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1 Calibration of Regression Diagnostics

Indications of departures from regression assumptions in diagnostic
plots may reflect sampling variation. This is an especial issue for rel-
atively small datasets. Diagnostic plots for a number of sets of simu-
lated data may be an essential aid to judgement. In effect, the observed
diagnostic plot is judged against a simulated sampling distribution for
such plots.

1.1 A ’simple’ straight line regression example

We use data that compares record times for Northern Island hill races
between males and females. Data values are not log transformed, pre-
cisely because this will show up problems that will largely be avoided
if a logarithmic transformation is applied to the data.

The data that are plotted in Figure ?? are, as they stand, problem-
atic for least squares fitting. A least squares line has nevertheless been
added to the plot:
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Figure 1: Record times for hill
races are compared – females
versus males. A least squares
line is added. The diagnos-
tic plot of residuals against fit-
ted values (which=1), using the
plot method for an lm ob-
ject, is shown alongside. The
“curve” is a crude attempt to
identify any pattern in the resid-
uals.

Code is:

library(DAAG)
plot(timef~time, data=nihills,

xlab="Male record times",
ylab="Female record times")

mftime.lm <- lm(timef ~ time, data=nihills)
abline(mftime.lm)
plot(mftime.lm, which=1)
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1.2 The function plotSimScat()

The function plotSimScat() is designed for use with straight line
regression. It plots either actual data values and simulated values
against the x-variable, or residuals and simulated residuals.

Figure ?? shows four scatterplots that overlay residuals from the
actual data with residuals that are simulated from the model. The co-
efficients used are those for the fitted least squares line, and the stan-
dard deviation is the estimate that is returned by R’s lm() function.
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Figure 2: The plots are four
simulations of points. The co-
efficients used, and the standard
deviation, are from the fitted
least squares line.

The largest simulated value lies consistently above the data value.
Code is:

mftime.lm <- lm(timef ~ time, data = nihills)
gph <- plotSimScat(mftime.lm, layout = c(4, 1), show = "residuals")
gph <- update(gph, xlab = "Record times for males (h)",

ylab = "Record times for females (h)")
print(gph)

2 Diagnostic Plots for Simulated Data –
plotSimDiags()

The function plotSimDiags() can be used with any lm object, or
object of a class that inherits from lm. For simplicity, the function is
used here with a straight line regression object. Here are the diagnos-
tic plots, for the object mftime.lm that was created earlier, from use
of plot.lm().
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Figure 3: Diagnostic plots from
the regession of timef on
time.
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Residuals versus fitted values: Figure ?? shows simulations for the
first panel (Residuals vs Fitted) above. With just one explanatory
variable, the difference between plotting against α̂+ β̂x and plotting
against x (as in Figure ?? using plotSimScat()) amounts only to a
change of labeling on the x-axis. The plot against x-values in Fig-
ure ?? had the convenience that it allowed exactly the same x-axis
labeling for each different simulation.
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Figure 4: Residuals versus fit-
ted values, for four sets of sim-
ulated data.

Code is:

plotSimDiags(obj=mftime.lm, which=1, layout=c(4,1))

The simulations indicate that, in these circumstances, there can be
a pattern in the smooth curve that is added that is largely due to the
one data value is widely separated from other data values.

A check for normality: Figure ?? (the second plot) identified two
large negative residuals and one large positive residual.

Are the deviations from a line much what might be expected given
statistical variation? Figure ?? shows normal probability plots for four
sets of simulated data:
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Figure 5: Normal probability
plots for four sets of simulated
data.

Code is as for Figure ??, but with the argument which=2.

Is the variance constant?: At the low end of the range in Figure
?? (the third plot), the variance hardly changes with increasing fitted
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value. The sudden bend upwards in the smooth curve is due to the
large absolute values of the residuals for the three largest fitted values.

Figure ?? shows the equivalent plots for four sets of simulated
data. None of the plots show the same increase in scale with fitted
value as in the third panel of Figure ??.
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Figure 6: Scale-location plots
for four sets of simulated data.

Code is as for Figure ??, but with the argument which=3.

Issues of leverage: Figure ?? (the third plot) warned that there are
severe problems with leverage, as was already obvious from the scat-
terplot in Figure ??. Here, there is not much point in doing a simu-
lation. We already know from the previous simulations that the large
residual that is associated with the highest leverage point is unlikely
to be due to statistical variation.

Here, however, are plots for simulated data:
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Figure 7: Scale-location plots
for four sets of simulated data.

Code is as for Figure ??, but with the argument which=5.

2.1 All 4 diagnostic plots in the same call

Do for example:

gphs1to6 <- plotSimDiags(obj = mftime.lm, which = 1:6,
layout = c(4, 2))

Then do, for example:

update(gphs1to6[[1]], layout = c(4, 2))
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This way of proceeding has the advantage that the same simulated
data values are used for all diagnostics, without the need to set a prior
random number seed.

Further checks: It bears emphasizing that, depending on the nature
of the data, there may be further checks and tests that should be ap-
plied. Data that have been collected over a significant period of time
is an important special case. Departures from a fitted line may well
show a pattern with time. The functions acf() and pacf() should
be used to check for autocorrelation in the residuals.

3 Simulation Checks on Stepwise and Related
Methods

The function bestsetNoise() (DAAG) can be used to experiment
with the behaviour of various variable selection techniques with data
that is purely noise. ?, Section 6.5, pp. 197-198 gives examples from
the use of this function. For example, try:

bestsetNoise(m = 100, n = 40, nvmax = 3)
bestsetNoise(m = 100, n = 40, method = "backward",

nvmax = 3)

The analyses will typically yield a model that appears to have
highly (but spuriously) statistically significant explanatory power,
with one or more coefficients that appear (again spuriously) signifi-
cant at a level of around p=0.01 or less.

The extent of selection effects – a detailed simulation: As above,
datasets of random normal data were created, always with 100 obser-
vations and with the number of variables varying between 3 and 50.
For three variables, there was no selection, while in other cases the
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“best” three variables were selected, by exhaustive search. Figure ??
plots the p-values for the 3 variables that were selected against the to-
tal number of variables. The fitted line estimates the median p-value.
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## Code
library(DAAG)
library(quantreg)
library(splines)
set.seed(37) # Use to reproduce graph that is shown
bsnVaryNvar(m = 100, nvar = 3:50, nvmax = 3)

Figure 8: p-values, versus num-
ber of variables available for se-
lection, when the “best” 3 vari-
ables were selected by exhaus-
tive search. The fitted line
estimates the median p-value.
The function bsnVaryNvar()
that is used for the calucla-
tions makes repeated calls to the
function bestsetNoise()

When all 3 variables are taken, the p-values are expected to aver-
age 0.5. Notice that, for selection of the best 3 variables out of 10, the
median p-value has reduced to about 0.1.

Similar results will be obtained from use of forward or backward
stepwise regression.
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