Getting Started

Emanuel Rodriguez

2018-05-15

Install

You can install CDECRetrieve the usual way,

# for stable version
install.packages("CDECRetrieve")

# for development version
devtools::install_github("flowwest/CDECRetrieve")

Intro

The goal for CDECRetrieve is to create a workflow for R users using CDEC data, we believe that a well defined workflow is easier to automate and less prone to error (or easier to catch errors). In order to do this we create “services” out of different endpoints available through the CDEC site. A lot ideas in developing the package came from using dataRetrieval from USGS and the NOAA CDO api.

Exploring Locations

We start by first exploring locations of interest. The CDEC site provides a web form with a lot of options,

cdec station search

cdec station search

The pakcage exposes this functionallity through cdec_stations(). Although it doesn’t (currently) map all options in the web form it does so for the most used, namely, station id, nearby city, river basin, hydro area and county. At least one of the parameters must be supplied, and combination of these can be supplied to refine the search.

library(CDECRetrieve)

cdec_stations(station_id = "kwk") # return metadata for KWK
#> # A tibble: 1 x 9
#>   station_id name          river_basin county longitude latitude elevation
#>   <chr>      <chr>         <chr>       <chr>      <dbl>    <dbl> <chr>    
#> 1 kwk        sacramento r… sacramento… shasta     -122.     40.6 596 &nbsp
#> # ... with 2 more variables: operator <chr>, state <chr>

# show all locations near san francisco, this returns a set of 
# CDEC station that are near San Francisco
cdec_stations(nearby_city = "san francisco")
#> # A tibble: 3 x 9
#>   station_id name        river_basin county   longitude latitude elevation
#>   <chr>      <chr>       <chr>       <chr>        <dbl>    <dbl> <chr>    
#> 1 sfn        san franci… sf bay      san fra…     -122.     37.8 150 &nbsp
#> 2 cx2        daily x2 c… sf bay      san fra…     -122.     37.8 0 &nbsp  
#> 3 ggt        golden gate sf bay      san fra…     -122.     37.8 0 &nbsp  
#> # ... with 2 more variables: operator <chr>, state <chr>

# show all location in the sf bay river basin
cdec_stations(river_basin = "sf bay")
#> # A tibble: 25 x 9
#>    station_id name        river_basin county  longitude latitude elevation
#>    <chr>      <chr>       <chr>       <chr>       <dbl>    <dbl> <chr>    
#>  1 mrh        marsh cree… sf bay      contra…     -122.     37.9 740 &nbsp
#>  2 sfn        san franci… sf bay      san fr…     -122.     37.8 150 &nbsp
#>  3 lsm        los medonos sf bay      contra…     -122.     38.0 130 &nbsp
#>  4 dvb        danville l… sf bay      contra…     -122.     37.8 364 &nbsp
#>  5 snn        san andreas sf bay      san ma…     -122.     37.6 456 &nbsp
#>  6 umn        mt. umunhu… sf bay      santa …     -122.     37.2 3090 &nb…
#>  7 rhl        richmond c… sf bay      contra…     -122.     37.9 55 &nbsp 
#>  8 mas        main ave d… sf bay      santa …    -1000.    100.0 9999     
#>  9 cx2        daily x2 c… sf bay      san fr…     -122.     37.8 0 &nbsp  
#> 10 ccp        concord pa… sf bay      contra…     -122.     38.0 558 &nbsp
#> # ... with 15 more rows, and 2 more variables: operator <chr>, state <chr>

# show all station in Tehama county
cdec_stations(county = "tehama")
#> # A tibble: 45 x 9
#>    station_id name         river_basin county longitude latitude elevation
#>    <chr>      <chr>        <chr>       <chr>      <dbl>    <dbl> <chr>    
#>  1 teh        sacramento … sacramento… tehama     -122.     40.0 213 &nbsp
#>  2 crg        corning air… sacramento… tehama     -122.     39.9 294 &nbsp
#>  3 sbb        sacramento … sacto vly … tehama     -122.     40.3 186 &nbsp
#>  4 btw        nf battle c… sacramento… tehama     -122.     40.4 1200 &nb…
#>  5 lgs        log spring   sacto vly … tehama     -123.     39.8 5100 &nb…
#>  6 atp        anthony peak stony cr    tehama     -123.     39.8 6200 &nb…
#>  7 bnd        sacramento … sacramento… tehama     -122.     40.3 286 &nbsp
#>  8 dvr        davis ranch  cottonwood… tehama     -122.     40.4 550 &nbsp
#>  9 sh1        sheet iron … sacramento… tehama     -123.     39.5 6500 &nb…
#> 10 bas        south fork … sacramento… tehama     -122.     40.4 997 &nbsp
#> # ... with 35 more rows, and 2 more variables: operator <chr>, state <chr>

Since we are simply exploring for locations of interest, it may be useful to map these for visual inspection. CDECRetrieve provides a simple function to do exactly this map_stations().

library(magrittr)
library(leaflet)

cdec_stations(county = "tehama") %>% 
  map_stations()

The same can be done with leaflet functions

d <- cdec_stations(county = "tehama")
leaflet(d) %>% 
  addTiles() %>% 
  addCircleMarkers(label=~station_id) #psk is way off here 

Exploring Datasets within a Station

After exploring stations in a desired location. We can start focusing on the datasets available at the locations.

station <- "sha"
cdec_datasets("sha")
#> # A tibble: 21 x 6
#>    sensor_number sensor_name   sensor_units duration start      end       
#>            <int> <chr>         <chr>        <chr>    <date>     <date>    
#>  1             2 precipitatio… inches       daily    2003-10-01 2018-05-15
#>  2             2 precipitatio… inches       monthly  1953-10-01 2018-05-15
#>  3             6 reservoir el… feet         daily    1985-01-01 2018-05-15
#>  4             6 reservoir el… feet         hourly   1993-12-09 2018-05-15
#>  5             8 full natural… cfs          daily    1987-05-31 2018-05-15
#>  6            15 reservoir st… af           daily    1985-01-01 2018-05-15
#>  7            15 reservoir st… af           hourly   1994-06-24 2018-05-15
#>  8            15 reservoir st… af           monthly  1953-10-01 2018-05-15
#>  9            22 reservoir st… af           daily    1993-10-03 2018-05-15
#> 10            23 reservoir ou… cfs          daily    1987-01-05 2018-05-15
#> # ... with 11 more rows

Since all of these functions return a tidy dataframe we can make use of the dplyr to filter, mutate and explore. Here we look for datasets in Shasta that report a storage

library(magrittr)

cdec_datasets("sha") %>% 
  dplyr::filter(grepl("storage", sensor_name))
#> # A tibble: 5 x 6
#>   sensor_number sensor_name    sensor_units duration start      end       
#>           <int> <chr>          <chr>        <chr>    <date>     <date>    
#> 1            15 reservoir sto… af           daily    1985-01-01 2018-05-15
#> 2            15 reservoir sto… af           hourly   1994-06-24 2018-05-15
#> 3            15 reservoir sto… af           monthly  1953-10-01 2018-05-15
#> 4            22 reservoir sto… af           daily    1993-10-03 2018-05-15
#> 5            94 reservoir top… af           daily    2000-10-24 2018-05-15

Take note of the sensor number, and duration, these will be needed for querying data in the next section.

Query Data

Now that we have a location, parameter of interest and duration we can start to query for actual data.

sha_storage_daily <- cdec_query(station = "sha", sensor_num = "15", 
                                dur_code = "d", start_date = "2018-01-01", 
                                end_date = Sys.Date())

sha_storage_daily
#> # A tibble: 135 x 5
#>    agency_cd location_id datetime            parameter_cd parameter_value
#>    <chr>     <chr>       <dttm>              <chr>                  <dbl>
#>  1 CDEC      SHA         2018-01-01 00:00:00 15                  3203249.
#>  2 CDEC      SHA         2018-01-02 00:00:00 15                  3202064.
#>  3 CDEC      SHA         2018-01-03 00:00:00 15                  3203723.
#>  4 CDEC      SHA         2018-01-04 00:00:00 15                  3206566.
#>  5 CDEC      SHA         2018-01-05 00:00:00 15                  3210358.
#>  6 CDEC      SHA         2018-01-06 00:00:00 15                  3215097.
#>  7 CDEC      SHA         2018-01-07 00:00:00 15                  3217003.
#>  8 CDEC      SHA         2018-01-08 00:00:00 15                  3229391.
#>  9 CDEC      SHA         2018-01-09 00:00:00 15                  3237014.
#> 10 CDEC      SHA         2018-01-10 00:00:00 15                  3242032.
#> # ... with 125 more rows

Once again the the data is in a tidy form.

Plot

We can plot with ggplot2