
log1pmx(), bd0(), stirlerr() – Utilities for Poisson, Binomial,

Gamma Probabilities in R

Martin Mächler
Seminar für Statistik

ETH Zurich

April 2021 ff (LATEX’ed May 5, 2021)

Abstract

The auxiliary function log1pmx() (“log 1 plus minus x”), had been introduced
when R’s pgamma() (incomplete Γ function) had been numerically improved by Morten
Welinder’s contribution to R’s PR#7307, in Jan. 20051, it is mathematically defined
as

log1pmx(x) := log(1 + x)− x ≈ −x2/2 + x3/3− x4/4± . . . , (1)

and for numerical evaluation, suffers from two levels of cancellations for small x, i.e.,
using log1p(x) for log(1 + x) is not sufficient.

In 2000 already, Catherine Loader’s contributions for more accurate computation of
binomial, Poisson and negative binomial probabilities, Loader (2000), had introduced
auxiliary functions bd0() and stirlerr(), see below.

Much later, in R’s PR#15628, in Jan. 20142, Welinder noticed that in spite of
Loader’s improvements, Poisson probabilities were not perfectly accurate (only ca. 13
accurate digits instead of 15.6 ≈ log

10
(252)), relating the problem to somewhat im-

perfect computations in bd0(), which he proposed to address using log1pmx() on one
hand, and additionally addressing cancellation by using two double precision numbers
to store the result (his proposal of an ebd0() function).

Here, I address the problem of providing more accurate bd0() (and stirlerr()

as well), applying Welinder’s proposal to use log1pmx(), but otherwise diverging from
the proposal.

1 Introduction

According to R ’s reference documentation, help(dbinom), the binomial (point-mass)
probabilities of the binomial distribution with size = n and prob = p has “density”
(point probabilities)

p(x) := p(x;n, p) :=

(
n

x

)

px(1− p)n−x

for x = 0, . . . , n, and these are (in R function dbinom()) computed via Loader’s algo-
rithm (Loader (2000)) which had improved accuracy considerably, also for R’s internal
dpois_raw() function which is used further directly in dpois(), dnbinom(), dgamma(),
the non-central dbeta() and dchisq() and even the cumulative Γ() probalities pgamma()

1https://bugs.R-project.org/bugzilla/show_bug.cgi?id=7307#c6
2https://bugs.r-project.org/bugzilla/show_bug.cgi?id=15628

1

https://bugs.R-project.org/bugzilla/show_bug.cgi?id=7307#c6
https://bugs.r-project.org/bugzilla/show_bug.cgi?id=15628

and hence indirectly e.g., for cumulative central and non-central chisquare probablities
(pchisq()).

Loader noticed that for large n, the usual way to compute p(x;n, p) via its logarithm
log(p(x;n, p)) = log(n!)−log(x!)−log((n−x)!)+x log(p)+(n−x) log(1−p) was inaccurate,
even when accurate log Γ(x) = lgamma(x) values are available to get log(x!) = log Γ(x+1),
e.g., for x = 106, n = 2× 106, p = 1/2, about 7 digits accuracy were lost from cancellation
(in substraction of the log factorials).

Instead, she wrote

p(x;n, p) = p(x;n,
x

n
)e−D(x;n,p), (2)

where the “Deviance”D(.) is defined as

D(x;n, p) = log p(x;n,
x

n
)− log p(x;n, p)

= x log
(x

np

)
+ (n− x) log

(n− x

n(1− p)

)
, (3)

and to avoid cancellation, D() has to be computed somewhat differently, namely – cor-
recting notation wrt the original – using a two-argument version D0():

D(x;n, p) = npD̃0

(x

np

)
+ nqD̃0

(n− x

nq

)

= D0(x, np) +D0(n− x, nq), (4)

where q := 1− p and

D̃0(r) := r log(r) + 1− r and (5)

D0(x,M) := M · D̃0(x/M) (6)

= M ·
(x

M
log

(x

M

)
+ 1− x

M

)

= x log
(x

M

)
+M − x (7)

Note that since limx↓0 x log x = 0, setting

D̃0(0) := 1 and (8)

D0(0,M) := MD̃0(0) = M · 1 = M

defines D0(x,M) for all x ≥ 0, M > 0.
The careful C function implementation of D0(x,M) is called bd0(x, np) in Loader’s C

code and now R’s Mathlib at https://svn.r-project.org/R/trunk/src/nmath/bd0.c,
mirrored, e.g., at Winston Chen’s github mirror3. In 2014, Morten Welinder suggested
in R’s PR#156284 that the current bd0() implentation is still inaccurate in some regions
(mostly not in the one it has been carefully implemented to be accurate, i.e., when x ≈ M)
notably for computing Poisson probabilities, dpois() in R; see more below.

Evaluating of p(x;n, p) in (2), in addition to D(x;n, p) in (4) also needs p(x;n, xn)
where in turn, the Stirling De Moivre series is used:

log n! =
1

2
log(2πn) + n log(n)− n+ δ(n), where the “Stirling error” δ(n) is (9)

δ(n) := log n!− 1

2
log(2πn)− n log(n) + n = (10)

=
1

12n
− 1

360n3
+

1

1260n5
− 1

1680n7
+

1

1188n9
+O(n−11). (11)

3https://github.com/wch/r-source/blob/trunk/src/nmath/bd0.c
4https://bugs.r-project.org/bugzilla/show_bug.cgi?id=15628

2

https://svn.r-project.org/R/trunk/src/nmath/bd0.c
https://github.com/wch/r-source/blob/trunk/src/nmath/bd0.c
https://bugs.r-project.org/bugzilla/show_bug.cgi?id=15628

Note that δ(n) ≡stirlerr(n) in the C code provided by Loader and now in R’s Mathlib
at https://svn.r-project.org/R/trunk/src/nmath/stirlerr.c.

Note that for the binomial, x is an integer in {0, 1, . . . , n} and M = np ≥ 0, but the
formulas (6), (7) for D0(x,M) apply and are needed, e.g., for pgamma() computations for
general non-negative (x,M > 0) where even x = 0 is well defined, see (8) above.

Further (see Loader), such a saddle point approach is needed for Poisson probabilities,
as well, where

pλ(x) = e−λλ
x

x!
(12)

log pλ(x) = −λ+ x log λ − log(x!)
︸ ︷︷ ︸

log(1/
√
2πx)−(x log x−x+δ(x))

= log
1√
2πx

− x log
x

λ
+ x− λ− δ(x), (13)

is re-expressed using δ(x) and from (7) D0(x, λ) as

pλ(x) =
1√
2πx

e−δ(x)−D0(x,λ) (14)

Also, negative binomial probabilities, dnbinom(), TODO

Even for the tν density, dt(),
. . . but there have a direct approximations in package DPQ, currently functions c_dt(nu)
and even more promissingly, lb_chi(nu). TODO

2 Loader’s “Binomial Deviance” D0(x,M) = bd0(x, M)

Loader’s“Binomial Deviance”functionD0(x,M) = bd0(x, M) has been defined for x,M >
0 where the limit x → 0 is allowed (even though not implemented in the original bd0()),
here repeated from (6) :

D0(x,M) := M · D̃0

(x

M

)
, where

D̃0(u) := u log(u) + 1− u = u(log(u)− 1) + 1.

Hence,

D0(x,M) = M ·
(x

M
(log(

x

M
)− 1) + 1

)
= x log(

x

M
)− x+M. (15)

We can rewrite this, originally by e-mail from Martyn Plummer, then also indirectly
from Morten Welinder’s mentioning of log1pmx() in his PR notably for the important
situation when |x−M | ≪ M . Setting t := (x−M)/M , i.e., |t| ≪ 1 for that situation, or
equivalently, x

M = 1 + t. Using t,

t :=
x−M

M
(16)

D0(x,M) = M · (1 + t)
︸ ︷︷ ︸

x

log(1 + t)− t ·M
︸ ︷︷ ︸

x−M

= M ·
(
(t+ 1) log(1 + t)− t

)
=

= M · p1l1(t), (17)

3

https://svn.r-project.org/R/trunk/src/nmath/stirlerr.c

where

p1l1(t) := (t+ 1) log(1 + t)− t =
t2

2
− t3

6
± · · · , (18)

= (log(1 + t)− t) + t · log(1 + t)

= log1pmx(t) + t · log1p(t) (19)

where the Taylor series expansion is useful for small |t|,

p1l1(t) =
t2

2
− t3

6
+

t4

12
± · · · =

∞∑

n=2

(−t)n

n(n− 1)
=

t2

2

∞∑

n=2

(−t)n−2

n(n− 1)/2
=

t2

2

∞∑

n=0

(−t)n
(
n+2
2

) = (20)

=
t2

2

(
1− t

(1

3
− t

(1

6
− t

(1

10
− t

(1

15
− · · ·

)))))
, (21)

which we provide in DPQ via function p1l1ser(t, k) getting the first k terms, and the
corresponding series approximation for

D0(x,M) = lim
k→∞

p1l1ser
(x−M

M
, k, F =

(x−M)2

M

)
, (22)

where the approximation of course uses a finite k instead of the limit k → ∞.
This Taylor series expansion is useful and nice, but may not even be needed typically,

as both utility functions log1pmx(t) and log1p(t) are available implemented to be fully
accurate for small t, t ≪ 1, and (19), indeed, with t = (x−M)/M the evaluation of

D0(x,M) = M · p1l1(t) = M ·
(
log1pmx(t) + t · log1p(t)

)
, (23)

seems quite accurate already on a wide range of (x,M) values.
Note that x ∗ log1p(x) and log1pmx() have different signs, but also note that for small

|x|, are well approximated by x2 and −x2/2, so their sum p1l1(x) = log1pmx(x) + x ·
log1p(x) is approximately x2/2 and numerically computing x2 − x2/2 should only lose 1
or 2 bits of precision.

References

Loader, C. (2000). Fast and accurate computation of binomial probabilities. Technical
report, Lucent; Murray Hill, NJ USA.

4

> par(mfcol=1:2, mar = 0.1 + c(2.5, 3, 1, 2), mgp = c(1.5, 0.6, 0), las=1) -> op

> p.p1l1(-7/8, 2, ylim = c(-1,2))

> arrows(.3,-.3, 0, 0); text(.3, -.3, "zoom in")

> p.p1l1(-1e-4, 1.5e-4, ylim=1e-8*c(-.6, 1), do.leg=FALSE)

−0.5 0.0 0.5 1.0 1.5 2.0

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x

x ⋅ log1p(x)
log1pmx(x)
p1l1(x) = log1pmx(x) + x ⋅ log1p(x)
x

2
2

x
2

2 ⋅ (1 − x 3)

zoom in

−0.00010 0.00000 0.00010

−5e−09

0e+00

5e−09

1e−08

x

Figure 1: p1l1() and its constituents; on the right, zoomed in 4 and 8 orders of magnitude,
where the Taylor approximations x2/2 and x2/2− x3/6 are visually already perfect.

5

	Introduction
	Loader's ``Binomial Deviance'' D0(x,M) = bd0(x, M)

