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Abstract

We present briefly the scope of the DESP package, which aims to estimate robustly the param-
eters of a Gaussian distribution—even in high dimension—with particular attention to the diagonal
elements of the precision matrix.
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1 Introduction

1.1 Purpose of this package

The DESP packageE] is designed to estimate efficiently the parameters of a Gaussian distribution as
developed in [I 2]. To be precise, it estimates the inverse of the covariance matrix (also known as
precision or concentration matrix) and the expectation. Its main characteristics are the ability to deal
with data contaminated by outliers, with high-dimensional data and the availability of several estimators
of the diagonal elements of the precision matrix.

In this document, we zoom in on the function desp() which is an interface to most of the features of the
package.

1.2 Notation

We denote by N, (p*, X*) the Gaussian distribution in R” with mean p* and covariance matrix 3*. The

precision matrix (2*)71 is denoted by ©2*. We denote by 1,, the vector from R" with all the entries
equal to 1, by u, the vector 1,,/y/n and by I,, the n x n identity matrix. The transpose of the matrix
M is denoted by M". The kth row (resp. jth column) of a n x p matrix M is denoted by M., (resp.
M, ;). We use the following notation for the (pseudo-)norms of matrices: if g1, g2 > 0, then

n 1/Q2
Pl = { |
=1

The cardinality of a set S is denoted by |S].

1.3 Estimators

Let us first introduce the proposed estimator. We consider a possible additive contamination of the data
by outliers. We assume that the matrix X € R™*? of observed data satisfies

X =Y +E", 1)

where E* is the matrix of errors and Y the outlier-free data matrix. The rows latter are supposed to
be independent Gaussian, such that Y; o ~ N,(p*,X*). We also assume that most of the rows of the
matrix E* correspond to inliers, hence are only filled with zeros. The p X p matrix B* corresponds to
Q" - diag({1/w};}je[p)). We introduce the matrix ©®* = E*B*/y/n that has the same sparsity pattern as
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E*. We denote by X(™ the matrix X /+/n, the estimators of the parameters of the Gaussian distribution
as defined as follows:

{B,0} = aBF%mirll glelﬁg;l) {H(X(”)B —u,c’ — @)THZI + /\||(9||2’1 + fy||B||1’1}, (2)
Bjj=

@eRnxp

where A > 0 and v > 0 are tuning parameters respectively promoting robustness and sparsity of the
matrix B. The precision matrix €* can be estimated by

I O PP
Wj; = ?H(In —uw,u) ) (X™B,; - 0., Q =B - diag({&j; }jep))- (3)

We highlight that the estimator of the diagonal entries of the precision matrix stated above — based
on average absolute deviation around the mean — is only one of the alternatives proposed in the DESP
package. The other possibilities rest on residual variance or likelihood maximization (relaxed, symmetry-
enforced or penalized). The expectation vector pu* can be estimated by

1 5 S =
fi=—-(X-E)'1,, where E=n@B (4)
n

The solutions of the problem are obtained iteratively, by optimizing separately with respect to B
and ©. The details of the algorithm are provided in [3].

2 Implementation

The convex optimization problem is decomposed in p independent sub-problems. When both tuning
parameters A and - are zero, the solution of problem is obtained using ordinary least squares to
estimate each column of B. When v # 0, each of these p problems corresponding to square-root Lasso
can be either cast as an second-order cone program (SOCP), or solved using the coordinate descent
algorithm. In the first case, we propose to use the splitting conic solver (SCS, [7]) that solves efficiently
convex cone problems. We note however that a more efficient solution in terms of computational time is
obtained using the coordinate descend algorithm (stochastic or not). The p square-root Lasso problems
can be solved in parallel when the OpenMP application programming interface (API)E| is supported.
Most of the linear algebra operations are performed calling BLAS and LAPACK routine&ﬂ For the
details of available options of the function desp(), we refer the user to the package reference manual.

3 Installation

As available on CRANEL this package can be simply installed by entering the following instruction:
install.packages ("DESP")

We recommend to use a compiler that supports OpenMP to allow multithreading.

4 Example

We estimate the parameters of the distribution of Fisher’s iris data [4] for each of three iris species,
assuming that these data are normally distributed.
We first load the package and the data set:

library (DESP)
data(iris3)

20penMP Architecture Review Board, see http://openmp.org.

3These API are for instance implemented by OpenBLAS; available at |http://www.openblas.net/; or ATLAS, available
at http://math-atlas.sourceforge.net /.

4The Comprehensive R Archive Network, https://cran.r-project.org/.
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We will use the function desp.cv() that relies on the function desp() to estimate Q and 1, choosing the
tuning parameters A and «y by v-fold cross-validation [5]. To define this function, we have introduced the
following partition of the sample S = [J;_, S;. The values of these parameters are selected over a grid
such that the risk (the expectation of the loss) is the lowest. In connexion with the regression model, we
might consider a quadratic loss function and select:

v
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where ﬁ(i’,\ﬁ) and ﬁ(i, Ay are the estimates obtained on the training set S\S;. As the chosen loss
function is not robust, we used instead

v
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that is inspired by the ¢; cross-validation procedure [6].
We choose the estimator based on average absolute deviation around the mean to estimate the
diagonal entries. Besides, we choose a number of folds equal to 5.

settings <- list(diagElem='AD')
v <- 5

Then, we call this function on the first 25 observations of each species of iris:

set.seed (1)
categories <- colnames(iris3[1,,])
params <- vector(mode="list", length=length(categories))
for(c in 1:length(categories)){
obs <- 1:25
1r <- (9/10)°(0:9)
gr <- (1/sqrt(2))~(0:4) * sqrt(2*log(ncol(iris3[,,c])))
params[[c]] <- desp.cv(iris3[obs,,c], v=v, lambda.range=lr,
gamma.range=gr, settings=settings)

}

The estimated parameters corresponding to the species Iris setosa are:
params [[1]]

## $0mega

## [,1] [,2] [,3] [,4]

## [1,] 17.12675 -11.32521 0.00000 0.00000
## [2,] -11.32521 20.66644 0.00000 0.00000
## [3,] 0.00000 0.00000 30.03014 0.00000
## [4,] 0.00000 0.00000 0.00000 87.20826
##

## $mu

## [,1]

## Sepal L. 5.028

## Sepal W. 3.480

## Petal L. 1.460

## Petal W. 0.248

##

## $Theta

## (,11 [,21 [,3] [,4]

# [1,] 0 0 0 0

#  [2,] 0 0 0 0

##  [3,] 0 0 0 0



#  [4,] 0 0 0 0
## [5,] 0 0 0 0
## [6,] 0 0 0 0
#  [7,] 0 0 0 0
#  [8,] 0 0 0 0
#  [9,] 0 0 0 0
## [10,] 0 0 0 0
## [11,] 0 0 0 0
## [12,] 0 0 0 0
## [13,] 0 0 0 0
## [14,] 0 0 0 0
## [15,] 0 0 0 0
## [16,] 0 0 0 0
# [17,] 0 0 0 0
## [18,] 0 0 0 0
## [19,] 0 0 0 0
## [20,] 0 0 0 0
## [21,] 0 0 0 0
## [22,] 0 0 0 0
## [23,] 0 0 0 0
## [24,] 0 0 0 0
## [25,] 0 0 0 0
##

## $lambda

## [1] 1

##

## $gamma

## [1] 0.588705

##

## attr(,"class")
## [1] "desp.cv"
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