
Package ‘DBI’
February 27, 2018

Version 0.8

Date 2018-02-24

Title R Database Interface

Description A database interface definition for communication
between R and relational database management systems. All
classes in this package are virtual and need to be extended by
the various R/DBMS implementations.

Depends R (>= 3.0.0),
methods

Suggests blob,
covr,
hms,
knitr,
magrittr,
rprojroot,
rmarkdown,
RSQLite (>= 1.1-2),
testthat,
xml2

Encoding UTF-8

License LGPL (>= 2)

URL http://r-dbi.github.io/DBI

URLNote https://github.com/r-dbi/DBI

BugReports https://github.com/r-dbi/DBI/issues

Collate 'DBObject.R'
'DBDriver.R'
'table.R'
'DBConnection.R'
'ANSI.R'
'DBI-package.R'
'DBResult.R'
'data-types.R'

1

http://r-dbi.github.io/DBI
https://github.com/r-dbi/DBI/issues


2 R topics documented:

'data.R'
'deprecated.R'
'hidden.R'
'interpolate.R'
'list-pairs.R'
'quote.R'
'rd.R'
'rownames.R'
'table-create.R'
'table-insert.R'
'transactions.R'

VignetteBuilder knitr

Roxygen list(markdown = TRUE, roclets = c(``collate'', ``namespace'', ``rd'', ``pkgapi::api_roclet''))

RoxygenNote 6.0.1.9000

R topics documented:
DBI-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
dbBind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
dbClearResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
dbColumnInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
dbConnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
dbDataType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
dbDisconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
dbDriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
dbExecute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
dbExistsTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
dbFetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
dbGetException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
dbGetInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
dbGetQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
dbGetRowCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
dbGetRowsAffected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
dbGetStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
dbHasCompleted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DBIConnection-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DBIDriver-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DBIObject-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DBIResult-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
dbIsValid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
dbListConnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
dbListFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
dbListObjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
dbListResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
dbListTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
dbQuoteIdentifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
dbQuoteLiteral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



DBI-package 3

dbQuoteString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
dbReadTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
dbRemoveTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
dbSendQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
dbSendStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
dbUnquoteIdentifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
dbWithTransaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
dbWriteTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Id-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
make.db.names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
rownames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
sqlAppendTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
sqlCreateTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
sqlData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
sqlInterpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Index 59

DBI-package DBI: R Database Interface

Description

DBI defines an interface for communication between R and relational database management sys-
tems. All classes in this package are virtual and need to be extended by the various R/DBMS
implementations (so-called DBI backends).

Definition

A DBI backend is an R package which imports the DBI and methods packages. For better or worse,
the names of many existing backends start with ‘R’, e.g., RSQLite, RMySQL, RSQLServer; it is
up to the backend author to adopt this convention or not.

DBI classes and methods

A backend defines three classes, which are subclasses of DBIDriver, DBIConnection, and DBIRe-
sult. The backend provides implementation for all methods of these base classes that are defined
but not implemented by DBI. All methods defined in DBI are reexported (so that the package can
be used without having to attach DBI), and have an ellipsis ... in their formals for extensibility.

Construction of the DBIDriver object

The backend must support creation of an instance of its DBIDriver subclass with a constructor
function. By default, its name is the package name without the leading ‘R’ (if it exists), e.g.,
SQLite for the RSQLite package. However, backend authors may choose a different name. The
constructor must be exported, and it must be a function that is callable without arguments. DBI
recommends to define a constructor with an empty argument list.



4 dbBind

Author(s)

Maintainer: Kirill Müller <krlmlr+r@mailbox.org>

Authors:

• R Special Interest Group on Databases (R-SIG-DB)

• Hadley Wickham

See Also

Important generics: dbConnect(), dbGetQuery(), dbReadTable(), dbWriteTable(), dbDisconnect()

Formal specification (currently work in progress and incomplete): vignette("spec", package = "DBI")

Examples

RSQLite::SQLite()

dbBind Bind values to a parameterized/prepared statement

Description

For parametrized or prepared statements, the dbSendQuery() and dbSendStatement() functions
can be called with statements that contain placeholders for values. The dbBind() function binds
these placeholders to actual values, and is intended to be called on the result set before calling
dbFetch() or dbGetRowsAffected().

Usage

dbBind(res, params, ...)

Arguments

res An object inheriting from DBIResult.

params A list of bindings, named or unnamed.

... Other arguments passed on to methods.

Details

DBI supports parametrized (or prepared) queries and statements via the dbBind() generic. Parametrized
queries are different from normal queries in that they allow an arbitrary number of placeholders,
which are later substituted by actual values. Parametrized queries (and statements) serve two pur-
poses:

• The same query can be executed more than once with different values. The DBMS may cache
intermediate information for the query, such as the execution plan, and execute it faster.

• Separation of query syntax and parameters protects against SQL injection.



dbBind 5

The placeholder format is currently not specified by DBI; in the future, a uniform placeholder syntax
may be supported. Consult the backend documentation for the supported formats. For automated
testing, backend authors specify the placeholder syntax with the placeholder_pattern tweak.
Known examples are:

• ? (positional matching in order of appearance) in RMySQL and RSQLite

• $1 (positional matching by index) in RPostgres and RSQLite

• :name and $name (named matching) in RSQLite

Value

dbBind() returns the result set, invisibly, for queries issued by dbSendQuery() and also for data
manipulation statements issued by dbSendStatement(). Calling dbBind() for a query without
parameters raises an error. Binding too many or not enough values, or parameters with wrong names
or unequal length, also raises an error. If the placeholders in the query are named, all parameter
values must have names (which must not be empty or NA), and vice versa, otherwise an error is
raised. The behavior for mixing placeholders of different types (in particular mixing positional and
named placeholders) is not specified.

Calling dbBind() on a result set already cleared by dbClearResult() also raises an error.

Specification

DBI clients execute parametrized statements as follows:

1. Call dbSendQuery() or dbSendStatement() with a query or statement that contains place-
holders, store the returned DBIResult object in a variable. Mixing placeholders (in particu-
lar, named and unnamed ones) is not recommended. It is good practice to register a call to
dbClearResult() via on.exit() right after calling dbSendQuery() or dbSendStatement()
(see the last enumeration item). Until dbBind() has been called, the returned result set object
has the following behavior:

• dbFetch() raises an error (for dbSendQuery())
• dbGetRowCount() returns zero (for dbSendQuery())
• dbGetRowsAffected() returns an integer NA (for dbSendStatement())
• dbIsValid() returns TRUE
• dbHasCompleted() returns FALSE

2. Construct a list with parameters that specify actual values for the placeholders. The list must
be named or unnamed, depending on the kind of placeholders used. Named values are matched
to named parameters, unnamed values are matched by position in the list of parameters. All
elements in this list must have the same lengths and contain values supported by the backend; a
data.frame is internally stored as such a list. The parameter list is passed to a call to dbBind()
on the DBIResult object.

3. Retrieve the data or the number of affected rows from the DBIResult object.

• For queries issued by dbSendQuery(), call dbFetch().
• For statements issued by dbSendStatements(), call dbGetRowsAffected(). (Execution

begins immediately after the dbBind() call, the statement is processed entirely before the
function returns.)



6 dbBind

4. Repeat 2. and 3. as necessary.

5. Close the result set via dbClearResult().

The elements of the params argument do not need to be scalars, vectors of arbitrary length (in-
cluding length 0) are supported. For queries, calling dbFetch() binding such parameters returns
concatenated results, equivalent to binding and fetching for each set of values and connecting via
rbind(). For data manipulation statements, dbGetRowsAffected() returns the total number of
rows affected if binding non-scalar parameters. dbBind() also accepts repeated calls on the same
result set for both queries and data manipulation statements, even if no results are fetched between
calls to dbBind().

At least the following data types are accepted on input (including NA):

• integer

• numeric

• logical for Boolean values

• character

• factor (bound as character, with warning)

• Date

• POSIXct timestamps

• POSIXlt timestamps

• lists of raw for blobs (with NULL entries for SQL NULL values)

• objects of type blob::blob

See Also

Other DBIResult generics: DBIResult-class, dbClearResult, dbColumnInfo, dbFetch, dbGetInfo,
dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsValid, dbQuoteIdentifier,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "iris", iris)

# Using the same query for different values
iris_result <- dbSendQuery(con, "SELECT * FROM iris WHERE [Petal.Width] > ?")
dbBind(iris_result, list(2.3))
dbFetch(iris_result)
dbBind(iris_result, list(3))
dbFetch(iris_result)
dbClearResult(iris_result)

# Executing the same statement with different values at once
iris_result <- dbSendStatement(con, "DELETE FROM iris WHERE [Species] = $species")
dbBind(iris_result, list(species = c("setosa", "versicolor", "unknown")))
dbGetRowsAffected(iris_result)
dbClearResult(iris_result)



dbClearResult 7

nrow(dbReadTable(con, "iris"))

dbDisconnect(con)

dbClearResult Clear a result set

Description

Frees all resources (local and remote) associated with a result set. In some cases (e.g., very large
result sets) this can be a critical step to avoid exhausting resources (memory, file descriptors, etc.)

Usage

dbClearResult(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbClearResult() returns TRUE, invisibly, for result sets obtained from both dbSendQuery() and
dbSendStatement(). An attempt to close an already closed result set issues a warning in both
cases.

Specification

dbClearResult() frees all resources associated with retrieving the result of a query or update
operation. The DBI backend can expect a call to dbClearResult() for each dbSendQuery() or
dbSendStatement() call.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbColumnInfo, dbFetch, dbGetInfo, dbGetRowCount,
dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsValid, dbQuoteIdentifier, dbQuoteLiteral,
dbQuoteString, dbUnquoteIdentifier

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

rs <- dbSendQuery(con, "SELECT 1")
print(dbFetch(rs))

dbClearResult(rs)
dbDisconnect(con)



8 dbColumnInfo

dbColumnInfo Information about result types

Description

Produces a data.frame that describes the output of a query. The data.frame should have as many
rows as there are output fields in the result set, and each column in the data.frame should describe
an aspect of the result set field (field name, type, etc.)

Usage

dbColumnInfo(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

A data.frame with one row per output field in res. Methods MUST include name, field.type (the
SQL type), and data.type (the R data type) columns, and MAY contain other database specific
information like scale and precision or whether the field can store NULLs.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbFetch, dbGetInfo,
dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsValid, dbQuoteIdentifier,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

rs <- dbSendQuery(con, "SELECT 1 AS a, 2 AS b")
dbColumnInfo(rs)
dbFetch(rs)

dbClearResult(rs)
dbDisconnect(con)



dbConnect 9

dbConnect Create a connection to a DBMS

Description

Connect to a DBMS going through the appropriate authentication procedure. Some implementa-
tions may allow you to have multiple connections open, so you may invoke this function repeatedly
assigning its output to different objects. The authentication mechanism is left unspecified, so check
the documentation of individual drivers for details.

Usage

dbConnect(drv, ...)

Arguments

drv an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).

... authentication arguments needed by the DBMS instance; these typically in-
clude user, password, host, port, dbname, etc. For details see the appropriate
DBIDriver.

Value

dbConnect() returns an S4 object that inherits from DBIConnection. This object is used to com-
municate with the database engine.

Specification

DBI recommends using the following argument names for authentication parameters, with NULL
default:

• user for the user name (default: current user)

• password for the password

• host for the host name (default: local connection)

• port for the port number (default: local connection)

• dbname for the name of the database on the host, or the database file name

The defaults should provide reasonable behavior, in particular a local connection for host = NULL.
For some DBMS (e.g., PostgreSQL), this is different to a TCP/IP connection to localhost.

See Also

dbDisconnect() to disconnect from a database.

Other DBIDriver generics: DBIDriver-class, dbDataType, dbDriver, dbGetInfo, dbIsValid,
dbListConnections



10 dbDataType

Examples

# SQLite only needs a path to the database. (Here, ":memory:" is a special
# path that creates an in-memory database.) Other database drivers
# will require more details (like user, password, host, port, etc.)
con <- dbConnect(RSQLite::SQLite(), ":memory:")
con

dbListTables(con)

dbDisconnect(con)

dbDataType Determine the SQL data type of an object

Description

Returns an SQL string that describes the SQL data type to be used for an object. The default
implementation of this generic determines the SQL type of an R object according to the SQL 92
specification, which may serve as a starting point for driver implementations. DBI also provides an
implementation for data.frame which will return a character vector giving the type for each column
in the dataframe.

Methods in other packages:

• DBI::dbDataType("DBIObject")

Usage

dbDataType(dbObj, obj, ...)

Arguments

dbObj A object inheriting from DBIDriver or DBIConnection

obj An R object whose SQL type we want to determine.

... Other arguments passed on to methods.

Details

The data types supported by databases are different than the data types in R, but the mapping
between the primitive types is straightforward:

• Any of the many fixed and varying length character types are mapped to character vectors

• Fixed-precision (non-IEEE) numbers are mapped into either numeric or integer vectors.

Notice that many DBMS do not follow IEEE arithmetic, so there are potential problems with un-
der/overflows and loss of precision.



dbDataType 11

Value

dbDataType() returns the SQL type that corresponds to the obj argument as a non-empty character
string. For data frames, a character vector with one element per column is returned. An error is
raised for invalid values for the obj argument such as a NULL value.

Specification

The backend can override the dbDataType() generic for its driver class.

This generic expects an arbitrary object as second argument. To query the values returned by the
default implementation, run example(dbDataType, package = "DBI"). If the backend needs to
override this generic, it must accept all basic R data types as its second argument, namely logical,
integer, numeric, character, dates (see Dates), date-time (see DateTimeClasses), and difftime. If
the database supports blobs, this method also must accept lists of raw vectors, and blob::blob ob-
jects. As-is objects (i.e., wrapped by I()) must be supported and return the same results as their
unwrapped counterparts. The SQL data type for factor and ordered is the same as for character. The
behavior for other object types is not specified.

All data types returned by dbDataType() are usable in an SQL statement of the form "CREATE TABLE test (a ...)".

See Also

Other DBIDriver generics: DBIDriver-class, dbConnect, dbDriver, dbGetInfo, dbIsValid,
dbListConnections

Other DBIConnection generics: DBIConnection-class, dbDisconnect, dbExecute, dbExistsTable,
dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects, dbListResults,
dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

Examples

dbDataType(ANSI(), 1:5)
dbDataType(ANSI(), 1)
dbDataType(ANSI(), TRUE)
dbDataType(ANSI(), Sys.Date())
dbDataType(ANSI(), Sys.time())
dbDataType(ANSI(), Sys.time() - as.POSIXct(Sys.Date()))
dbDataType(ANSI(), c("x", "abc"))
dbDataType(ANSI(), list(raw(10), raw(20)))
dbDataType(ANSI(), I(3))

dbDataType(ANSI(), iris)

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbDataType(con, 1:5)
dbDataType(con, 1)
dbDataType(con, TRUE)
dbDataType(con, Sys.Date())
dbDataType(con, Sys.time())
dbDataType(con, Sys.time() - as.POSIXct(Sys.Date()))
dbDataType(con, c("x", "abc"))



12 dbDisconnect

dbDataType(con, list(raw(10), raw(20)))
dbDataType(con, I(3))

dbDataType(con, iris)

dbDisconnect(con)

dbDisconnect Disconnect (close) a connection

Description

This closes the connection, discards all pending work, and frees resources (e.g., memory, sockets).

Usage

dbDisconnect(conn, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

... Other parameters passed on to methods.

Value

dbDisconnect() returns TRUE, invisibly.

Specification

A warning is issued on garbage collection when a connection has been released without calling
dbDisconnect(), but this cannot be tested automatically. A warning is issued immediately when
calling dbDisconnect() on an already disconnected or invalid connection.

See Also

Other DBIConnection generics: DBIConnection-class, dbDataType, dbExecute, dbExistsTable,
dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects, dbListResults,
dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")
dbDisconnect(con)



dbDriver 13

dbDriver Load and unload database drivers

Description

These methods are deprecated, please consult the documentation of the individual backends for the
construction of driver instances.

dbDriver() is a helper method used to create an new driver object given the name of a database
or the corresponding R package. It works through convention: all DBI-extending packages should
provide an exported object with the same name as the package. dbDriver() just looks for this
object in the right places: if you know what database you are connecting to, you should call the
function directly.

dbUnloadDriver() is not implemented for modern backends.

Usage

dbDriver(drvName, ...)

dbUnloadDriver(drv, ...)

Arguments

drvName character name of the driver to instantiate.

... any other arguments are passed to the driver drvName.

drv an object that inherits from DBIDriver as created by dbDriver.

Details

The client part of the database communication is initialized (typically dynamically loading C code,
etc.) but note that connecting to the database engine itself needs to be done through calls to
dbConnect.

Value

In the case of dbDriver, an driver object whose class extends DBIDriver. This object may be used
to create connections to the actual DBMS engine.

In the case of dbUnloadDriver, a logical indicating whether the operation succeeded or not.

See Also

Other DBIDriver generics: DBIDriver-class, dbConnect, dbDataType, dbGetInfo, dbIsValid,
dbListConnections

Other DBIDriver generics: DBIDriver-class, dbConnect, dbDataType, dbGetInfo, dbIsValid,
dbListConnections



14 dbExecute

Examples

# Create a RSQLite driver with a string
d <- dbDriver("SQLite")
d

# But better, access the object directly
RSQLite::SQLite()

dbExecute Execute an update statement, query number of rows affected, and then
close result set

Description

Executes a statement and returns the number of rows affected. dbExecute() comes with a de-
fault implementation (which should work with most backends) that calls dbSendStatement(), then
dbGetRowsAffected(), ensuring that the result is always free-d by dbClearResult().

Methods in other packages:

• DBI::dbExecute("DBIConnection", "character")

Usage

dbExecute(conn, statement, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Value

dbExecute() always returns a scalar numeric that specifies the number of rows affected by the
statement. An error is raised when issuing a statement over a closed or invalid connection, if the
syntax of the statement is invalid, or if the statement is not a non-NA string.

Implementation notes

Subclasses should override this method only if they provide some sort of performance optimization.

See Also

For queries: dbSendQuery() and dbGetQuery().

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExistsTable,
dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects, dbListResults,
dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable



dbExistsTable 15

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "cars", head(cars, 3))
dbReadTable(con, "cars") # there are 3 rows
dbExecute(con,

"INSERT INTO cars (speed, dist) VALUES (1, 1), (2, 2), (3, 3);")
dbReadTable(con, "cars") # there are now 6 rows

dbDisconnect(con)

dbExistsTable Does a table exist?

Description

Returns if a table given by name exists in the database.

Methods in other packages:

• DBI::dbExistsTable("DBIConnection", "Id")

Usage

dbExistsTable(conn, name, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name A character string specifying a DBMS table name.

... Other parameters passed on to methods.

Value

dbExistsTable() returns a logical scalar, TRUE if the table or view specified by the name argument
exists, FALSE otherwise. This includes temporary tables if supported by the database.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.

Additional arguments

TBD: temporary = NA

This must be provided as named argument. See the "Specification" section for details on their usage.



16 dbFetch

Specification

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbExistsTable() will do the quoting, perhaps by calling
dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

For all tables listed by dbListTables(), dbExistsTable() returns TRUE.

See Also

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects, dbListResults,
dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbExistsTable(con, "iris")
dbWriteTable(con, "iris", iris)
dbExistsTable(con, "iris")

dbDisconnect(con)

dbFetch Fetch records from a previously executed query

Description

Fetch the next n elements (rows) from the result set and return them as a data.frame.

Methods in other packages:
• DBI::dbFetch("DBIResult")

Usage

dbFetch(res, n = -1, ...)

fetch(res, n = -1, ...)

Arguments

res An object inheriting from DBIResult, created by dbSendQuery().
n maximum number of records to retrieve per fetch. Use n = -1 or n = Inf to

retrieve all pending records. Some implementations may recognize other special
values.

... Other arguments passed on to methods.



dbFetch 17

Details

fetch() is provided for compatibility with older DBI clients - for all new code you are strongly
encouraged to use dbFetch(). The default implementation for dbFetch() calls fetch() so that it
is compatible with existing code. Modern backends should implement for dbFetch() only.

Value

dbFetch() always returns a data.frame with as many rows as records were fetched and as many
columns as fields in the result set, even if the result is a single value or has one or zero rows. An
attempt to fetch from a closed result set raises an error. If the n argument is not an atomic whole
number greater or equal to -1 or Inf, an error is raised, but a subsequent call to dbFetch() with
proper n argument succeeds. Calling dbFetch() on a result set from a data manipulation query
created by dbSendStatement() can be fetched and return an empty data frame, with a warning.

Specification

Fetching multi-row queries with one or more columns by default returns the entire result. Multi-row
queries can also be fetched progressively by passing a whole number (integer or numeric) as the n
argument. A value of Inf for the n argument is supported and also returns the full result. If more
rows than available are fetched, the result is returned in full without warning. If fewer rows than
requested are returned, further fetches will return a data frame with zero rows. If zero rows are
fetched, the columns of the data frame are still fully typed. Fetching fewer rows than available is
permitted, no warning is issued when clearing the result set.

A column named row_names is treated like any other column.

The column types of the returned data frame depend on the data returned:

• integer (or coercible to an integer) for integer values between -2^31 and 2^31 - 1, with NA for
SQL NULL values

• numeric for numbers with a fractional component, with NA for SQL NULL values

• logical for Boolean values (some backends may return an integer); with NA for SQL NULL
values

• character for text, with NA for SQL NULL values

• lists of raw for blobs with NULL entries for SQL NULL values

• coercible using as.Date() for dates, with NA for SQL NULL values (also applies to the return
value of the SQL function current_date)

• coercible using hms::as.hms() for times, with NA for SQL NULL values (also applies to the
return value of the SQL function current_time)

• coercible using as.POSIXct() for timestamps, with NA for SQL NULL values (also applies to
the return value of the SQL function current_timestamp)

If dates and timestamps are supported by the backend, the following R types are used:

• Date for dates (also applies to the return value of the SQL function current_date)

• POSIXct for timestamps (also applies to the return value of the SQL function current_timestamp)

R has no built-in type with lossless support for the full range of 64-bit or larger integers. If 64-bit
integers are returned from a query, the following rules apply:



18 dbGetException

• Values are returned in a container with support for the full range of valid 64-bit values (such
as the integer64 class of the bit64 package)

• Coercion to numeric always returns a number that is as close as possible to the true value
• Loss of precision when converting to numeric gives a warning
• Conversion to character always returns a lossless decimal representation of the data

See Also

Close the result set with dbClearResult() as soon as you finish retrieving the records you want.

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbGetInfo,
dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsValid, dbQuoteIdentifier,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)

# Fetch all results
rs <- dbSendQuery(con, "SELECT * FROM mtcars WHERE cyl = 4")
dbFetch(rs)
dbClearResult(rs)

# Fetch in chunks
rs <- dbSendQuery(con, "SELECT * FROM mtcars")
while (!dbHasCompleted(rs)) {

chunk <- dbFetch(rs, 10)
print(nrow(chunk))

}

dbClearResult(rs)
dbDisconnect(con)

dbGetException Get DBMS exceptions

Description

DEPRECATED. Backends should use R’s condition system to signal errors and warnings.

Usage

dbGetException(conn, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().
... Other parameters passed on to methods.



dbGetInfo 19

Value

a list with elements errorNum (an integer error number) and errorMsg (a character string) describ-
ing the last error in the connection conn.

See Also

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects, dbListResults,
dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

dbGetInfo Get DBMS metadata

Description

Get DBMS metadata

Usage

dbGetInfo(dbObj, ...)

Arguments

dbObj An object inheriting from DBIObject, i.e. DBIDriver, DBIConnection, or a
DBIResult

... Other arguments to methods.

Value

a named list

Implementation notes

For DBIDriver subclasses, this should include the version of the package (driver.version) and
the version of the underlying client library (client.version).

For DBIConnection objects this should report the version of the DBMS engine (db.version),
database name (dbname), username, (username), host (host), port (port), etc. It MAY also include
any other arguments related to the connection (e.g., thread id, socket or TCP connection type). It
MUST NOT include the password.

For DBIResult objects, this should include the statement being executed (statement), how many
rows have been fetched so far (in the case of queries, row.count), how many rows were affected
(deleted, inserted, changed, (rows.affected), and if the query is complete (has.completed).

The default implementation for DBIResult objects constructs such a list from the return values of
the corresponding methods, dbGetStatement(), dbGetRowCount(), dbGetRowsAffected(), and
dbHasCompleted().



20 dbGetQuery

See Also

Other DBIDriver generics: DBIDriver-class, dbConnect, dbDataType, dbDriver, dbIsValid,
dbListConnections

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetQuery, dbIsValid, dbListFields, dbListObjects, dbListResults,
dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsValid, dbQuoteIdentifier,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

dbGetQuery Send query, retrieve results and then clear result set

Description

Returns the result of a query as a data frame. dbGetQuery() comes with a default implementation
(which should work with most backends) that calls dbSendQuery(), then dbFetch(), ensuring that
the result is always free-d by dbClearResult().

Methods in other packages:

• DBI::dbGetQuery("DBIConnection", "character")

Usage

dbGetQuery(conn, statement, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Details

This method is for SELECT queries only. Some backends may support data manipulation state-
ments through this method for compatibility reasons. However, callers are strongly advised to use
dbExecute() for data manipulation statements.

Value

dbGetQuery() always returns a data.frame with as many rows as records were fetched and as many
columns as fields in the result set, even if the result is a single value or has one or zero rows. An
error is raised when issuing a query over a closed or invalid connection, if the syntax of the query
is invalid, or if the query is not a non-NA string. If the n argument is not an atomic whole number
greater or equal to -1 or Inf, an error is raised, but a subsequent call to dbGetQuery() with proper
n argument succeeds.



dbGetRowCount 21

Implementation notes

Subclasses should override this method only if they provide some sort of performance optimization.

Specification

Fetching multi-row queries with one or more columns be default returns the entire result. A value
of Inf for the n argument is supported and also returns the full result. If more rows than available
are fetched, the result is returned in full without warning. If zero rows are fetched, the columns of
the data frame are still fully typed. Fetching fewer rows than available is permitted, no warning is
issued.

A column named row_names is treated like any other column.

See Also

For updates: dbSendStatement() and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetInfo, dbIsValid, dbListFields, dbListObjects, dbListResults,
dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
dbGetQuery(con, "SELECT * FROM mtcars")

dbDisconnect(con)

dbGetRowCount The number of rows fetched so far

Description

Returns the total number of rows actually fetched with calls to dbFetch() for this result set.

Usage

dbGetRowCount(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.



22 dbGetRowsAffected

Value

dbGetRowCount() returns a scalar number (integer or numeric), the number of rows fetched so far.
After calling dbSendQuery(), the row count is initially zero. After a call to dbFetch() without
limit, the row count matches the total number of rows returned. Fetching a limited number of rows
increases the number of rows by the number of rows returned, even if fetching past the end of
the result set. For queries with an empty result set, zero is returned even after fetching. For data
manipulation statements issued with dbSendStatement(), zero is returned before and after calling
dbFetch(). Attempting to get the row count for a result set cleared with dbClearResult() gives
an error.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsValid, dbQuoteIdentifier,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
rs <- dbSendQuery(con, "SELECT * FROM mtcars")

dbGetRowCount(rs)
ret1 <- dbFetch(rs, 10)
dbGetRowCount(rs)
ret2 <- dbFetch(rs)
dbGetRowCount(rs)
nrow(ret1) + nrow(ret2)

dbClearResult(rs)
dbDisconnect(con)

dbGetRowsAffected The number of rows affected

Description

This method returns the number of rows that were added, deleted, or updated by a data manipulation
statement.

Usage

dbGetRowsAffected(res, ...)

Arguments

res An object inheriting from DBIResult.
... Other arguments passed on to methods.



dbGetStatement 23

Value

dbGetRowsAffected() returns a scalar number (integer or numeric), the number of rows affected
by a data manipulation statement issued with dbSendStatement(). The value is available directly
after the call and does not change after calling dbFetch(). For queries issued with dbSendQuery(),
zero is returned before and after the call to dbFetch(). Attempting to get the rows affected for a
result set cleared with dbClearResult() gives an error.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetStatement, dbHasCompleted, dbIsValid, dbQuoteIdentifier,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
rs <- dbSendStatement(con, "DELETE FROM mtcars")
dbGetRowsAffected(rs)
nrow(mtcars)

dbClearResult(rs)
dbDisconnect(con)

dbGetStatement Get the statement associated with a result set

Description

Returns the statement that was passed to dbSendQuery() or dbSendStatement().

Usage

dbGetStatement(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbGetStatement() returns a string, the query used in either dbSendQuery() or dbSendStatement().
Attempting to query the statement for a result set cleared with dbClearResult() gives an error.



24 dbHasCompleted

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbHasCompleted, dbIsValid, dbQuoteIdentifier,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
rs <- dbSendQuery(con, "SELECT * FROM mtcars")
dbGetStatement(rs)

dbClearResult(rs)
dbDisconnect(con)

dbHasCompleted Completion status

Description

This method returns if the operation has completed. A SELECT query is completed if all rows have
been fetched. A data manipulation statement is always completed.

Usage

dbHasCompleted(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbHasCompleted() returns a logical scalar. For a query initiated by dbSendQuery() with non-
empty result set, dbHasCompleted() returns FALSE initially and TRUE after calling dbFetch()
without limit. For a query initiated by dbSendStatement(), dbHasCompleted() always returns
TRUE. Attempting to query completion status for a result set cleared with dbClearResult() gives
an error.

Specification

The completion status for a query is only guaranteed to be set to FALSE after attempting to fetch
past the end of the entire result. Therefore, for a query with an empty result set, the initial return
value is unspecified, but the result value is TRUE after trying to fetch only one row. Similarly, for
a query with a result set of length n, the return value is unspecified after fetching n rows, but the
result value is TRUE after trying to fetch only one more row.



DBIConnection-class 25

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbIsValid, dbQuoteIdentifier,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
rs <- dbSendQuery(con, "SELECT * FROM mtcars")

dbHasCompleted(rs)
ret1 <- dbFetch(rs, 10)
dbHasCompleted(rs)
ret2 <- dbFetch(rs)
dbHasCompleted(rs)

dbClearResult(rs)
dbDisconnect(con)

DBIConnection-class DBIConnection class

Description

This virtual class encapsulates the connection to a DBMS, and it provides access to dynamic queries,
result sets, DBMS session management (transactions), etc.

Implementation note

Individual drivers are free to implement single or multiple simultaneous connections.

See Also

Other DBI classes: DBIDriver-class, DBIObject-class, DBIResult-class

Other DBIConnection generics: dbDataType, dbDisconnect, dbExecute, dbExistsTable, dbGetException,
dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects, dbListResults, dbListTables,
dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")
con
dbDisconnect(con)

## Not run:
con <- dbConnect(RPostgreSQL::PostgreSQL(), "username", "passsword")



26 DBIObject-class

con
dbDisconnect(con)

## End(Not run)

DBIDriver-class DBIDriver class

Description

Base class for all DBMS drivers (e.g., RSQLite, MySQL, PostgreSQL). The virtual class DBIDriver
defines the operations for creating connections and defining data type mappings. Actual driver
classes, for instance RPgSQL, RMySQL, etc. implement these operations in a DBMS-specific manner.

See Also

Other DBI classes: DBIConnection-class, DBIObject-class, DBIResult-class

Other DBIDriver generics: dbConnect, dbDataType, dbDriver, dbGetInfo, dbIsValid, dbListConnections

DBIObject-class DBIObject class

Description

Base class for all other DBI classes (e.g., drivers, connections). This is a virtual Class: No objects
may be created from it.

Details

More generally, the DBI defines a very small set of classes and generics that allows users and appli-
cations access DBMS with a common interface. The virtual classes are DBIDriver that individual
drivers extend, DBIConnection that represent instances of DBMS connections, and DBIResult that
represent the result of a DBMS statement. These three classes extend the basic class of DBIObject,
which serves as the root or parent of the class hierarchy.

Implementation notes

An implementation MUST provide methods for the following generics:

• dbGetInfo().

It MAY also provide methods for:

• summary(). Print a concise description of the object. The default method invokes dbGetInfo(dbObj)
and prints the name-value pairs one per line. Individual implementations may tailor this ap-
propriately.



DBIResult-class 27

See Also

Other DBI classes: DBIConnection-class, DBIDriver-class, DBIResult-class

Examples

drv <- RSQLite::SQLite()
con <- dbConnect(drv)

rs <- dbSendQuery(con, "SELECT 1")
is(drv, "DBIObject") ## True
is(con, "DBIObject") ## True
is(rs, "DBIObject")

dbClearResult(rs)
dbDisconnect(con)

DBIResult-class DBIResult class

Description

This virtual class describes the result and state of execution of a DBMS statement (any statement,
query or non-query). The result set keeps track of whether the statement produces output how many
rows were affected by the operation, how many rows have been fetched (if statement is a query),
whether there are more rows to fetch, etc.

Implementation notes

Individual drivers are free to allow single or multiple active results per connection.

The default show method displays a summary of the query using other DBI generics.

See Also

Other DBI classes: DBIConnection-class, DBIDriver-class, DBIObject-class

Other DBIResult generics: dbBind, dbClearResult, dbColumnInfo, dbFetch, dbGetInfo, dbGetRowCount,
dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsValid, dbQuoteIdentifier, dbQuoteLiteral,
dbQuoteString, dbUnquoteIdentifier



28 dbIsValid

dbIsValid Is this DBMS object still valid?

Description

This generic tests whether a database object is still valid (i.e. it hasn’t been disconnected or cleared).

Usage

dbIsValid(dbObj, ...)

Arguments

dbObj An object inheriting from DBIObject, i.e. DBIDriver, DBIConnection, or a
DBIResult

... Other arguments to methods.

Value

dbIsValid() returns a logical scalar, TRUE if the object specified by dbObj is valid, FALSE oth-
erwise. A DBIConnection object is initially valid, and becomes invalid after disconnecting with
dbDisconnect(). For an invalid connection object (e.g., for some drivers if the object is saved
to a file and then restored), the method also returns FALSE. A DBIResult object is valid after a
call to dbSendQuery(), and stays valid even after all rows have been fetched; only clearing it with
dbClearResult() invalidates it. A DBIResult object is also valid after a call to dbSendStatement(),
and stays valid after querying the number of rows affected; only clearing it with dbClearResult()
invalidates it. If the connection to the database system is dropped (e.g., due to connectivity prob-
lems, server failure, etc.), dbIsValid() should return FALSE. This is not tested automatically.

See Also

Other DBIDriver generics: DBIDriver-class, dbConnect, dbDataType, dbDriver, dbGetInfo,
dbListConnections

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbListFields, dbListObjects, dbListResults,
dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbQuoteIdentifier,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

Examples

dbIsValid(RSQLite::SQLite())

con <- dbConnect(RSQLite::SQLite(), ":memory:")
dbIsValid(con)



dbListConnections 29

rs <- dbSendQuery(con, "SELECT 1")
dbIsValid(rs)

dbClearResult(rs)
dbIsValid(rs)

dbDisconnect(con)
dbIsValid(con)

dbListConnections List currently open connections

Description

DEPRECATED, drivers are no longer required to implement this method. Keep track of the con-
nections you opened if you require a list.

Usage

dbListConnections(drv, ...)

Arguments

drv A object inheriting from DBIDriver

... Other arguments passed on to methods.

Value

a list

See Also

Other DBIDriver generics: DBIDriver-class, dbConnect, dbDataType, dbDriver, dbGetInfo,
dbIsValid

dbListFields List field names of a remote table

Description

List field names of a remote table

Usage

dbListFields(conn, name, ...)



30 dbListObjects

Arguments

conn A DBIConnection object, as returned by dbConnect().

name a character string with the name of the remote table.

... Other parameters passed on to methods.

Value

a character vector

See Also

dbColumnInfo() to get the type of the fields.

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListObjects, dbListResults,
dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
dbListFields(con, "mtcars")

dbDisconnect(con)

dbListObjects List remote objects

Description

Returns the names of remote objects accessible through this connection as a data frame. This should
include temporary objects, but not all database backends (in particular RMariaDB and RMySQL)
support this. Compared to dbListTables(), this method also enumerates tables and views in
schemas, and returns fully qualified identifiers to access these objects. This allows exploration of
all database objects available to the current user, including those that can only be accessed by giving
the full namespace.

Methods in other packages:

• DBI::dbListObjects("DBIConnection")

Usage

dbListObjects(conn, prefix = NULL, ...)



dbListObjects 31

Arguments

conn A DBIConnection object, as returned by dbConnect().

prefix A fully qualified path in the database’s namespace, or NULL. will be passed to
dbUnquoteIdentifier(). If given the method will return all objects accessible
through this prefix.

... Other parameters passed on to methods.

Value

dbListObjects() returns a data frame with columns table and is_prefix (in that order), option-
ally with other columns with a dot (.) prefix. The table column is of type list. Each object in this
list is suitable for use as argument in dbQuoteIdentifier(). The is_prefix column is a logical.
This data frame contains one row for each object (schema, table and view) accessible from the prefix
(if passed) or from the global namespace (if prefix is omitted). Tables added with dbWriteTable()
are part of the data frame, including temporary objects if supported by the database. As soon a table
is removed from the database, it is also removed from the data frame of database objects.

The returned names are suitable for quoting with dbQuoteIdentifier(). An error is raised when
calling this method for a closed or invalid connection.

Additional arguments

TBD: temporary = NA

This must be provided as named argument. See the "Specification" section for details on their usage.

See Also

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListResults,
dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbListObjects(con)
dbWriteTable(con, "mtcars", mtcars)
dbListObjects(con)

dbDisconnect(con)



32 dbListTables

dbListResults A list of all pending results

Description

DEPRECATED. DBI currenty supports only one open result set per connection, you need to keep
track of the result sets you open if you need this functionality.

Usage

dbListResults(conn, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

... Other parameters passed on to methods.

Value

a list. If no results are active, an empty list. If only a single result is active, a list with one element.

See Also

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects,
dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

dbListTables List remote tables

Description

Returns the unquoted names of remote tables accessible through this connection. This should in-
clude views and temporary objects, but not all database backends (in particular RMariaDB and
RMySQL) support this.

Usage

dbListTables(conn, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

... Other parameters passed on to methods.



dbQuoteIdentifier 33

Value

dbListTables() returns a character vector that enumerates all tables and views in the database.
Tables added with dbWriteTable() are part of the list, including temporary tables if supported by
the database. As soon a table is removed from the database, it is also removed from the list of
database tables.

The returned names are suitable for quoting with dbQuoteIdentifier(). An error is raised when
calling this method for a closed or invalid connection.

Additional arguments

TBD: temporary = NA

This must be provided as named argument. See the "Specification" section for details on their usage.

See Also

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects,
dbListResults, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbListTables(con)
dbWriteTable(con, "mtcars", mtcars)
dbListTables(con)

dbDisconnect(con)

dbQuoteIdentifier Quote identifiers

Description

Call this method to generate a string that is suitable for use in a query as a column or table name,
to make sure that you generate valid SQL and protect against SQL injection attacks. The inverse
operation is dbUnquoteIdentifier().

Methods in other packages:

• DBI::dbQuoteIdentifier("DBIConnection", "ANY")

• DBI::dbQuoteIdentifier("DBIConnection", "Id")

• DBI::dbQuoteIdentifier("DBIConnection", "SQL")

• DBI::dbQuoteIdentifier("DBIConnection", "character")

Usage

dbQuoteIdentifier(conn, x, ...)



34 dbQuoteIdentifier

Arguments

conn A subclass of DBIConnection, representing an active connection to an DBMS.

x A character vector, SQL or Id object to quote as identifier.

... Other arguments passed on to methods.

Value

dbQuoteIdentifier() returns an object that can be coerced to character, of the same length as
the input. For an empty character vector this function returns a length-0 object. The names of the
input argument are preserved in the output. An error is raised if the input contains NA, but not for
an empty string.

When passing the returned object again to dbQuoteIdentifier() as x argument, it is returned
unchanged. Passing objects of class SQL should also return them unchanged. (For backends it may
be most convenient to return SQL objects to achieve this behavior, but this is not required.)

Specification

Calling dbGetQuery() for a query of the format SELECT 1 AS ... returns a data frame with the
identifier, unquoted, as column name. Quoted identifiers can be used as table and column names in
SQL queries, in particular in queries like SELECT 1 AS ... and SELECT * FROM (SELECT 1) ....
The method must use a quoting mechanism that is unambiguously different from the quoting mech-
anism used for strings, so that a query like SELECT ... FROM (SELECT 1 AS ...) throws an error
if the column names do not match.

The method can quote column names that contain special characters such as a space, a dot, a
comma, or quotes used to mark strings or identifiers, if the database supports this. In any case,
checking the validity of the identifier should be performed only when executing a query, and not by
dbQuoteIdentifier().

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsValid,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

Examples

# Quoting ensures that arbitrary input is safe for use in a query
name <- "Robert'); DROP TABLE Students;--"
dbQuoteIdentifier(ANSI(), name)

# SQL vectors are always passed through as is
var_name <- SQL("select")
var_name

dbQuoteIdentifier(ANSI(), var_name)

# This mechanism is used to prevent double escaping
dbQuoteIdentifier(ANSI(), dbQuoteIdentifier(ANSI(), name))



dbQuoteLiteral 35

dbQuoteLiteral Quote literal values

Description

Call these methods to generate a string that is suitable for use in a query as a literal value of the
correct type, to make sure that you generate valid SQL and protect against SQL injection attacks.

Methods in other packages:

• DBI::dbQuoteLiteral("DBIConnection")

Usage

dbQuoteLiteral(conn, x, ...)

Arguments

conn A subclass of DBIConnection, representing an active connection to an DBMS.

x A vector to quote as string.

... Other arguments passed on to methods.

Value

dbQuoteLiteral() returns an object that can be coerced to character, of the same length as the
input. For an empty character vector this function returns a length-0 object.

When passing the returned object again to dbQuoteLiteral() as x argument, it is returned un-
changed. Passing objects of class SQL should also return them unchanged. (For backends it may
be most convenient to return SQL objects to achieve this behavior, but this is not required.)

Specification

The returned expression can be used in a SELECT ... query, and the value of dbGetQuery(paste0("SELECT ", dbQuoteLiteral(x)))[[1]]
must be equal to x for any scalar integer, numeric, string, and logical. If x is NA, the result must
merely satisfy is.na(). The literals "NA" or "NULL" are not treated specially.

NA should be translated to an unquoted SQL NULL, so that the query SELECT * FROM (SELECT 1) a WHERE ... IS NULL
returns one row.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsValid,
dbQuoteIdentifier, dbQuoteString, dbUnquoteIdentifier



36 dbQuoteString

Examples

# Quoting ensures that arbitrary input is safe for use in a query
name <- "Robert'); DROP TABLE Students;--"
dbQuoteLiteral(ANSI(), name)

# NAs become NULL
dbQuoteLiteral(ANSI(), c(1:3, NA))

# Logicals become integers by default
dbQuoteLiteral(ANSI(), c(TRUE, FALSE, NA))

# Raw vectors become hex strings by default
dbQuoteLiteral(ANSI(), list(as.raw(1:3), NULL))

# SQL vectors are always passed through as is
var_name <- SQL("select")
var_name
dbQuoteLiteral(ANSI(), var_name)

# This mechanism is used to prevent double escaping
dbQuoteLiteral(ANSI(), dbQuoteLiteral(ANSI(), name))

dbQuoteString Quote literal strings

Description

Call this method to generate a string that is suitable for use in a query as a string literal, to make
sure that you generate valid SQL and protect against SQL injection attacks.

Methods in other packages:

• DBI::dbQuoteString("DBIConnection", "ANY")

• DBI::dbQuoteString("DBIConnection", "SQL")

• DBI::dbQuoteString("DBIConnection", "character")

Usage

dbQuoteString(conn, x, ...)

Arguments

conn A subclass of DBIConnection, representing an active connection to an DBMS.

x A character vector to quote as string.

... Other arguments passed on to methods.



dbReadTable 37

Value

dbQuoteString() returns an object that can be coerced to character, of the same length as the input.
For an empty character vector this function returns a length-0 object.

When passing the returned object again to dbQuoteString() as x argument, it is returned un-
changed. Passing objects of class SQL should also return them unchanged. (For backends it may
be most convenient to return SQL objects to achieve this behavior, but this is not required.)

Specification

The returned expression can be used in a SELECT ... query, and for any scalar character x the value
of dbGetQuery(paste0("SELECT ", dbQuoteString(x)))[[1]] must be identical to x, even if
x contains spaces, tabs, quotes (single or double), backticks, or newlines (in any combination) or is
itself the result of a dbQuoteString() call coerced back to character (even repeatedly). If x is NA,
the result must merely satisfy is.na(). The strings "NA" or "NULL" are not treated specially.

NA should be translated to an unquoted SQL NULL, so that the query SELECT * FROM (SELECT 1) a WHERE ... IS NULL
returns one row.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsValid,
dbQuoteIdentifier, dbQuoteLiteral, dbUnquoteIdentifier

Examples

# Quoting ensures that arbitrary input is safe for use in a query
name <- "Robert'); DROP TABLE Students;--"
dbQuoteString(ANSI(), name)

# NAs become NULL
dbQuoteString(ANSI(), c("x", NA))

# SQL vectors are always passed through as is
var_name <- SQL("select")
var_name
dbQuoteString(ANSI(), var_name)

# This mechanism is used to prevent double escaping
dbQuoteString(ANSI(), dbQuoteString(ANSI(), name))

dbReadTable Copy data frames from database tables



38 dbReadTable

Description

Reads a database table to a data frame, optionally converting a column to row names and converting
the column names to valid R identifiers.

Methods in other packages:

• DBI::dbReadTable("DBIConnection", "Id")

• DBI::dbReadTable("DBIConnection", "character")

Usage

dbReadTable(conn, name, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name A character string specifying the unquoted DBMS table name, or the result of a
call to dbQuoteIdentifier().

... Other parameters passed on to methods.

Value

dbReadTable() returns a data frame that contains the complete data from the remote table, effec-
tively the result of calling dbGetQuery() with SELECT * FROM <name>. An error is raised if the
table does not exist. An empty table is returned as a data frame with zero rows.

The presence of rownames depends on the row.names argument, see sqlColumnToRownames() for
details:

• If FALSE or NULL, the returned data frame doesn’t have row names.

• If TRUE, a column named "row_names" is converted to row names, an error is raised if no such
column exists.

• If NA, a column named "row_names" is converted to row names if it exists, otherwise no
translation occurs.

• If a string, this specifies the name of the column in the remote table that contains the row
names, an error is raised if no such column exists.

The default is row.names = FALSE.

If the database supports identifiers with special characters, the columns in the returned data frame
are converted to valid R identifiers if the check.names argument is TRUE, otherwise non-syntactic
column names can be returned unquoted.

An error is raised when calling this method for a closed or invalid connection. An error is raised
if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar. Un-
supported values for row.names and check.names (non-scalars, unsupported data types, NA for
check.names) also raise an error.



dbRemoveTable 39

Additional arguments

The following arguments are not part of the dbReadTable() generic (to improve compatibility
across backends) but are part of the DBI specification:

• row.names

• check.names

They must be provided as named arguments. See the "Value" section for details on their usage.

Specification

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbReadTable() will do the quoting, perhaps by calling
dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

See Also

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects,
dbListResults, dbListTables, dbRemoveTable, dbSendQuery, dbSendStatement, dbWriteTable

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars[1:10, ])
dbReadTable(con, "mtcars")

dbDisconnect(con)

dbRemoveTable Remove a table from the database

Description

Remove a remote table (e.g., created by dbWriteTable()) from the database.

Methods in other packages:

• DBI::dbRemoveTable("DBIConnection", "Id")

Usage

dbRemoveTable(conn, name, ...)



40 dbRemoveTable

Arguments

conn A DBIConnection object, as returned by dbConnect().

name A character string specifying a DBMS table name.

... Other parameters passed on to methods.

Value

dbRemoveTable() returns TRUE, invisibly. If the table does not exist, an error is raised. An attempt
to remove a view with this function may result in an error.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.

Specification

A table removed by dbRemoveTable() doesn’t appear in the list of tables returned by dbListTables(),
and dbExistsTable() returns FALSE. The removal propagates immediately to other connections to
the same database. This function can also be used to remove a temporary table.

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbRemoveTable() will do the quoting, perhaps by calling
dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

See Also

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects,
dbListResults, dbListTables, dbReadTable, dbSendQuery, dbSendStatement, dbWriteTable

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbExistsTable(con, "iris")
dbWriteTable(con, "iris", iris)
dbExistsTable(con, "iris")
dbRemoveTable(con, "iris")
dbExistsTable(con, "iris")

dbDisconnect(con)



dbSendQuery 41

dbSendQuery Execute a query on a given database connection

Description

The dbSendQuery() method only submits and synchronously executes the SQL query to the database
engine. It does not extract any records — for that you need to use the dbFetch() method, and then
you must call dbClearResult() when you finish fetching the records you need. For interactive
use, you should almost always prefer dbGetQuery().

Usage

dbSendQuery(conn, statement, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Details

This method is for SELECT queries only. Some backends may support data manipulation queries
through this method for compatibility reasons. However, callers are strongly encouraged to use
dbSendStatement() for data manipulation statements.

The query is submitted to the database server and the DBMS executes it, possibly generating vast
amounts of data. Where these data live is driver-specific: some drivers may choose to leave the
output on the server and transfer them piecemeal to R, others may transfer all the data to the client
– but not necessarily to the memory that R manages. See individual drivers’ dbSendQuery() docu-
mentation for details.

Value

dbSendQuery() returns an S4 object that inherits from DBIResult. The result set can be used with
dbFetch() to extract records. Once you have finished using a result, make sure to clear it with
dbClearResult(). An error is raised when issuing a query over a closed or invalid connection, if
the syntax of the query is invalid, or if the query is not a non-NA string.

Specification

No warnings occur under normal conditions. When done, the DBIResult object must be cleared with
a call to dbClearResult(). Failure to clear the result set leads to a warning when the connection
is closed.

If the backend supports only one open result set per connection, issuing a second query invalidates
an already open result set and raises a warning. The newly opened result set is valid and must be
cleared with dbClearResult().



42 dbSendStatement

See Also

For updates: dbSendStatement() and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects,
dbListResults, dbListTables, dbReadTable, dbRemoveTable, dbSendStatement, dbWriteTable

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
rs <- dbSendQuery(con, "SELECT * FROM mtcars WHERE cyl = 4;")
dbFetch(rs)
dbClearResult(rs)

dbDisconnect(con)

dbSendStatement Execute a data manipulation statement on a given database connec-
tion

Description

The dbSendStatement() method only submits and synchronously executes the SQL data manipu-
lation statement (e.g., UPDATE, DELETE, INSERT INTO, DROP TABLE, ...) to the database engine. To
query the number of affected rows, call dbGetRowsAffected() on the returned result object. You
must also call dbClearResult() after that. For interactive use, you should almost always prefer
dbExecute().

Methods in other packages:

• DBI::dbSendStatement("DBIConnection", "character")

Usage

dbSendStatement(conn, statement, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Details

dbSendStatement() comes with a default implementation that simply forwards to dbSendQuery(),
to support backends that only implement the latter.



dbUnquoteIdentifier 43

Value

dbSendStatement() returns an S4 object that inherits from DBIResult. The result set can be used
with dbGetRowsAffected() to determine the number of rows affected by the query. Once you
have finished using a result, make sure to clear it with dbClearResult(). An error is raised when
issuing a statement over a closed or invalid connection, if the syntax of the statement is invalid, or
if the statement is not a non-NA string.

Specification

No warnings occur under normal conditions. When done, the DBIResult object must be cleared with
a call to dbClearResult(). Failure to clear the result set leads to a warning when the connection
is closed. If the backend supports only one open result set per connection, issuing a second query
invalidates an already open result set and raises a warning. The newly opened result set is valid and
must be cleared with dbClearResult().

See Also

For queries: dbSendQuery() and dbGetQuery().

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects,
dbListResults, dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbWriteTable

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "cars", head(cars, 3))
rs <- dbSendStatement(con,

"INSERT INTO cars (speed, dist) VALUES (1, 1), (2, 2), (3, 3);")
dbHasCompleted(rs)
dbGetRowsAffected(rs)
dbClearResult(rs)
dbReadTable(con, "cars") # there are now 6 rows

dbDisconnect(con)

dbUnquoteIdentifier Unquote identifiers

Description

Call this method to convert a SQL object created by dbQuoteIdentifier() back to a list of Id
objects.

Methods in other packages:

• DBI::dbUnquoteIdentifier("DBIConnection")



44 dbWithTransaction

Usage

dbUnquoteIdentifier(conn, x, ...)

Arguments

conn A subclass of DBIConnection, representing an active connection to an DBMS.

x An SQL or Id object or character vector, or a list of such objects, to unquote.

... Other arguments passed on to methods.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsValid,
dbQuoteIdentifier, dbQuoteLiteral, dbQuoteString

Examples

# Unquoting allows to understand the structure of a
# possibly complex quoted identifier
dbUnquoteIdentifier(

ANSI(),
SQL(c('"Schema"."Table"', '"UnqualifiedTable"'))

)

# The returned object is always a list,
# also for Id objects or lists thereof
dbUnquoteIdentifier(

ANSI(),
Id(schema = "Schema", table = "Table")

)

dbUnquoteIdentifier(
ANSI(),
list(Id(schema = "Schema", table = "Table"), Id(table = "UnqualifiedTable"))

)

# Lists of SQL objects can also be processed,
# but each component must be length 1
dbUnquoteIdentifier(

ANSI(),
list(SQL('"Schema"."Table"'), SQL('"UnqualifiedTable"'))

)

dbWithTransaction Self-contained SQL transactions



dbWithTransaction 45

Description

Given that transactions are implemented, this function allows you to pass in code that is run in
a transaction. The default method of dbWithTransaction() calls dbBegin() before executing
the code, and dbCommit() after successful completion, or dbRollback() in case of an error. The
advantage is that you don’t have to remember to do dbBegin() and dbCommit() or dbRollback()
– that is all taken care of. The special function dbBreak() allows an early exit with rollback, it can
be called only inside dbWithTransaction().

Methods in other packages:

• DBI::dbWithTransaction("DBIConnection")

Usage

dbWithTransaction(conn, code, ...)

dbBreak()

Arguments

conn A DBIConnection object, as returned by dbConnect().

code An arbitrary block of R code.

... Other parameters passed on to methods.

Details

DBI implements dbWithTransaction(), backends should need to override this generic only if they
implement specialized handling.

Value

dbWithTransaction() returns the value of the executed code. Failure to initiate the transaction
(e.g., if the connection is closed or invalid of if dbBegin() has been called already) gives an error.

Specification

dbWithTransaction() initiates a transaction with dbBegin(), executes the code given in the code
argument, and commits the transaction with dbCommit(). If the code raises an error, the transaction
is instead aborted with dbRollback(), and the error is propagated. If the code calls dbBreak(),
execution of the code stops and the transaction is silently aborted. All side effects caused by the
code (such as the creation of new variables) propagate to the calling environment.

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "cash", data.frame(amount = 100))
dbWriteTable(con, "account", data.frame(amount = 2000))

# All operations are carried out as logical unit:



46 dbWriteTable

dbWithTransaction(
con,
{
withdrawal <- 300
dbExecute(con, "UPDATE cash SET amount = amount + ?", list(withdrawal))
dbExecute(con, "UPDATE account SET amount = amount - ?", list(withdrawal))

}
)

# The code is executed as if in the curent environment:
withdrawal

# The changes are committed to the database after successful execution:
dbReadTable(con, "cash")
dbReadTable(con, "account")

# Rolling back with dbBreak():
dbWithTransaction(

con,
{

withdrawal <- 5000
dbExecute(con, "UPDATE cash SET amount = amount + ?", list(withdrawal))
dbExecute(con, "UPDATE account SET amount = amount - ?", list(withdrawal))
if (dbReadTable(con, "account")$amount < 0) {

dbBreak()
}

}
)

# These changes were not committed to the database:
dbReadTable(con, "cash")
dbReadTable(con, "account")

dbDisconnect(con)

dbWriteTable Copy data frames to database tables

Description

Writes, overwrites or appends a data frame to a database table, optionally converting row names to
a column and specifying SQL data types for fields.

Methods in other packages:

• DBI::dbWriteTable("DBIConnection", "Id")

Usage

dbWriteTable(conn, name, value, ...)



dbWriteTable 47

Arguments

conn A DBIConnection object, as returned by dbConnect().

name A character string specifying the unquoted DBMS table name, or the result of a
call to dbQuoteIdentifier().

value a data.frame (or coercible to data.frame).

... Other parameters passed on to methods.

Value

dbWriteTable() returns TRUE, invisibly. If the table exists, and both append and overwrite ar-
guments are unset, or append = TRUE and the data frame with the new data has different column
names, an error is raised; the remote table remains unchanged.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.
Invalid values for the additional arguments row.names, overwrite, append, field.types, and
temporary (non-scalars, unsupported data types, NA, incompatible values, duplicate or missing
names, incompatible columns) also raise an error.

Additional arguments

The following arguments are not part of the dbWriteTable() generic (to improve compatibility
across backends) but are part of the DBI specification:

• row.names (default: NA)

• overwrite (default: FALSE)

• append (default: FALSE)

• field.types (default: NULL)

• temporary (default: FALSE)

They must be provided as named arguments. See the "Specification" and "Value" sections for details
on their usage.

Specification

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbWriteTable() will do the quoting, perhaps by calling
dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

If the overwrite argument is TRUE, an existing table of the same name will be overwritten. This
argument doesn’t change behavior if the table does not exist yet.

If the append argument is TRUE, the rows in an existing table are preserved, and the new data are
appended. If the table doesn’t exist yet, it is created.



48 dbWriteTable

If the temporary argument is TRUE, the table is not available in a second connection and is gone
after reconnecting. Not all backends support this argument. A regular, non-temporary table is
visible in a second connection and after reconnecting to the database.

SQL keywords can be used freely in table names, column names, and data. Quotes, commas, and
spaces can also be used in the data, and, if the database supports non-syntactic identifiers, also for
table names and column names.

The following data types must be supported at least, and be read identically with dbReadTable():

• integer

• numeric (the behavior for Inf and NaN is not specified)

• logical

• NA as NULL

• 64-bit values (using "bigint" as field type); the result can be converted to a numeric, which
may lose precision,

• character (in both UTF-8 and native encodings), supporting empty strings

• factor (returned as character)

• list of raw (if supported by the database)

• objects of type blob::blob (if supported by the database)

• date (if supported by the database; returned as Date)

• time (if supported by the database; returned as objects that inherit from difftime)

• timestamp (if supported by the database; returned as POSIXct respecting the time zone but not
necessarily preserving the input time zone)

Mixing column types in the same table is supported.

The field.types argument must be a named character vector with at most one entry for each
column. It indicates the SQL data type to be used for a new column.

The interpretation of rownames depends on the row.names argument, see sqlRownamesToColumn()
for details:

• If FALSE or NULL, row names are ignored.

• If TRUE, row names are converted to a column named "row_names", even if the input data
frame only has natural row names from 1 to nrow(...).

• If NA, a column named "row_names" is created if the data has custom row names, no extra
column is created in the case of natural row names.

• If a string, this specifies the name of the column in the remote table that contains the row
names, even if the input data frame only has natural row names.

See Also

Other DBIConnection generics: DBIConnection-class, dbDataType, dbDisconnect, dbExecute,
dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsValid, dbListFields, dbListObjects,
dbListResults, dbListTables, dbReadTable, dbRemoveTable, dbSendQuery, dbSendStatement



Id-class 49

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars[1:5, ])
dbReadTable(con, "mtcars")

dbWriteTable(con, "mtcars", mtcars[6:10, ], append = TRUE)
dbReadTable(con, "mtcars")

dbWriteTable(con, "mtcars", mtcars[1:10, ], overwrite = TRUE)
dbReadTable(con, "mtcars")

# No row names
dbWriteTable(con, "mtcars", mtcars[1:10, ], overwrite = TRUE, row.names = FALSE)
dbReadTable(con, "mtcars")

Id-class Refer to a table nested in a hierarchy (e.g. within a schema)

Description

Objects of class Table have a single slot name, which is a named character vector.

Usage

Id(...)

Arguments

... Components of the hierarchy, e.g. schema, table, or cluster, catalog, schema,
table. For more on these concepts, see http://stackoverflow.com/questions/
7022755/

make.db.names Make R identifiers into legal SQL identifiers

Description

These methods are DEPRECATED. Please use dbQuoteIdentifier() (or possibly dbQuoteString())
instead.

http://stackoverflow.com/questions/7022755/
http://stackoverflow.com/questions/7022755/


50 make.db.names

Usage

make.db.names(dbObj, snames, keywords = .SQL92Keywords, unique = TRUE,
allow.keywords = TRUE, ...)

make.db.names.default(snames, keywords = .SQL92Keywords, unique = TRUE,
allow.keywords = TRUE)

isSQLKeyword(dbObj, name, keywords = .SQL92Keywords, case = c("lower",
"upper", "any")[3], ...)

isSQLKeyword.default(name, keywords = .SQL92Keywords, case = c("lower",
"upper", "any")[3])

Arguments

dbObj any DBI object (e.g., DBIDriver).
snames a character vector of R identifiers (symbols) from which we need to make SQL

identifiers.
keywords a character vector with SQL keywords, by default it’s .SQL92Keywords defined

by the DBI.
unique logical describing whether the resulting set of SQL names should be unique. Its

default is TRUE. Following the SQL 92 standard, uniqueness of SQL identifiers
is determined regardless of whether letters are upper or lower case.

allow.keywords logical describing whether SQL keywords should be allowed in the resulting set
of SQL names. Its default is TRUE

... any other argument are passed to the driver implementation.
name a character vector with database identifier candidates we need to determine

whether they are legal SQL identifiers or not.
case a character string specifying whether to make the comparison as lower case,

upper case, or any of the two. it defaults to any.

Details

The algorithm in make.db.names first invokes make.names and then replaces each occurrence of a
dot . by an underscore _. If allow.keywords is FALSE and identifiers collide with SQL keywords,
a small integer is appended to the identifier in the form of "_n".

The set of SQL keywords is stored in the character vector .SQL92Keywords and reflects the SQL
ANSI/ISO standard as documented in "X/Open SQL and RDA", 1994, ISBN 1-872630-68-8. Users
can easily override or update this vector.

Value

make.db.names returns a character vector of legal SQL identifiers corresponding to its snames
argument.

SQLKeywords returns a character vector of all known keywords for the database-engine associated
with dbObj.

isSQLKeyword returns a logical vector parallel to name.



rownames 51

Bugs

The current mapping is not guaranteed to be fully reversible: some SQL identifiers that get mapped
into R identifiers with make.names and then back to SQL with make.db.names() will not be equal
to the original SQL identifiers (e.g., compound SQL identifiers of the form username.tablename
will loose the dot “.”).

References

The set of SQL keywords is stored in the character vector .SQL92Keywords and reflects the SQL
ANSI/ISO standard as documented in "X/Open SQL and RDA", 1994, ISBN 1-872630-68-8. Users
can easily override or update this vector.

rownames Convert row names back and forth between columns

Description

These functions provide a reasonably automatic way of preserving the row names of data frame
during back-and-forth translation to an SQL table. By default, row names will be converted to
an explicit column called "row_names", and any query returning a column called "row_names"
will have those automatically set as row names. These methods are mostly useful for backend
implementers.

Usage

sqlRownamesToColumn(df, row.names = NA)

sqlColumnToRownames(df, row.names = NA)

Arguments

df A data frame

row.names Either TRUE, FALSE, NA or a string.
If TRUE, always translate row names to a column called "row_names". If FALSE,
never translate row names. If NA, translate rownames only if they’re a character
vector.
A string is equivalent to TRUE, but allows you to override the default name.
For backward compatibility, NULL is equivalent to FALSE.

Examples

# If have row names
sqlRownamesToColumn(head(mtcars))
sqlRownamesToColumn(head(mtcars), FALSE)
sqlRownamesToColumn(head(mtcars), "ROWNAMES")

# If don't have



52 SQL

sqlRownamesToColumn(head(iris))
sqlRownamesToColumn(head(iris), TRUE)
sqlRownamesToColumn(head(iris), "ROWNAMES")

SQL SQL quoting

Description

This set of classes and generics make it possible to flexibly deal with SQL escaping needs. By
default, any user supplied input to a query should be escaped using either dbQuoteIdentifier()
or dbQuoteString() depending on whether it refers to a table or variable name, or is a literal
string. These functions may return an object of the SQL class, which tells DBI functions that a
character string does not need to be escaped anymore, to prevent double escaping. The SQL class
has associated the SQL() constructor function.

Usage

SQL(x, ..., names = NULL)

Arguments

x A character vector to label as being escaped SQL.

... Other arguments passed on to methods. Not otherwise used.

names Names for the returned object, must have the same length as x.

Value

An object of class SQL.

Implementation notes

DBI provides default generics for SQL-92 compatible quoting. If the database uses a different
convention, you will need to provide your own methods. Note that because of the way that S4 dis-
patch finds methods and because SQL inherits from character, if you implement (e.g.) a method for
dbQuoteString(MyConnection, character), you will also need to implement dbQuoteString(MyConnection, SQL)
- this should simply return x unchanged.

Examples

dbQuoteIdentifier(ANSI(), "SELECT")
dbQuoteString(ANSI(), "SELECT")

# SQL vectors are always passed through as is
var_name <- SQL("SELECT")
var_name



sqlAppendTable 53

dbQuoteIdentifier(ANSI(), var_name)
dbQuoteString(ANSI(), var_name)

# This mechanism is used to prevent double escaping
dbQuoteString(ANSI(), dbQuoteString(ANSI(), "SELECT"))

sqlAppendTable Insert rows into a table

Description

sqlAppendTable generates a single SQL string that inserts a data frame into an existing table.
sqlAppendTableTemplate generates a template suitable for use with dbBind(). These methods
are mostly useful for backend implementers.

Usage

sqlAppendTable(con, table, values, row.names = NA, ...)

sqlAppendTableTemplate(con, table, values, row.names = NA, prefix = "?",
...)

Arguments

con A database connection.
table Name of the table. Escaped with dbQuoteIdentifier().
values A data frame. Factors will be converted to character vectors. Character vectors

will be escaped with dbQuoteString().
row.names Either TRUE, FALSE, NA or a string.

If TRUE, always translate row names to a column called "row_names". If FALSE,
never translate row names. If NA, translate rownames only if they’re a character
vector.
A string is equivalent to TRUE, but allows you to override the default name.
For backward compatibility, NULL is equivalent to FALSE.

... Other arguments used by individual methods.
prefix Parameter prefix to put in front of column id.

Examples

sqlAppendTable(ANSI(), "iris", head(iris))

sqlAppendTable(ANSI(), "mtcars", head(mtcars))
sqlAppendTable(ANSI(), "mtcars", head(mtcars), row.names = FALSE)
sqlAppendTableTemplate(ANSI(), "iris", iris)

sqlAppendTableTemplate(ANSI(), "mtcars", mtcars)
sqlAppendTableTemplate(ANSI(), "mtcars", mtcars, row.names = FALSE)



54 sqlCreateTable

sqlCreateTable Create a simple table

Description

Exposes interface to simple CREATE TABLE commands. The default method is ANSI SQL 99 com-
pliant. This method is mostly useful for backend implementers.

Usage

sqlCreateTable(con, table, fields, row.names = NA, temporary = FALSE, ...)

Arguments

con A database connection.

table Name of the table. Escaped with dbQuoteIdentifier().

fields Either a character vector or a data frame.
A named character vector: Names are column names, values are types. Names
are escaped with dbQuoteIdentifier(). Field types are unescaped.
A data frame: field types are generated using dbDataType().

row.names Either TRUE, FALSE, NA or a string.
If TRUE, always translate row names to a column called "row_names". If FALSE,
never translate row names. If NA, translate rownames only if they’re a character
vector.
A string is equivalent to TRUE, but allows you to override the default name.
For backward compatibility, NULL is equivalent to FALSE.

temporary If TRUE, will generate a temporary table statement.

... Other arguments used by individual methods.

DBI-backends

If you implement one method (i.e. for strings or data frames), you need to implement both, other-
wise the S4 dispatch rules will be ambiguous and will generate an error on every call.

Examples

sqlCreateTable(ANSI(), "my-table", c(a = "integer", b = "text"))
sqlCreateTable(ANSI(), "my-table", iris)

# By default, character row names are converted to a row_names colum
sqlCreateTable(ANSI(), "mtcars", mtcars[, 1:5])
sqlCreateTable(ANSI(), "mtcars", mtcars[, 1:5], row.names = FALSE)



sqlData 55

sqlData Convert a data frame into form suitable for upload to an SQL database

Description

This is a generic method that coerces R objects into vectors suitable for upload to the database. The
output will vary a little from method to method depending on whether the main upload device is
through a single SQL string or multiple parameterized queries. This method is mostly useful for
backend implementers.

Usage

sqlData(con, value, row.names = NA, ...)

Arguments

con A database connection.

value A data frame

row.names Either TRUE, FALSE, NA or a string.
If TRUE, always translate row names to a column called "row_names". If FALSE,
never translate row names. If NA, translate rownames only if they’re a character
vector.
A string is equivalent to TRUE, but allows you to override the default name.
For backward compatibility, NULL is equivalent to FALSE.

... Other arguments used by individual methods.

Details

The default method:

• Converts factors to characters

• Quotes all strings

• Converts all columns to strings

• Replaces NA with NULL

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

sqlData(con, head(iris))
sqlData(con, head(mtcars))

dbDisconnect(con)



56 transactions

sqlInterpolate Safely interpolate values into an SQL string

Description

Safely interpolate values into an SQL string

Usage

sqlInterpolate(conn, sql, ..., .dots = list())

Arguments

conn A database connection.

sql A SQL string containing variables to interpolate. Variables must start with a
question mark and can be any valid R identifier, i.e. it must start with a letter or
., and be followed by a letter, digit, . or _.

..., .dots Named values (for ...) or a named list (for .dots) to interpolate into a string.
All strings will be first escaped with dbQuoteString() prior to interpolation to
protect against SQL injection attacks.

Backend authors

If you are implementing an SQL backend with non-ANSI quoting rules, you’ll need to implement a
method for sqlParseVariables(). Failure to do so does not expose you to SQL injection attacks,
but will (rarely) result in errors matching supplied and interpolated variables.

Examples

sql <- "SELECT * FROM X WHERE name = ?name"
sqlInterpolate(ANSI(), sql, name = "Hadley")

# This is safe because the single quote has been double escaped
sqlInterpolate(ANSI(), sql, name = "H'); DROP TABLE--;")

transactions Begin/commit/rollback SQL transactions

Description

A transaction encapsulates several SQL statements in an atomic unit. It is initiated with dbBegin()
and either made persistent with dbCommit() or undone with dbRollback(). In any case, the DBMS
guarantees that either all or none of the statements have a permanent effect. This helps ensuring
consistency of write operations to multiple tables.



transactions 57

Usage

dbBegin(conn, ...)

dbCommit(conn, ...)

dbRollback(conn, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

... Other parameters passed on to methods.

Details

Not all database engines implement transaction management, in which case these methods should
not be implemented for the specific DBIConnection subclass.

Value

dbBegin(), dbCommit() and dbRollback() return TRUE, invisibly. The implementations are ex-
pected to raise an error in case of failure, but this is not tested. In any way, all generics throw
an error with a closed or invalid connection. In addition, a call to dbCommit() or dbRollback()
without a prior call to dbBegin() raises an error. Nested transactions are not supported by DBI, an
attempt to call dbBegin() twice yields an error.

Specification

Actual support for transactions may vary between backends. A transaction is initiated by a call to
dbBegin() and committed by a call to dbCommit(). Data written in a transaction must persist after
the transaction is committed. For example, a record that is missing when the transaction is started
but is created during the transaction must exist both during and after the transaction, and also in a
new connection.

A transaction can also be aborted with dbRollback(). All data written in such a transaction must
be removed after the transaction is rolled back. For example, a record that is missing when the
transaction is started but is created during the transaction must not exist anymore after the rollback.

Disconnection from a connection with an open transaction effectively rolls back the transaction. All
data written in such a transaction must be removed after the transaction is rolled back.

The behavior is not specified if other arguments are passed to these functions. In particular, RSQLite
issues named transactions with support for nesting if the name argument is set.

The transaction isolation level is not specified by DBI.

See Also

Self-contained transactions: dbWithTransaction()



58 transactions

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "cash", data.frame(amount = 100))
dbWriteTable(con, "account", data.frame(amount = 2000))

# All operations are carried out as logical unit:
dbBegin(con)
withdrawal <- 300
dbExecute(con, "UPDATE cash SET amount = amount + ?", list(withdrawal))
dbExecute(con, "UPDATE account SET amount = amount - ?", list(withdrawal))
dbCommit(con)

dbReadTable(con, "cash")
dbReadTable(con, "account")

# Rolling back after detecting negative value on account:
dbBegin(con)
withdrawal <- 5000
dbExecute(con, "UPDATE cash SET amount = amount + ?", list(withdrawal))
dbExecute(con, "UPDATE account SET amount = amount - ?", list(withdrawal))
if (dbReadTable(con, "account")$amount >= 0) {

dbCommit(con)
} else {

dbRollback(con)
}

dbReadTable(con, "cash")
dbReadTable(con, "account")

dbDisconnect(con)



Index

as.Date(), 17
as.POSIXct(), 17

blob::blob, 6, 11, 48

character, 6, 11, 17, 34, 35, 37

data.frame, 5, 17, 20, 47
Date, 6, 17
Dates, 11
DateTimeClasses, 11
dbBegin (transactions), 56
dbBegin(), 45
dbBind, 4, 7, 8, 18, 20, 22–25, 27, 28, 34, 35,

37, 44
dbBind(), 53
dbBreak (dbWithTransaction), 44
dbClearResult, 6, 7, 8, 18, 20, 22–25, 27, 28,

34, 35, 37, 44
dbClearResult(), 5, 6, 14, 18, 20, 22–24, 28,

41–43
dbColumnInfo, 6, 7, 8, 18, 20, 22–25, 27, 28,

34, 35, 37, 44
dbColumnInfo(), 30
dbCommit (transactions), 56
dbCommit(), 45
dbConnect, 9, 11, 13, 20, 26, 28, 29
dbConnect(), 4, 12, 14, 15, 18, 20, 30–32, 38,

40–42, 45, 47, 57
dbDataType, 9, 10, 12–14, 16, 19–21, 25, 26,

28–33, 39, 40, 42, 43, 48
dbDataType(), 11, 54
dbDisconnect, 11, 12, 14, 16, 19–21, 25, 28,

30–33, 39, 40, 42, 43, 48
dbDisconnect(), 4, 9, 28
dbDriver, 9, 11, 13, 20, 26, 28, 29
dbExecute, 11, 12, 14, 16, 19–21, 25, 28,

30–33, 39, 40, 42, 43, 48
dbExecute(), 20, 21, 42

dbExistsTable, 11, 12, 14, 15, 19–21, 25, 28,
30–33, 39, 40, 42, 43, 48

dbExistsTable(), 40
dbFetch, 6–8, 16, 20, 22–25, 27, 28, 34, 35,

37, 44
dbFetch(), 4, 5, 20–24, 41
dbGetException, 11, 12, 14, 16, 18, 20, 21,

25, 28, 30–33, 39, 40, 42, 43, 48
dbGetInfo, 6–9, 11–14, 16, 18, 19, 19, 21–35,

37, 39, 40, 42–44, 48
dbGetInfo(), 26
dbGetQuery, 11, 12, 14, 16, 19, 20, 20, 25, 28,

30–33, 39, 40, 42, 43, 48
dbGetQuery(), 4, 14, 34, 38, 41, 43
dbGetRowCount, 6–8, 18, 20, 21, 23–25, 27,

28, 34, 35, 37, 44
dbGetRowCount(), 5, 19
dbGetRowsAffected, 6–8, 18, 20, 22, 22, 24,

25, 27, 28, 34, 35, 37, 44
dbGetRowsAffected(), 4, 5, 14, 19, 42, 43
dbGetStatement, 6–8, 18, 20, 22, 23, 23, 25,

27, 28, 34, 35, 37, 44
dbGetStatement(), 19
dbHasCompleted, 6–8, 18, 20, 22–24, 24, 27,

28, 34, 35, 37, 44
dbHasCompleted(), 5, 19
DBI (DBI-package), 3
DBI-package, 3
DBI::dbDataType(DBIObject), 10
DBI::dbFetch(DBIResult), 16
DBI::dbListObjects(DBIConnection), 30
DBI::dbQuoteLiteral(DBIConnection), 35
DBI::dbUnquoteIdentifier(DBIConnection),

43
DBI::dbWithTransaction(DBIConnection),

45
DBIConnection, 3, 9, 10, 12, 14, 15, 18–20,

28, 30–32, 34–36, 38, 40–42, 44, 45,
47, 57

59



60 INDEX

DBIConnection-class, 25
DBIDriver, 3, 9, 10, 19, 28, 29
DBIDriver-class, 26
DBIObject, 19, 28
DBIObject-class, 26
DBIResult, 3–5, 7, 8, 16, 19, 21–24, 28, 41, 43
DBIResult-class, 27
dbIsValid, 6–9, 11–14, 16, 18–27, 28, 29–35,

37, 39, 40, 42–44, 48
dbIsValid(), 5
dbListConnections, 9, 11, 13, 20, 26, 28, 29
dbListFields, 11, 12, 14, 16, 19–21, 25, 28,

29, 31–33, 39, 40, 42, 43, 48
dbListObjects, 11, 12, 14, 16, 19–21, 25, 28,

30, 30, 32, 33, 39, 40, 42, 43, 48
dbListResults, 11, 12, 14, 16, 19–21, 25, 28,

30, 31, 32, 33, 39, 40, 42, 43, 48
dbListTables, 11, 12, 14, 16, 19–21, 25, 28,

30–32, 32, 39, 40, 42, 43, 48
dbListTables(), 16, 30, 40
dbQuoteIdentifier, 6–8, 18, 20, 22–25, 27,

28, 33, 35, 37, 44
dbQuoteIdentifier(), 15, 16, 31, 38–40, 43,

47, 49, 52–54
dbQuoteLiteral, 6–8, 18, 20, 22–25, 27, 28,

34, 35, 37, 44
dbQuoteString, 6–8, 18, 20, 22–25, 27, 28,

34, 35, 36, 44
dbQuoteString(), 49, 52, 53, 56
dbReadTable, 11, 12, 14, 16, 19–21, 25, 28,

30–33, 37, 40, 42, 43, 48
dbReadTable(), 4, 48
dbRemoveTable, 11, 12, 14, 16, 19–21, 25, 28,

30–33, 39, 39, 42, 43, 48
dbRollback (transactions), 56
dbRollback(), 45
dbSendQuery, 11, 12, 14, 16, 19–21, 25, 28,

30–33, 39, 40, 41, 43, 48
dbSendQuery(), 4, 5, 7, 14, 16, 20, 22–24, 28,

42, 43
dbSendStatement, 11, 12, 14, 16, 19–21, 25,

28, 30–33, 39, 40, 42, 42, 48
dbSendStatement(), 4, 5, 7, 14, 17, 21–24,

28, 41, 42
dbUnloadDriver (dbDriver), 13
dbUnquoteIdentifier, 6–8, 18, 20, 22–25,

27, 28, 34, 35, 37, 43
dbUnquoteIdentifier(), 31, 33

dbWithTransaction, 44
dbWithTransaction(), 57
dbWriteTable, 11, 12, 14, 16, 19–21, 25, 28,

30–33, 39, 40, 42, 43, 46
dbWriteTable(), 4, 31, 33, 39
difftime, 11

factor, 6, 11
fetch (dbFetch), 16

hms::as.hms(), 17

I(), 11
Id, 34, 43, 44
Id (Id-class), 49
Id-class, 49
Inf, 17, 21
integer, 6, 11, 17
is.na(), 35, 37
isSQLKeyword (make.db.names), 49

logical, 6, 11, 17

make.db.names, 49
make.db.names(), 51

NA, 6, 17
NULL, 17
numeric, 6, 11, 17

on.exit(), 5
ordered, 11

POSIXct, 6, 17
POSIXlt, 6

raw, 6, 11, 17
rbind(), 6
rownames, 38, 48, 51

SQL, 34, 35, 37, 43, 44, 52
SQL-class (SQL), 52
sqlAppendTable, 53
sqlAppendTableTemplate

(sqlAppendTable), 53
sqlColumnToRownames (rownames), 51
sqlColumnToRownames(), 38
sqlCreateTable, 54
sqlData, 55
sqlInterpolate, 56



INDEX 61

SQLKeywords (make.db.names), 49
sqlParseVariables(), 56
sqlRownamesToColumn (rownames), 51
sqlRownamesToColumn(), 48
summary(), 26

transactions, 45, 56


	DBI-package
	dbBind
	dbClearResult
	dbColumnInfo
	dbConnect
	dbDataType
	dbDisconnect
	dbDriver
	dbExecute
	dbExistsTable
	dbFetch
	dbGetException
	dbGetInfo
	dbGetQuery
	dbGetRowCount
	dbGetRowsAffected
	dbGetStatement
	dbHasCompleted
	DBIConnection-class
	DBIDriver-class
	DBIObject-class
	DBIResult-class
	dbIsValid
	dbListConnections
	dbListFields
	dbListObjects
	dbListResults
	dbListTables
	dbQuoteIdentifier
	dbQuoteLiteral
	dbQuoteString
	dbReadTable
	dbRemoveTable
	dbSendQuery
	dbSendStatement
	dbUnquoteIdentifier
	dbWithTransaction
	dbWriteTable
	Id-class
	make.db.names
	rownames
	SQL
	sqlAppendTable
	sqlCreateTable
	sqlData
	sqlInterpolate
	transactions
	Index

