971  1.12621311  1.12451937 
#>      TGFBR2         ITK        BRAF      ADRA1A      IFNAR2       BRCC3 
#>  1.11903965  1.10879796  1.10625356  1.10294493  1.10076800  1.09813916 
#>       CHRM3       FGFR3       HTR2B      ADRA1D       ERBB4       CHRM1 
#>  1.09470994  1.09156667  1.08666793  1.08227696  1.08210302  1.07918857 
#>       CHRM5        HRH1       TACR1        RAF1         VDR         TEK 
#>  1.07918857  1.07918857  1.07918857  1.07798536  1.06083117  1.05784340 
#>      CAMK2D         F12       HDAC1        MDM2         A2M       OPRM1 
#>  1.05376231  1.04844209  1.04829885  1.03880814  1.03272295  1.03238071 
#>     EIF2AK2      MTNR1B       ZAP70       TUBB3        DRD2        ABL1 
#>  1.03182198  1.02837550  1.02773836  1.02131330  1.02078732  1.01673894 
#>      ADORA3      ADRA2C       CHRM2       CHRM4        HRH4       HTR1A 
#>  1.01396245  1.01396245  1.01396245  1.01396245  1.01396245  1.01396245 
#>       HTR1B       HTR1D       HTR1E       HTR1F       OPRK1      FCGR2A 
#>  1.01396245  1.01396245  1.01396245  1.01396245  1.01396245  1.00367013 
#>       MAPK7       GRIN1      FCGR1A       FGFR2       FGFR1       PRKCE 
#>  0.99871456  0.97520735  0.97234658  0.96742643  0.94948161  0.91910577 
#>       ITGB3        PAK2        INSR        RBX1         FGA       HSPA5 
#>  0.91013154  0.90127560  0.80782914  0.80307139  0.75847664  0.74135852 
#>       KCNJ4        TP73        DRD3       LIMK1       MAPK6        SELE 
#>  0.73332628  0.71746237  0.70792579  0.70078230  0.67008037  0.63783393 
#>        PIM1       ADRB2         TEC        KRT1       KCNJ2        MMP9 
#>  0.63775183  0.63752110  0.63328527  0.63178284  0.59869683  0.56833028 
#>    MAPKAPK5       C4BPA      SLC2A1         AXL     RPS6KA1       AURKA 
#>  0.51979048  0.49689235  0.49358427  0.49305428  0.48477289  0.47453927 
#>       SIRT1         PZP        APCS      FCGR2C         DSP      TUBA1A 
#>  0.45907203  0.45528753  0.45262224  0.44506796  0.44235591  0.44141729 
#>         KDR      DYRK1B       C4BPB       MAPK4         HPR      IGFALS 
#>  0.43724188  0.42850759  0.42809668  0.36924205  0.34146894  0.33495379 
#>      MAP2K2       HIPK3        PAK3       APOL1     CSNK1A1         CFH 
#>  0.33215315  0.32646779  0.32033314  0.31948655  0.29744619  0.29679488 
#>       ITGA5       STK39       PRDX1      MAP3K2      GABRB1         BCR 
#>  0.28914839  0.24069779  0.18841078  0.17766633  0.17129435  0.15630617 
#>      TUBB2B         FGR       MKNK1         INS       PDE1A      MAPK15 
#>  0.15332004  0.14905980  0.14551103  0.13369752  0.12949984  0.12680317 
#>       RCAN1      TUBA1B         CLU      TUBA4A       ALOX5         MET 
#>  0.11492500  0.09588107  0.09318039  0.08977558  0.08117469  0.06575737 
#>       PPARA       APOA2      ALOX15       ALDOA       EPHB2       PTGDS 
#>  0.05543149  0.05010703  0.03703279  0.01617541  0.00000000 -0.02179376 
#>        NPPB        GJA1         FES         BMX        FLT1       PDE6G 
#> -0.03685839 -0.06480503 -0.06719487 -0.07384513 -0.07746998 -0.08182198 
#>      CAMK2G        P4HB       PDE3B        APOE       CSF1R         ALK 
#> -0.08449631 -0.10273148 -0.12187141 -0.12234875 -0.13426309 -0.13922150 
#>      PI4K2B        TLK1       ACVR1       NTRK3        TPI1       PDE1B 
#> -0.15177764 -0.16966605 -0.16982699 -0.17670834 -0.17847530 -0.19207530 
#>       PDE1C       EPHB1       EPHB4       PDE4B       BMPR2        FLT3 
#> -0.19207530 -0.20102624 -0.20649820 -0.20839147 -0.21015412 -0.21095020 
#>       PDE4A     RPS6KA3        TLK2       CAMK1       PDE6A       PDE6B 
#> -0.21901408 -0.22263188 -0.23217379 -0.23715159 -0.25181963 -0.25181963 
#>      PDE10A       GSK3A         TXK      BMPR1B       PDE4C       PDE4D 
#> -0.25660468 -0.26216369 -0.27210694 -0.27819411 -0.28369770 -0.28369770 
#>       ROCK2        NEK9     RPS6KA6       PDE3A       BMP2K        CLK1 
#> -0.29487952 -0.29548858 -0.31454434 -0.31657884 -0.34472708 -0.34472708 
#>        MELK       STK16        CASK       PDE5A         GSS       CHEK2 
#> -0.34472708 -0.34472708 -0.36650929 -0.37193837 -0.39032070 -0.39379955 
#>        NOS1       PDE2A       PDE6C       PDE6D       PDE6H       PDE7A 
#> -0.43408722 -0.43949726 -0.43949726 -0.43949726 -0.43949726 -0.43949726 
#>       PDE7B       PDE8A       PDE8B       PDE9A         TTR       VCAM1 
#> -0.43949726 -0.43949726 -0.43949726 -0.43949726 -0.46696471 -0.46812713 
#>     EIF2AK4        PLK1        A1BG       DAPK3      MAP3K4        PAK6 
#> -0.47399402 -0.49961054 -0.50525933 -0.51587155 -0.51927190 -0.52122347 
#>         RET     EIF2AK1         GSN         FER       EPHA3       L1CAM 
#> -0.52925055 -0.54417557 -0.54554914 -0.55188302 -0.55266663 -0.56888415 
#>       TAOK3        F13B    SERPIND1      FCGR2B       MKNK2       PRKG2 
#> -0.57155298 -0.57230800 -0.57230800 -0.60664819 -0.61843221 -0.61900615 
#>        CTSL      CHRNA9      MAP4K1       TUBB6       EPHA2       MST1R 
#> -0.62793197 -0.64722832 -0.68367659 -0.68410326 -0.74689785 -0.76335088 
#>     SLC18A2     MAP3K11         CCS        SDHA       CHEK1      GABRA1 
#> -0.80196763 -0.80493123 -0.80532175 -0.80532175 -0.81423402 -0.81480108 
#>      PRKAA1      PRKAB1       KHSRP     CACNA1D      PRKAA2      DYRK1A 
#> -0.81532851 -0.81631825 -0.83188242 -0.84007760 -0.85396954 -0.86565247 
#>        ABL2       GRIA1        CTSS        PRG2        ORM1      CHRNA7 
#> -0.86861281 -0.87342834 -0.88042620 -0.89560990 -0.89601491 -0.89660410 
#>      PRKAB2      PRKAG1      PRKAG2      PRKAG3       GRIA2        MYLK 
#> -0.89716708 -0.89716708 -0.89716708 -0.89716708 -0.92177302 -0.93400112 
#>     CACNA1C      TUBB4B       EPHA4        PON1     PIP4K2B     PIP4K2C 
#> -0.94009780 -0.94843248 -0.96809925 -0.98269935 -0.99556773 -0.99556773 
#>       GRIA3       ADRB3        LRAT        DDB1       EPHA8       NTRK1 
#> -0.99627714 -1.00499769 -1.00793230 -1.00951640 -1.02833056 -1.05615212 
#>       MARK4        HTR6       MYLK2      ADRA2A        FLT4        PKN1 
#> -1.05619832 -1.09768413 -1.09771133 -1.10673946 -1.10826808 -1.10978132 
#>       EPHA1       EPHA5       EPHA7       GRIA4       RIPK4        MATK 
#> -1.11446172 -1.11446172 -1.11446172 -1.11878440 -1.13297185 -1.13599459 
#>        CPN1      TUBA1C      TUBA3E      CHRNA3      CHRNA4      CHRNA6 
#> -1.15122072 -1.15262569 -1.15262569 -1.16606613 -1.16606613 -1.16606613 
#>      CHRNB2      CHRNB4        PLK4        DRD5        HTR7        SHBG 
#> -1.16606613 -1.16606613 -1.19299386 -1.22031083 -1.22031083 -1.22385880 
#>       PTGS1        ENO1       PPARG        NEK2      CLASP1        PKN2 
#> -1.26245351 -1.27623940 -1.28990093 -1.29652839 -1.30158706 -1.31473569 
#>     CACNA1F     CACNA1S       LIMK2      S100A7       INSRR       MARK3 
#> -1.31507896 -1.31507896 -1.34811302 -1.35065515 -1.35230695 -1.35297620 
#>       TAOK2        WEE1        PLK3       KRT10       TUBB1       CUL4A 
#> -1.40401379 -1.40669937 -1.44861483 -1.46375161 -1.46834592 -1.49293688 
#>       HDAC4      TUBB2A        ULK1       TAOK1       MYLK3       MYLK4 
#> -1.50957228 -1.51821274 -1.55665254 -1.56007205 -1.56966693 -1.56966693 
#>       NR0B1         AHR       NR3C2       KLKB1      MAP2K5       TYRO3 
#> -1.59782766 -1.62976772 -1.63707628 -1.63895437 -1.65678124 -1.65847824 
#>       TUBB8     PIK3C2B      TSSK1B       HDAC8        KRT5          TF 
#> -1.67456622 -1.70688760 -1.72608882 -1.72983522 -1.76063896 -1.77067116 
#>      NDUFC2      NDUFV3        MGMT         BLK        ULK2        IGHM 
#> -1.81004541 -1.81004541 -1.81313702 -1.83348856 -1.84786760 -1.85097942 
#>       DAPK2         TTK     CACNA1G       SIVA1         GAK      CAMKK1 
#> -1.85925108 -1.91217605 -1.91654251 -1.91892030 -1.91975739 -1.92046898 
#>      CAMKK2      MAP3K6       DAPK1     CACNA1H     CACNA1I        MT1A 
#> -1.94206860 -1.94242064 -1.95120402 -1.97984473 -1.97984473 -1.98716282 
#>      S100A2     SLC7A11       KRT14      CACNG2      CACNG4       PI4KB 
#> -1.98716282 -1.98716282 -2.03903908 -2.07327805 -2.07328544 -2.07349753 
#>        CSN3      CACNG3       MMP12      CACNB3      CACNB1      CACNB4 
#> -2.07415019 -2.08324895 -2.10144086 -2.10739342 -2.12626863 -2.12626863 
#>        TNK2      GABRA4        SGK3    CACNA2D2       LATS1      CACNB2 
#> -2.14096355 -2.14435373 -2.15673538 -2.15952686 -2.16659099 -2.17033518 
#>    CACNA2D1    CACNA2D3    CACNA2D4        KRT9         MPG       KRT16 
#> -2.17039267 -2.17039267 -2.17039267 -2.18071954 -2.18071954 -2.18071954 
#>       APLP2      CACNG1      CACNG5      CACNG6      CACNG7       KCNJ9 
#> -2.20431078 -2.22707682 -2.22707682 -2.22707682 -2.22707682 -2.27189945 
#>       MARK2      GAPDHS        STK3      CAMK1D        PAK4       KCNJ6 
#> -2.28406530 -2.29255526 -2.30217057 -2.30482336 -2.30807287 -2.31190075 
#>       AURKB       OXSR1        NME1       NTRK2     MAP3K13     MAP3K10 
#> -2.31347641 -2.32260467 -2.33887145 -2.37267325 -2.37369204 -2.39759778 
#>        NEU1      CAMK1G      GABRA3     CACNA1A      GRIN3A      GABRG3 
#> -2.40418038 -2.42152566 -2.43360277 -2.45686471 -2.45795840 -2.46465053 
#>      CACNG8        PAK5      MAP4K3      MAP4K4        MT2A       LTA4H 
#> -2.47364300 -2.48478397 -2.48654469 -2.48654469 -2.50217721 -2.50909248 
#>         SLK       PHKG1    SERPINA3        PTK6      PKMYT1        DDR2 
#> -2.51589358 -2.52839699 -2.57402238 -2.61799294 -2.62123119 -2.63129778 
#>       NR1I2     CYP17A1      CHRNA2      CHRNA5      CHRNB3       NUAK2 
#> -2.63129778 -2.63901239 -2.64645207 -2.64645207 -2.64645207 -2.69554951 
#>       HTR2C        TIE1       STK35       KRT6A        DDR1       ADRB1 
#> -2.70505357 -2.76285500 -2.76715561 -2.84105844 -2.84734424 -2.86346711 
#>     MAP3K12         LTK       STK24       KCNJ3       PDCD6       LRRK2 
#> -2.97091746 -3.01012060 -3.05423936 -3.06295739 -3.06624359 -3.06999373 
#>      GABRA2      GABRA5      GABRA6       STK26      GABRB2      GABRB3 
#> -3.07455806 -3.07455806 -3.07455806 -3.10028330 -3.11231674 -3.11231674 
#>     CYP11B2       HTR3A       CDK17       CDKL1       MYO3A        BRD4 
#> -3.14945625 -3.16047948 -3.16554946 -3.16554946 -3.16554946 -3.18181656 
#>      MAP4K5        APOD        SIK1    SERPINA4         CIT       KCNJ5 
#> -3.22782874 -3.23330731 -3.26779020 -3.27396267 -3.31779958 -3.46003287 
#>     PIK3C2G        SIK2       MERTK       EPHB6        AHSG         DBH 
#> -3.47451430 -3.53731725 -3.53780442 -3.61459077 -3.61501949 -3.61537835 
#>        CPN2         MT3        DRD4      MAP4K2        CES1      UGT1A1 
#> -3.74148789 -3.75037905 -3.75530590 -3.79667101 -3.86879464 -3.87594328 
#>       NR4A3      AKR1C1       EPHA6        ROS1        TNIK       MINK1 
#> -4.05140443 -4.08725877 -4.11905950 -4.11905950 -4.14741721 -4.15261417 
#>       CDK16       KCNH2      RETSAT       MARK1     CACNA1B     CACNA1E 
#> -4.16090144 -4.16090144 -4.27064204 -4.36360482 -4.38375855 -4.38450346 
#>      JCHAIN       DHRS3       DHRS4       RDH11       RDH12       RDH13 
#> -4.44124658 -4.49506991 -4.49506991 -4.49506991 -4.49506991 -4.49506991 
#>        RDH8        RDH5        PLK2      STK38L       NEK11      SRD5A1 
#> -4.49506991 -4.55020243 -4.88163717 -4.95135934 -5.06545055 -5.08905020 
#>      SRD5A2      SRD5A3       NUAK1    SERPINA1     ALDH1A1     ALDH1A2 
#> -5.08905020 -5.08905020 -5.16232326 -5.16844359 -5.21518519 -5.21518519 
#>     ALDH1A3       HTR3B       HTR3C       HTR3D       HTR3E        CBR1 
#> -5.21518519 -5.97389012 -5.97389012 -5.97389012 -5.97389012 -7.38250118 
#>       MTHFR         MTR        MTRR 
#>        -Inf        -Inf        -Inf

Example 3. Calculate the consistency of the prediction

The function cronbach.alpha and kendall.w are used to calculate the prediction consistency.

If you have several prediction results, you can use either function to describe the consistency.

# Just report the results
kendall.w(data)$report
#> [1] "Kendall's coefficient W = 0.472, p = 0.398"

# Or just report the alpha
cronbach.alpha(data)
#> [1] 0.1931346