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1 Introduction

This document gives instructions on how to use the functions in the package DCGL_2.0
which is an advanced and upgraded version of DCGL_1.0. DCGL_2.0 contains four mod-
ules which are Gene filtration module, Link filtration module, Differential CoExpression
Analysis (DCEA) module and Differential Regulation Analysis (DRA) module. In Gene
filtration module, there are expressionBasedfilter and varianceBasedfilter functions
to filter genes on expression microarray data. In Link filtration module, there are rLink-
filter, percentLinkfilter and qLinkfilter functions to filter gene coexpression links in
coexpression networks. DCp, DCe, WGCNA, LRC and ASC functions were implemented in DCEA
module for extracting differentially coexpressed genes (DCGs) and differentially coexpressed
links (DCLs). The final step of DCEA module is DCsum to determine DCGs and DCLs which
come from multiple DCEA methods. In DRA module, there are DRsort, DRplot and DR-
rank functions to identify differentially regulated genes (DRGs) and differentially regulated
links (DRLs) and to present some relevant information according to regulation knowledge.
Figure [1| shows the overall design of DCGL_2.0.

The major input of DCGL_2.0 are two expression data matrices from two contrastive
conditions, where the rows and columns correspond to genes and microarrays respectively.
TF-to-target regulation knowledge, which was wrapped in the package, is another required
input dataset.

The DCGL_2.0 package employs R library igraph, limma, org. Hs.eg.db, which must be
installed in advance.

2 Getting started

Prior to using DCGL_2.0, users should download the installation file of DCGL_2.0 to
their local computer, and install DCGL_2.0 as a package of their R computing environment.
For Linux users, they should type ‘R CMD INSTALL DCGL_2.0.tar.gz’ in the shell (suppose
the installation file ‘DCGL_2.0.tar.gz’ is in the current working directory); for windows users,
they should go to the R menu ‘Packages’ and click the ‘Install package(s) from local zip
files’ and then locate the local file ‘DCGL_2.0.zip’. If the package is installed successfully,
a file folder named ‘DCGL’ should appear beneath the folder ‘library’ in the R installation
directory.

To load the DCGL_2.0 package, type library(DCGL).

3 Methods

DCGL_2.0 provides the pre-existing facilities for gene filtering, link filtering and D-
CGs/DCLs identification of DCGL_1.0, as well as newly added functions for DCGs/DCLs
summarization, DRGs/DRLs identification, networks visualization, and regulators ranking.
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Figure 1: Overall design of DCGL_2.0. Functions implemented in both DCGL_1.0 and
DCGL_2.0 are represented in light gray. DCEA: Differential CoExpression Analysis; DRA:
Differential Regulation Analysis.



3.1 Gene Filtration

If there are too many genes in the expression dataset, one can filter out some genes us-
ing the expressionBasedfilter or varianceBasedfilter or both of them. expression-
Basedfilter filters out a half genes that have their Between-Experiment Mean Expression
Signal (BEMES) lower than the median BEMES of all genes (Prieto and etal.,2008)). vari-
anceBasedfilter is an approximate test of the hypothesis that gene has the same variance
as the median variance (Simon and Lam,2006). The variance of the log-values for each gene
is compared to the median of all the variances.The quantity

quantity = (n — 1) x var;/vary,

for each gene is compared to a percentile of a chi-square distribution (with a degree of
freedom of n — 1, n being the number of arrays) to filter out those genes not significantly
more variable than the median gene.

3.2 Link filtration

For all DCEA methods but WGCNA, a link filtering step is necessary to build up two
gene coexpression networks for the two contrastive conditions. The two gene coexpression
networks have identical linking structures but different edge weights (coexpression values).
The input to link filtering methods always include two separate gene expression matrices for
the two conditions, and the output mainly comprises two data vectors, each coming from a
half of the symmetrical gene-versus-gene coexpression matrices. One can imagine that, in
the intermediate coexpression matrices, retained links have non-zero values while discarded
links are denoted with zero values.

Three stand-alone functions are implemented for link filtering, which are the correla-
tion value threshold (rLinkfilter), the correlation-value fraction based link filtering (per-
centLinkfilter), and the g-value based link filtering (qLinkfilter). However, these link
filtering functions are seldom called as independent functions; instead, they are wrapped
in the DCEA functions DCp, DCe, ASC, LRC, and can be tuned with the ‘link.method’ and
‘cutoff’ parameters.

3.2.1 Filtering gene links according to the correlation threshold

As an argument to the ‘link.method’ parameter, rLinkfilter is abbreviated to ‘rth’.
Each gene link is associated with two correlation values (one out of condition A and the
other out of condition B); if either of the two correlation values is greater than the given
correlation threshold (‘cutoff’), the gene link is retained.

3.2.2 Filtering gene links according to the max correlation value

As an argument to the ‘link.method’ parameter, percentLinkfilter is abbreviated
to ‘percent’. Each gene link is associated with two correlation values (one out of condition
A and the other out of condition B) and thus a vector of ‘maximum absolute values’ for
all correlation value pairs is decided. Then these ‘maximum absolute values’ are sorted in
decreasing order. At last, a fraction (‘cutoff’) of gene pairs with the highest max correlation
values will be retained.



3.2.3 Filtering gene links according to the g-values of correlation values

As an argument to the ‘link.method’ parameter, qLinkfilter is abbreviated to ‘qth’.
For each of the two experimental conditions, the coexpression values are associated with
the corresponding p-values (student T-test of the zero nature of a Pearson Correlation Co-
efficient (PCC)), and these p-values are sorted and transformed to g-values (false discovery
rates). In this way, each gene link is associated with a pair of g-value, and those links with
at least one g-value lower than the threshold (‘cutoff’) are retained.

3.3 Differential CoExpression Analysis

DCEA module contains five DCEA methods. DCp and DCe(Yu and etal.,2011))(Liu and etal.,2010)
proposed by us, and WGCNA, ASC, and LRC were proposed by other inventors. All the methods
are aimed to extract DCGs/DCLs through analysing the change in. All methods must be
preceded by a link filtering step, which can be tuned with the the ‘link.method’ and ‘cutoff’
parameters. After the link filtering, coexpression pairs with rth/percent/qth of coexpression
values in either of two conditions higher/higher/lower than the cutoff are retained.

3.3.1 DCp for identifying DCGs

DCp works on the filtered set of gene coexpression value pairs, where each pair is
made up with two coexpression values calculated under two different conditions separetely.
The subset of coexpression value pairs associated with a particular gene, in two groups for
the two conditions separately, can be written as two vectors X and Y (n is coexpression
neighbors for a gene).

X = (1,‘1'1, Lj2y ooy {L‘Zn)

Y = (%17%27 7yl7l)

Then a length-normalized Euclidean distance is used for measuring differential coexpression
(dC) of this gene.
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To evaluate whether a gene has significant dC, we perform a permutation test, in
which we randomly permute the disease and normal conditions of the samples, calculate
new PCCs, filter gene pairs based on the new PCCs, and calculate new dC statistics. The
sample permutation is repeated N times, and a large number of permutation dC statistics
form an empirical null distribution. The p-value for each gene can then be estimated.

3.3.2 DCe for identifying DCGs and DCLs

DCe is based on the ‘Limit Fold Change’ (LFC) model, a robust statistical method
originally proposed for selecting differentially expressed genes(DEGs) from microarray data
(Mutch and etal.,2002).

First, the correlation pairs are divided into three parts according to the pairing of
signs of coexpression values and the multitude of coexpression values: pairs with same signs



(N1), pairs with different signs (N2) and pairs with differently-signed high coexpression
values (N3). The "high coexpression values” are deemed based on the same correlation
value threshold as in the qLinkfilter function. The first two parts are processed with the
‘LFC’ model separately to yield two subsets of DCLs (K7,K3), while the third part (N3)
adds to the set of DCLs directly. So a total of K=N3+K;+Ky9 DCLs are determined
from a total of N gene links. For a gene (g;), the total number of links (n;) and DCLs in
particular(k;) associated with it are counted, and the Binomial Probability model is used
to estimate the significance of the gene being a DCG.

Plg) = Y O3 (a1 Toyres
r=k;

3.3.3 WGCNA, ASC and LRC for identifying DCGs

WGCNA (Fuller and etal.,2007; [van Nas and etal.,2009)), ASC (Choi and etal.,2005)) and
LRC (Reverter and etal.,2005) are other methods for measuring genes’ differential coexpres-
sion. For more details please consult (Yu and etal.,2011} [Liu and etal.,2010).

3.3.4 Summarizing DCGs and DCLs

DCsum, short for Differentially Coexpression Summarization, summarizes 1) a set of
DCGs, which is an intersection of DCp and DCe results; and 2) a set of DCLs which by
definition must be connected with the DCGs. As a result, DCsum combines results from
different coexpression analysis methods.

3.4 Differential Regulation Analysis
3.4.1 Sorting out potential DRGs and DRLs

DRsort, the first function of DRA module, is aimed to sift DCGs and DCLs according
to regulation knowledge.

If a DCG is a TF, it is intuitively speculated that its related differential coexpression
may be attributed to the change of its regulation relationships with its targets. So this type
of DCGs are termed Differential Regulation Genes (DRGs). Besides if the upstream TF's of
a DCG is identified, that DCG is possibly a differentially regulated target of an implicated
regulator, and so such DCGs are also kept in the set of DRGs.

If a DCL happens to be a TF-to-target relation, we highlight this DCL because it is the
direct attribution to differential regulation. This type of DCLs are termed ‘TF2target_DCL’.
On the other hand, if there are one or more common TF's regulating the two genes of a DCL,
we also give priority to this DCL because the change in the expression correlation of the
two genes could be attributed to the disruption of their co-regulation by the common TFs.
This type of DCLs are termed ‘TF_bridged_DCLs’. TF2target_DCL and TF_bridged_DCL,
therefore, together form the set of Differentially Regulated Links(DRLS).



3.4.2 Visualizing differential coexpression and regulation relationship

We built a function DRplot to display combined information of DCGs/DCLs and
DRGs/DRLs. DRpolt generats two figures which are 1): TF2target_DCL-centered net-
work and 2): TF_bridged DCL-centered network. In both networks, we rely on different
node shapes differentiate TFs and non-TFs (square for TFs, circle for non-TFs), different
node colors to categorize genes (red for DCGs, plum for non-DCGs, gray for TFs which
are not tested in expression microarray data), and different edge types to express different
relations of gene pairs (solid for DCLs, dashed for non-DCLs; edges with arrow indicate
TF-to-target relations).

3.4.3 Ranking Regulators

DRrank is implemented for ranking potential TFs in terms of their relevance to the
phenotypic change or biophysical process of interest. It contains three methods: RIF
(Reverter and etal.,2010), TED, and TDD. The latter two methods were proposed by us
firstly in this package.

TED, short for ‘Target Enrichment Density’, employs Binomial Probability model to
quantify the enrichment of a TF’s targets in the DCG set, and as such to evaluate which
regulators are more likely to be subject-relevant or even causal. Suppose we sift K DCGs
from expression profile which contains N genes. If T'F; has T; targets in regulation knowl-
edge, there should be T; x K/N DCGs appeared in T'F; targets list randomly. Actually, it
is found that 77 DCGs are included in T'F;’s targets list. The larger 77 than T; « K/N is,
the more targets of T'F; enriched, the more likely TF; is a relevant or causative regulator.
Following is TED formula.

& K K
T - x T;,—x
TED(TE) = z;I C Z(N) (1- N)

TDD, short for ‘Targets” DCL Density’, uses Clustering Coefficient to quantify the
density of DCLs among a regulator’s targets, and so to judge the importance of a TF.
Suppose that T'F; has n targets, and that there are k¥ DCLs among these targets. A larger
k means more DCLs are bridged by the common T'F;. We intuitively assume that, if a
TF bridged more TF_bridged DCL it is of more importance (even if the regulator is not
a DCG). Based on this hypothesis, we employ Clustering Coefficient formula to calculate
TDD as follow:

k

- n*(n—1)
2

TDD(TF;) = ClusteringCoef ficient(TF;)

Of note even though no expression data is available for a TF, its TED and TDD
could still be calculated only if the expression level of its targets are measured. This is an
advantage of TED and TDD over RIF.

RIF method, short for ‘Regulator Impact Factor’, assesses the change of regulation-
accountable expression value of Differentially Expressed Genes(DEGs) and correlation co-



efficient between DEGs and TFs (Reverter and etal.,2010]).

1 j:nde

Z [(elj * Tlij)Q — (€2j * 7"21'3‘)2]

RIF(TF,) =
Nde
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where ng. means the number of DEGs, el (e2) means the expression value of DEG; in
condition 1 (condition 2), r1;; (12;;)means the correlation of T'F; and DEG; in condition 1
(condition 2).

4 Dataset

DCGL_2.0 includes six datasets: exprs, tf, tf2target, exprs_design, intgenelist.
exprs, contains 1000 genes and 63 samples, is a sub-dataset from a real microarray da-
ta (GSE17967) from GEO (http://www.ncbi.nlm.nih.gov/geo/). exprs_design, required
by DRrank, elucidates the experiment design of the exprs. tf and tf2target, regulation
information obtained through processing relevant data (TFbsConFactors.txt and TFbsCon-
sSites.txt) from UCSC hgl8, contain 215 human Transcription Factors (TFs) and 214607
TF-to-target relationships. intgenelist data is sample set of user-interested genes, and
are required by DRplot to plot sub-networks.

5 Example

The following examples are based on the test dataset exprs.

5.1 Gene filter

One can filter genes by expressionBasedfilter or varianceBasedfilter, keep sub-
set.

> library(DCGL)
> data(exprs)
> dim(exprs)

[1] 1000 63

> exprs.filter.1 <- expressionBasedfilter (exprs)
> dim(exprs.filter.1)

[1] 500 63

> exprs.filter.2 <- varianceBasedfilter(exprs, 0.05)
> dim(exprs.filter.2)

[1] 374 63



5.2 DCp: Identify DCGs

> library(DCGL)
> data(exprs)
> exprs[1:3, 1:3]

Samplel Sample2 Sampled
AACS 5.267744 5.225570 5.202380
FSTL1 8.629291 8.797554 8.353277
ELMO02 6.096321 6.180715 5.824657

In the sample gene expression data matrix exprs, it was designed to study gene expression
in cirrhotic tissues with (N=16) and without (N=47) HCC. So we firstly divide exprs into
two parts corresponding to condition 1 (exprs.1) and condition 2 (exprs.2) respectively.

> exprs.1 <- exprs/[, 1:16]

> exprs.2 <- exprs[, 17:63]

> DCp.res <- DCp(exprs.1, exprs.2,

+ r.method = c("pearson", "spearman")[1],

+ link.method = c("qth", "rth", "percent")[1],

+ cutoff = 0.25,

+ N = 0,

+ N.type = c("pooled", "gene_by_gene")[1],

+ q.method = c("BH", "holm", "hochberg", "hommel", "bonferroni',"BY", "fdr")[1])
> DCp.res[1:3, ]

dC links p.value q.value

AACS 0.2955923 394 NA NA

FSTL1 0.3255206 584 NA NA

ELMO2 0.2687325 642 NA NA

> DCp.res.N <- DCp(exprs.1, exprs.2,

+ r.method = c("pearson", "spearman")[1],

+ link.method = c("qth", "rth", "percent")[1],
+ cutoff = 0.25,

+ N = 100,

+ N.type = c("pooled", "gene_by_gene")[1],

+ q.method = c("BH", "holm", "hochberg", "hommel", "bonferroni', "BY", "fdr")[1])
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90 %
100 %

> DCp.res.N[1:3, ]

dC links p.value q.value
AACS 0.2955923 394 0.875 0.9988584
FSTL1 0.3255206 584 0.708 0.9985896
ELMO2 0.2687325 642 0.965 0.9989648

Link filter methods(rLinkfilter, percentLinkfilter and qLinkfilter) are wrapped
in DCp with available parameter ‘link.method’. Correlation coefficient methods are also giv-
en a option by ‘r.method’. So is ‘q.method’ for adjusting p value.

Parameter ‘N.type’ is used for choosing the permutation type. If ‘N.type’ is set to
‘pooled’; that means pooling all the dC together to form a null distribution of dC and
estimate corresponding statistical significance (p-value) against null statistics. If ‘N.type’ is
set to ‘gene_by_gene’, that means calculating p-value of a gene only against this gene’s null
distribution of dC.

The ‘DCp.res’ ia a matrix of all genes with ‘dC’ column, ‘link’ column (degree in coex-
pression networks), ‘p.value’ column and ‘q.value’ column. If we set N=0, no permutation
has beeb done, and in this case the ‘p.value’ and ‘q.value’ are <INA>.

5.3 DCe: Identify DCGs and DCLs

As shown in the example of DCp, ‘link.mehtod’, ‘r.method’ and ‘q.method’ are pa-
rameters for choosing link-filtration method, correlation-calculating method, and g-value
calculating method.

> DCe.res <- DCe(exprs.1, exprs.2,

+ link.method = c("qth", "rth", "percent")[1],

+ cutoff = 0.25,
+ r.method = c("pearson", "spearman")[1],

+ q.method = c("BH", "holm", "hochberg", "hommel","bonferroni", "BY", "fdr")[1],
+ nbins = 20, p = 0.1, figname = c("LFC.s.jpeg", "LFC.d.jpeg"))

> DCe.res$DCGs[1:3, ]

Al11.1inks DC.links DCL_same DCL_diff DCL_switch p q
CXCL13 411 206 93 101 12 8.433654e-90 8.433654e-87
RPS21 718 250 68 125 57 9.130849e-68 4.565425e-65
METTLS5 702 224 54 113 57 2.083395e-53 6.944650e-51

‘DCe.res’ contains two components, one is DCe . res$DCGs and the other is DCe . res$DCLs.
DCe.res$DCGs is a matrix which includes seven columns: ‘All.links’ (degree of genes in
whole coexpression network), ‘DC.links’ (degree of genes after Linkfilter), ‘DCL_same’
(the count of same signed correlation coefficient of two conditions in ‘DC.links’), ‘DCL_diff’
the count different signed correlation coefficient of two conditions in "DC.links’), ‘DCL_switch’

(
(the count switched opposites correlation coefficient of two conditions in ‘DC.links’), ‘p
(p-value) and ‘q’ (q.value).

10



> DCe.res$DCLs[1:3, ]

Gene.l Gene.2 cor.1 cor.2 type cor.diff
C9orf45,AACS  CY9orf45  AACS -0.679430350 -0.1120171 same signed 0.5674132
ABCD4,AACS ABCD4  AACS -0.046094800 -0.3431368 same signed 0.2970420

KIAA1661,AACS KIAA1661 AACS 0.008438316 0.3069050 same signed 0.2984666

DCe.res$DCLs is a matrix which covers links (‘Gene.1” and ‘Gene.2), correlation co-
efficient (‘cor.l’, ‘cor.2’ in two conditions), type (‘same signed’, ‘diff signed’ or ‘swithed
opposites’) and ‘cor.diff” (the absolute value of ‘cor.1’ minus ‘cor.2’). If the user need to
narrow down DCGs or DCLs, the may consider setting lower ‘cutoff’ (in ‘qth’ or ‘percent’)
or higher coexpression correlation coefficient ‘cutoff’ (in ‘rth’) or giving a stricter outlier
fraction (p value).

5.4 DCsum: Summarizing DCGs and DCLs

We implemented DCsum to summarize DCGs and DCLs from ‘DCp.res’ and ‘DCe.res’.

> DCsum.res <- DCsum(DCp.res, DCe.res,
+ DCpcutoff = 0.25,
+ DCecutoff = 0.25)
> DCsum.res$DCGs[1:3, ]
DCG dC All.links.DCp DCp.p DCp.q All.links.DCe DC.links DCL.same
1 A4GNT 0.5308694 356 NA NA 356 90 41
2 ADAM23 0.5242025 312 NA NA 312 71 35
3 ADAM29 0.4779226 596 NA NA 596 102 56
DCL.diff DCL.switch DCe.p DCe.q
1 38 11 2.493160e-15 1.325344e-13
25 11 3.347260e-10 9.297944e-09
3 38 8 6.845184e-07 1.037149e-05

> DCsum.res$DCLs[1:3, ]

Gene.l Gene.2 cor.1 cor.2 type cor.diff
ADAM23; GMPPA ADAM23 GMPPA -0.5719228 -0.02508201 same signed 0.5468408
ADAM23; CEP350 ADAM23 CEP350 0.6860120 -0.22261784 diff signed 0.9086298
ADAM23; S0D2  ADAM23  S0D2 0.5292947 -0.33945089 diff signed 0.8687456
DCG
ADAM23; GMPPA ADAM23
ADAM23; CEP350 ADAM23
ADAM23; S0D2  ADAM23

11



5.5 DRsort: Sorting out potential DRGs and DRLs

DRsort recommends TF-to-target regulation information which downloaded from UC-
SC to identify whether DCGs are TFs or not. If a DCG happened to encode a TF, this
DCG is considered to be a DRG. Specially for DCLs DRsort sorts out DCLs to two types,
TF2target_DCL and TF_bridged_DCL. Both of them are considered to be DRLs.

> data(tf2target)
> DRsort.res <- DRsort(DCsum.res$DCGs, DCsum.res$DCLs, tf2target, exprs)

> DRsort.res$DRGs[1:3, ]

DCG Upstream_TFofDCG
1 A4GNT CDC5L
2 ADAM23 NF-1;STAT1;PAX3;BRIP1;...;CUX1;MRPL36;DAND5;BACH1;ER-alpha
3 ADAM29 NA
DCGisTF dC DCp.p All.links.DCe DC.links DCL.same DCL.diff
1  FALSE 0.5308694 NA 356 90 41 38
FALSE 0.5242025 NA 312 71 35 25
3 FALSE 0.4779226 NA 596 102 56 38
DCL.switch
1 11
11
3 8

> DRsort.res$DRLs[1:3, ]

pairID common.TF internal.TF
1 ABHD5; CDC25B CREB1; deltaCREB <NA>
2 ABHD5; USP6NL Egr-1; EGR1 <NA>
3  ABR; AGPAT1 FOS; FOSB; JUN; JUNB; JUND; MIF-1; PLAU; SPZ1 <NA>
Gene.l1 Gene.2 cor.1 cor.2 type cor.diff DCG
1 ABHD5 CDC25B 0.5788734 -0.30345618 switched opposites 0.8823296 CDC25B
ABHD5 USP6NL -0.4089767 0.46839285 diff signed 0.8773695 USP6NL
3 ABR AGPAT1 -0.8306742 -0.05507074 same signed 0.7756035 AGPAT1

> DRsort.res$DCGs[1:3, ]

DCG Upstream_TFofDCG
1 A4GNT CDC5L
2 ADAM23  SP1;NF1;Pax-5;CUX1;MRPL36;DAND5;BACH1;ER-alpha
3 ADAM29 NA
DCGisTF dC DCp.p All.links.DCe DC.links DCL.same DCL.diff
1  FALSE 0.5308694 NA 356 90 41 38
FALSE 0.5242025 NA 312 71 35 25
3 FALSE 0.4779226 NA 596 102 56 38
DCL.switch

12



1 11

2 11
3 8
> DRsort.res$DCLs[1:3, ]
pairID common.TF internal.TF

1 ABHD5; CDC25B CREB1; deltaCREB <NA>
2 ABHD5; USP6NL Egr-1; EGR1 <NA>
3  ABR; AGPAT1 FOS; FOSB; JUN; JUNB; JUND; MIF-1; PLAU; SPZ1 <NA>

Gene.1l Gene.2 cor.1 cor.2 type cor.diff DCG
1 ABHD5 CDC25B 0.5788734 -0.30345618 switched opposites 0.8823296 CDC25B
2 ABHD5 USP6NL -0.4089767 0.46839285 diff signed 0.8773695 USP6ENL
3 ABR AGPAT1 -0.8306742 -0.05507074 same signed 0.7756035 AGPAT1
> dim(DRsort.res$DRGs)

[1] 207 10

> dim(DRsort.res$DCGs)
[1] 207 10

> dim(DRsort.res$DRLs)
[1] 4317 10

> dim(DRsort.res$DCLs)
[1] 14059 10

DRGs, DRLs, DCG2TF, TF_bridged_DCL, DCGs and DCLs, six components comprise
‘DRsort.res’. ‘Upstream_TFofDCG’ and ‘DCGisTF’ columns were added to the list of DR-
sort.res$DRGs to display the differential regulated genes. ‘common.TF’ and ‘internal. TF’
columns were added to the list of DRsort.res$DRLs to identify two type of differential reg-
ulated links. Lists of DRsort.res$DCGs and DRsort.res$DCLs contain all the genes and
links came out from DCEA, and were annotated regulation information whenever available.
And more details were displayed in DRsort.res$DCG2TF and DRsort.res$TF_bridged_DCL
for the ease of follow-up investigation.

5.6 DRplot: Visualizing differential coexpression and regulation relation-
ship

DRplot plots TF2target_DCL-centered (Figure[2)) and TF_bridged_ DCL-centered (Fig-
ure 3) networks depending on igraph.
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> DRplot.res <- DRplot(DRsort.res,

+ type = c("both", "TF2target_DCL", "TF_bridged DCL")[1],
+ intgenelist = NULL,

+ vsize=5,asize=0.25,1cex=0.3,ewidth=1,

+ figname = c("TF2target_DCL.pdf", "TF_bridged_DCL.pdf"))

The graph of TF2target_DCL.pdf has been completed and saved in your working directory.
The graph of TF_bridged_DCL.pdf has been completed and saved in your working directory.

> data(intgenelist)

> DRplot.res <- DRplot(DRsort.res,

+ type = c("both", "TF2target_DCL", "TF_bridged_DCL") [3],
intgenelist = intgenelist,
vsize=5,asize=0.25,1cex=0.3,ewidth=1,

figname = c("TF2target_DCL.pdf", "TF_bridged_DCL_int.pdf"))

+ + +

The graph of TF_bridged_DCL_int.pdf has been completed and saved in your working directory.

If ‘type’ is set to ‘TF2target_DCL’ or ‘TF_bridged_DCL’, DRplot only plots corre-
sponding network. If ‘type’ is set to ‘both’, two networks will be plotted. However, total
information of DCGs/DCLs and DRGs/DRLs are not always needed. DRplot gives ‘int-
genelist’ parameter for user to delimit a sub-network. The value of ‘intgenelist’ is a group
of interesting gene symbols.

5.7 DRrank: Ranking regulators

DRrank implements three approaches to form a potential rank to show which regulators
are more relevant to a phenotypic change or biophysical process in these conditions of
expression profiles.

> data(tf)

> data(tf2target)

> data(exprs_design)

> DRrank.res <- DRrank(exprs, exprs.1, exprs.2, tf, tf2target,
+ exprs_design, p.value=0.05, DRsort.res)

> DRrank.res[1:3,]

TF TED_score TED_rank TDD_score TDD_rank RIF_score RIF_rank

129 NKX2-5 3.822698 1 0.4931034 16 NA NA
52 FOXD3 3.557994 2 0.4789474 18 NA NA
58 FOX01 3.531307 3 0.3568627 51 2.261597 7
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DCLs, arrow line indicating TF-to-target relations.

16



[Prieto and etal.,2008] Prieto, C., Risueno, A., Fontanillo, C. and De las Rivas, J. (2008) Human gene coexpression landscape:
confident network derived from tissue transcriptomic profiles. PLoS One,3, e3911.

[Simon and Lam,2006] Simon, R. and Lam, A. (2006) BRB Array Tools Users Guide. Technical Reports. Biometric Research
Branch, National Cancer Institute

http://linus.nci.nih.gov/ brb/download_full_new.html

[Mutch and etal.,2002] Mutch, D. M.,Berger, A.,Mansourian, R.,Rytz, A.,Roberts, M. A. (2002) The limit fold change model:
a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics, 3, 17.

[Fuller and etal.,2007] Fuller, T.F., Ghazalpour, A., Aten, J.E., Drake, T.A., Lusis, A.J. and Horvath, S.(2007) Weighted
gene coexpression network analysis strategies applied to mouse weight. Mamm Genome,18, 463-472.

[van Nas and etal.,2009] van Nas, A., Guhathakurta, D., Wang, S.S., Yehya, N., Horvath, S., Zhang, B., Ingram-Drake,
L., Chaudhuri, G., Schadt, E.E., Drake, T.A., Arnold, A.P. and Lusis, A.J. (2009) Elucidating the role of gonadal
hormones in sexually dimorphic gene coexpression networks. Endocrinology,150, 1235-1249.

[Choi and etal.,2005] Choi, J.K., Yu, U., Yoo, O.J. and Kim, S. (2005) Differential coexpression analysis using microarray
data and its application to human cancer. Bioinformatics, 21, 4348-4355.

[Reverter and etal.,2005] Reverter, A., Ingham, A., Lehnert, S.A., Tan, S.H., Wang, Y., Ratnakumar, A. and Dalrymple,
B.P. (2006) Simultaneous identification of differential gene expression and connectivity in inflammation, adipogenesis
and cancer. Bioinformatics, 22, 2396-2404.

[Yu and etal.,2011] Yu, H., Liu, B.H., Ye, Z.Q., Li, C., Li, Y.X., Li, Y.Y. (2011) Link-based quantitative methods to identify
differentially coexpressed genes and gene pairs. BMC Bioinformatics, 12, 315

[Liu and etal.,2010] Liu, B.H., Yu, H., Tu, K., Li, C., Li, Y.X., Li, Y.Y. (2010) DCGL: an R package for identifying
differentially coexpressed genes and links from gene expression microarray data. Bioinformatics, 26, 2637-8

[Reverter and etal.,2010] Reverter, A., Hudson, N. J., Nagaraj, S. H., Perez-Enciso, M., Dalrymple, B. P., (2010) Regulatory
impact factors: unraveling the transcriptional regulation of complex traits from expression data Bioinformatics, 26,
896-904

[Csardi and etal.,2006] Gabor, C., Tamas, N. (2006) The igraph software package for complex network research InterJournal,
Complex Systems, 1695

[Elo and etal.,2007] L. L., Elo, H. Jarvenpaa, M., Oresic, R.Lahesmaa and T. Aittokallio. (2007) Systematic construction of

gene coexpression networks with applications to human T helper cell differentiation process Bioinformatics, 23(16),
2096-103

17



	Introduction
	Getting started
	Methods
	Gene Filtration
	Link filtration
	Filtering gene links according to the correlation threshold
	Filtering gene links according to the max correlation value
	Filtering gene links according to the q-values of correlation values

	Differential CoExpression Analysis
	DCp for identifying DCGs
	DCe for identifying DCGs and DCLs
	WGCNA, ASC and LRC for identifying DCGs
	Summarizing DCGs and DCLs

	Differential Regulation Analysis
	Sorting out potential DRGs and DRLs
	Visualizing differential coexpression and regulation relationship
	Ranking Regulators


	Dataset
	Example
	Gene filter
	DCp: Identify DCGs
	DCe: Identify DCGs and DCLs
	DCsum: Summarizing DCGs and DCLs
	DRsort: Sorting out potential DRGs and DRLs
	DRplot: Visualizing differential coexpression and regulation relationship
	DRrank: Ranking regulators


