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The Conditionally Independent Dyadic network framework is built on the notion that,
compared to the Exponential Random Graph model, each dyad is independent of the others in
a network conditional on whatever we can infer about nodal properties in the network, as well
as any covariates on the edges that are observable.

Undirected Networks

In the undirected case, there is exactly one tie per dyad to consider. Suppose we have  total

nodes in the system. This means there are  potential edges in the network that can be

observed and modelled; let  and  index the nodes that are connected for each potential
edge. Suppose that the total number we observe is labelled , though in practice this is

typically the full set of .

The first underlying generative principle for this network type is that each tie has a latent
strength of connectivity , which is modelled as a Gaussian random variable with its own

mean and variance,

The form of this mean and variance then determines how this latent strength is derived. We
describe how to obtain different forms of  in the subsequent sections; for these examples,

we have one variance, .

This form is used partly because of its computational advantage, but also because of its
flexibility. If we have a network whose edges are Gaussian in nature, we simply set .

If we want a network with binary edges – as the vast majority of observed networks are said to
be – then we use the standard generative mechanism for the probit model to set our outcome
of zero or one,

so that the probability of an edge existing depends directly on the latent tie strength and

indirectly on the mean of that tie . In this case we fix  to identify the model.

We can also extend this to any ordinal data outcomes by considering additional hurdles. For
example, consider an ordinal outcome that can take values of . With the latent
continuous variable , we can generate an ordinal variable by taking three cutoff values and

determining the latent value with respect to these cutoffs. We already have one in the
pre-existing zero; let the others be  and  and have them both be greater than zero. The
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outcome is then obtained as

Given that the latent strength  determines the value of the tie itself, assume for now that

this value is known in inference tasks.

Computational Mechanisms

We embrace a fully Bayesian interpretation of this mechanism, mainly because it provides us
with a convenient computational framework for estimating network parameters. We use
Markov Chain Monte Carlo for this purpose, using a cyclic Gibbs sampler on each parameter
with direct draws when possible and Metropolis proposals when not.

Specifying 

By specifying the latent strength of a tie first, we have the opportunity to make it an additive
collection of terms each corresponding to a different type of dependence structure. First, we
specify each of a number of different forms of dependence, as well as each of the mechanisms
by which we can sample from their distributions.

First, we specify that the latent strengths share a common grand mean , which has a prior
distribution

Specifying each latent strength as , where , we then

have

so that we can obtain a direct draw of , conditional on the means of each of the  observed
potential edges, from the standard normal distribution form

Similarly for , we can specify a semi-conjugate prior distribution
, and with the likelihood

we have the standard semi-conjugate draw for the variance parameter,
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Covariates on Edges (COV)

For a covariate known on each potential edge on a network, this model is functionally identical
to the standard linear model: each edge has a vector of  covariates and a corresponding

-vector of coefficients labelled :

With the transformation , we have the standard linear model

expression. With prior distribution , and with  as an -by-  matrix, we

have

Taking each item in sequence, here is the order for our Gibbs sampler, given that the
unspecified terms are conditioned on at each step:

Draw  from its semiconjugate draw.1.

Draw  from its semiconjugate draw, if necessary.2.
Draw  as specified above.3.

Sender-Receiver Intercepts (SR)

Each node has an associated strength that is above or below the average of their group. These
can either function as “fixed” or “random” effects on these outcomes,

with a prior distribution on each ,

These effects are fixed if  is a constant and partially pooled if we impose a prior distribution,
such as ; this is the form that is enabled by default in CIDnetworks.

Let  be the -by-  diagonal matrix whose non-zero terms are each .

If  is held constant, by definition or conditioning, then  defines a sparse -by-

design covariance matrix  that multiplies the full vector of effects ; each row has exactly
two entries equal to one and is of full column rank.

The steps for one iteration of the Gibbs sampler:
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Draw  from its semiconjugate draw.1.

Draw  from its semiconjugate draw, if necessary.2.
Draw  from3.

Draw  from4.

Latent Space Model (LSM)

Each node  is assigned a position  in a latent space (typically Euclidean). The latent
strength of the tie decreases as the distance between points increases,

This function has the downside of lacking a closed-form solution for a complete conditional
distribution, which is balanced by the usefulness of the latent space position as a descriptor.

The inverted version of this model has the strength of tie increase with distance
( ), though this does not have the advantage of interpretability. It is computed

with the same algorithm.

The steps for one iteration of the Gibbs sampler:

Draw  from its semiconjugate draw.1.

Draw  from its semiconjugate draw, if necessary.2.
For each , propose a new  in the latent space by some proposal
distribution (in this case, a multivariate normal centered at the original ). Accept with
probability equal to the standard Metropolis ratio.

3.

Latent Vector Model (LVM)

Each node  is assigned a vector  in a latent space (typically Euclidean). The latent strength
of the tie is a direct function of the inner product between the two vectors:

If  for all edges in the system, then if we condition on all node effects except , then the
likelihood is identical to a linear model for all edges with node  and constant for all others. Let
each  have dimension  and prior distribution 

The steps for one iteration of the Gibbs sampler:
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Draw  from its semiconjugate draw.1.

Draw  from its semiconjugate draw, if necessary.2.
For each , select the relevant edges. Construct , a matrix whose rows
are the latent vectors for the nodes that comprise potential edges with , and , the
outcomes corresponding to those rows. Then draw from the conditional distribution

3.

Stochastic Block Model (SBM)

Each node belongs to one of  discrete blocks. All edges between members of one block and
another (possibly the same block) have the same mean value.

Let  be a -vector with a 1 in the position corresponding to the block membership and 0
otherwise. Let  be a -by-  symmetric matrix of mean values, so that  is the mean value
if  and  belong to blocks  and  respectively. The outcome is then generated as

Each membership vector  has prior probability  of belonging to each group. Each

element of the matrix  has prior distribution .

The steps for one iteration of the Gibbs sampler:

Draw  from its semiconjugate draw.1.

Draw  from its semiconjugate draw, if necessary.2.
For each node , compute the resulting likelihood of the data for its membership in each
of the  groups. Choose one of these groups with probability proportional to the likelihood
(a direct draw from the discrete distribution).

3.

For each entry of the block matrix , find all edges whose group memberships match
that entry (totalling . Conditional on the group memberships, this is now a simple
semi-conjugate normal draw:

4.

Mixed-Membership Stochastic Block Model
(MMSBM)

In the SBM, each node belongs strictly to one block. In the mixed membership case, the
membership of a node can change with respect to each partner with which it can share an
edge, with respect to an underlying distribution of block membership probabilities. The
underlying mean is now
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Each partial membership vector  derives from a nodal mixed membership vector ,

and each  has a prior Dirichlet distribution . Again, each element of

the matrix  has prior distribution .

The steps for one iteration of the Gibbs sampler:

Draw  from its semiconjugate draw.1.

Draw  from its semiconjugate draw, if necessary.2.
For each directed node pair , compute the resulting likelihood of the data for its
membership in each of the  groups. Choose one of these groups with probability
proportional to the likelihood times the prior ( ) (a direct draw from the discrete
distribution)

3.

For each mixed membership vector , we have multinomial data corresponding to the
number of partial memberships in each block, and a Dirichlet prior, yielding a direct draw
from the Dirichlet posterior.

4.

For each entry of the block matrix , find all edges whose partial group memberships
match that entry (totalling . Conditional on the group memberships, this is again a
simple semi-conjugate normal draw:

5.

Hierarchical Block Model (HBM)

There is a tree with  internal nodes labelled , wherein each internal node

has mean value . Each node  on the network belongs to one of these internal nodes, kept
as vector ; the mean value of  is the value of the closest common ancestor to both  and

.

All nodes have equal prior probability of belonging to an internal node.

(more to describe here to tell the story.)

The steps for one iteration of the Gibbs sampler:

Draw  from its semiconjugate draw.1.

Draw  from its semiconjugate draw, if necessary.2.
For each node , compute the resulting likelihood of the data for its membership in each
of the  groups. Choose one of these groups with probability proportional to the likelihood
(a direct draw from the discrete distribution). If its departure would leave fewer than two

3.
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nodes attached to an internal node, propose a Metropolis step in which it switches with
another node and accept with the standard Metropolis ratio.
For each entry of the block matrix , find all edges whose common ancestor
corresponds to that internal node, totalling . Conditional on the group memberships,
this is now a simple semi-conjugate normal draw:

4.

Post-processing
We have two basic classes of model with latent information: continuous and discrete position.
For each we have a standard way of transforming the data for easy analysis, in a way that
simply identifies the model rather than changing it in a meaningful way.

Continuous latent space/vector values

After every iteration of the Gibbs sampler, we perform the following realignment:

Recenter the latent positions to have mean zero.1.
Rotate the positions so that node 1 lies on the positive x-axis.2.
Rotate the positions so that node 2 lies in the x-y plane with positive y value.3.
Repeat rotations so that node  lies in the -dimensional hyperplane with positive
-dimensional value, up to the dimension of the space itself.

4.

This routine specifies a unique alignment of points that makes it easier to compare the
stability of the model fit, particularly when the number of nodes greatly exceeds the
dimension.

Discrete block memberships

After every iteration of the Gibbs sampler, we perform the following realignment:

Permute the block numbers so that block 1 contains either node 1 or the maximum
probability for node 1.

1.

Continue permutations so that node  is contained in block , unless it is already in a
lower-numbered block.

2.

Conclude the permutations so that lower-numbered nodes have the smallest block
numbers possible.

3.

Like in the latent space case, this routine specifies a unique alignment of points that makes it
easier to compare the stability of the model fit, particularly when the number of nodes greatly
exceeds the dimension of the block.
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Multiple Contributions to 

Each of the previous components can be included by themselves, or in combination with
others, as a generative network model. The Gibbs sampler construction and additive form
makes it easy to sample from each piece in sequence.

Consider a model with three subclass components in addition to the grand intercept: a
covariate piece, a latent space, and a stochastic block model. Suppose this is also a binary
network, so that once all the components are specified, the generative model is:

Note that since this is the binary case, . The full Gibbs sequence for one iteration

cycles over each of the sub-components:

Collect and sample for , noting that1.

Collect and sample for :2.

Collect and sample for the latent space positions :3.

Collect and sample for the stochastic block parameters :4.

Draw new latent variables  from their truncated normal distributions, depending on

the value of each .

5.

For :

For :
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