Please note that is a shortened version of what is shown here.
The CCAMLRGIS package was developed to simplify the production of maps in the CCAMLR Convention Area. It provides two categories of functions: load functions and create functions. Load functions are used to import spatial layers from the online CCAMLR GIS (http://gis.ccamlr.org/) such as the ASD boundaries. Create functions are used to create layers from user data such as polygons and grids.
First, install the package by typing:
install.packages("CCAMLRGIS")
Then, load the package by typing:
library(CCAMLRGIS)
All spatial manipulations are made using the South Pole Lambert Azimuthal Equal Area projection (type ?CCAMLRp for more details).
#Map with axes, to understand projection
#Set the figure margins as c(bottom, left, top, right)
<-par(mai=c(0.55,0.7,0.2,0.45),xpd=TRUE)
Mypar#plot entire Coastline
plot(Coast[Coast$ID=='All',],col='grey',lwd=0.1)
#Add reference grid
add_RefGrid(bb=bbox(Coast[Coast$ID=='All',]),ResLat=10,ResLon=20,LabLon=-40,fontsize=0.4,lwd=0.5)
#add axes and labels
axis(1,pos=0,at=seq(-4000000,4000000,by=1000000),tcl=-0.15,labels=FALSE,lwd=0.8,lwd.ticks=0.8,col='blue')
axis(2,pos=0,at=seq(-4000000,4000000,by=1000000),tcl=-0.15,labels=FALSE,lwd=0.8,lwd.ticks=0.8,col='blue')
text(seq(1000000,4000000,by=1000000),0,seq(1,4,by=1),cex=0.75,col='blue',adj=c(0.5,1.75))
text(seq(-4000000,-1000000,by=1000000),0,seq(-4,-1,by=1),cex=0.75,col='blue',adj=c(0.5,1.75))
text(0,seq(1000000,4000000,by=1000000),seq(1,4,by=1),cex=0.75,col='blue',adj=c(1.75,0.5))
text(0,seq(-4000000,-1000000,by=1000000),seq(-4,-1,by=1),cex=0.75,col='blue',adj=c(1.75,0.5))
text(0,0,0,cex=0.75,col='blue',adj=c(-0.5,-0.5))
text(5200000,0,expression('x ('*10^6~'m)'),cex=0.75,col='blue')
text(0,4700000,expression('y ('*10^6~'m)'),cex=0.75,col='blue')
par(Mypar)
Prior to detailing the package’s capabilities, a set of basic commands are shown here to display a few core mapping elements. In a first instance, the code used to produce the bathymetry raster included in the package (‘SmallBathy’) is shown, and may be used to produce a raster at a higher resolution:
#Step 1: Download the global GEBCO Grid, from:
#http://www.gebco.net/data_and_products/gridded_bathymetry_data/
#Step 2: load the 'raster' and 'rgeos' libraries
library(raster)
library(rgeos)
#Step 3: Read the data
=raster(" Path to the folder containing the GEBCO data /GEBCO_YearXXXX.nc")
G
#Step 4: Crop the data to below 40 degrees South
=crop(G,extent(-180,180,-90,-40))
G
#Step 5: Project the data using the CCAMLR projection
=projectRaster(G, crs=proj4string(CCAMLRp))
Gp
#Step 6: Mask the data using a buffered contour of the Convention area
#load ASDs, buffer them and extract the outer polygon (first polygon within the list of polygons)
=load_ASDs()
ASDs#Build 500km contour
=gBuffer(ASDs,width=500000,quadsegs = 25)
Contour#Extract outer boundary (first polygon)
=Contour@polygons[[1]]@Polygons[1]
pol=Polygons(pol,ID='1')
pol=SpatialPolygons(list(pol),proj4string = CRS(CCAMLRp))
pol#Apply mask
=mask(Gp, pol)
Gpm
#Step 7: Clamp the raster to exclude values higher than 500m
=clamp(Gpm, upper=500,useValues=FALSE)
Gpmc
#At this point, you may export the data and use it in its native resolution
#Export:
writeRaster(Gpmc,"GEBCOpmc.tif")
#to re-Import:
=raster(' Path to the folder containing the GEBCO data /GEBCOpmc.tif')
Gpmc
#Or, resample it (e.g., at a 500m resolution, using the nearest neighbor method):
=raster(crs=crs(Gpmc), ext=extent(Gpmc), resolution=500)
newR=resample(Gpmc,newR,method="ngb")
Gr#Export:
writeRaster(Gr,"GEBCOpmcr500NN.tif")
#to re-Import:
=raster(' Path to the folder containing the data /GEBCOpmc.tif') Gpmcr500N
#Load ASDs and EEZs
=load_ASDs()
ASDs=load_EEZs()
EEZs#Set the figure margins as c(bottom, left, top, right)
<-par(mai=c(0,0.4,0,0))
Mypar#Plot the bathymetry
plot(SmallBathy,breaks=Depth_cuts,col=Depth_cols,legend=FALSE,axes=FALSE,box=FALSE)
#Add color scale
add_Cscale(height=65,fontsize=0.4,offset=600,width=25,maxVal=-1,lwd=0.5)
#Add reference grid
add_RefGrid(bb=bbox(SmallBathy),ResLat=10,ResLon=20,LabLon=0,fontsize=0.4,lwd=0.5)
#Add ASD and EEZ boundaries
plot(ASDs,add=TRUE,lwd=0.5,border='red')
plot(EEZs,add=TRUE,lwd=0.5,border='red')
#Add coastline (for all ASDs)
plot(Coast[Coast$ID=='All',],col='grey',lwd=0.01,add=TRUE)
#Add ASD labels
add_labels(mode='auto',layer='ASDs',fontsize=0.3,col='red')
par(Mypar)
#Load ASDs (if you haven't yet, uncomment the following line)
# ASDs=load_ASDs()
#Subsample ASDs to only keep Subarea 48.6
=ASDs[ASDs$GAR_Short_Label=='486',]
S486#Crop bathymetry to match the extent of S486
=raster::crop(SmallBathy,S486)
B486#Optional: get the maximum depth in that area to constrain the color scale
=raster::minValue(B486)
minD#Set the figure margins as c(bottom, left, top, right)
<-par(mai=c(0,0.2,0,0))
Mypar#Plot the bathymetry
plot(B486,breaks=Depth_cuts,col=Depth_cols,legend=FALSE,axes=FALSE,box=FALSE)
#Add color scale
add_Cscale(height=65,fontsize=0.4,offset=600,width=23,lwd=0.5,minVal=minD,maxVal=-1)
#Add coastline (for Subarea 48.6 only)
plot(Coast[Coast$ID=='48.6',],col='grey',lwd=0.01,add=TRUE)
#Add reference grid
add_RefGrid(bb=bbox(B486),ResLat=5,ResLon=10,fontsize=0.4,lwd=0.5,offset = 100000)
#Add Subarea 48.6 boundaries
plot(S486,add=TRUE,lwd=0.5,border='red')
#Add a -2000m contour
::contour(B486,levels=-2000,add=TRUE,lwd=0.5,labcex=0.3)
raster#Add single label at the centre of the polygon (see ?Labels)
text(Labels$x[Labels$t=='48.6'],Labels$y[Labels$t=='48.6'],labels='48.6',col='red')
par(Mypar)
These functions are used to transform user data into spatial layers with the appropriate projection. User data may either be generated within an R script or imported from a ‘.csv’ file located in the working directory. Users can set their working directory using the command setwd(). It is however recommended to, instead, create an R project in a folder and put your ‘.csv’ files in it.
To see your current working directory, type:
getwd()
For details, type:
?create_Points
#Prepare layout for 4 sub-plots
<-par(mfrow=c(2,2),mai=c(0,0.01,0.2,0.01))
Mypar
#Example 1: Simple points with labels
=create_Points(Input=PointData)
MyPointsplot(MyPoints,main='Example 1',cex.main=0.5,cex=0.5,lwd=0.5)
text(MyPoints$x,MyPoints$y,MyPoints$name,adj=c(0.5,-0.5),xpd=TRUE,cex=0.5)
box()
#Example 2: Simple points with labels, highlighting one group of points with the same name
=create_Points(Input=PointData)
MyPointsplot(MyPoints,main='Example 2',cex.main=0.5,cex=0.5,lwd=0.5)
text(MyPoints$x,MyPoints$y,MyPoints$name,adj=c(0.5,-0.5),xpd=TRUE,cex=0.5)
plot(MyPoints[MyPoints$name=='four',],bg='red',pch=21,cex=1,add=TRUE)
box()
#Example 3: Buffered points with radius proportional to catch
=create_Points(Input=PointData,Buffer=1*PointData$Catch)
MyPointsplot(MyPoints,col='green',main='Example 3',cex.main=0.5,cex=0.5,lwd=0.5)
text(MyPoints$x,MyPoints$y,MyPoints$name,adj=c(0.5,0.5),xpd=TRUE,cex=0.5)
box()
#Example 4: Buffered points with radius proportional to catch and clipped to the Coast
=create_Points(Input=PointData,Buffer=2*PointData$Catch,Clip=TRUE)
MyPointsplot(MyPoints,col='cyan',main='Example 4',cex.main=0.5,cex=0.5,lwd=0.5)
plot(Coast[Coast$ID=='All',],add=TRUE,col='grey',lwd=0.5)
box()
par(Mypar)
For details, type:
?create_Lines
#If your data contains line end locations in separate columns, you may reformat it as follows:
#Example data:
=data.frame(
MyDataLine=c(1,2),
Lat_Start=c(-60,-65),
Lon_Start=c(-10,5),
Lat_End=c(-61,-66),
Lon_End=c(-2,2)
)
#Reformat to us as input in create_Lines as:
=data.frame(
InputLine=c(MyData$Line,MyData$Line),
Lat=c(MyData$Lat_Start,MyData$Lat_End),
Lon=c(MyData$Lon_Start,MyData$Lon_End)
)
#Prepare layout for 3 sub-plots
<-par(mai=c(0,0.01,0.2,0.01),mfrow=c(1,3))
Mypar
#Example 1: Simple and non-densified lines
=create_Lines(Input=LineData)
MyLinesplot(MyLines,col=rainbow(length(MyLines)),main='Example 1',cex.main=0.5,lwd=1)
box()
#Example 2: Simple and densified lines (note the curvature of the purple line)
=create_Lines(Input=LineData,Densify=TRUE)
MyLinesplot(MyLines,col=rainbow(length(MyLines)),main='Example 2',cex.main=0.5,lwd=1)
box()
#Example 3: Densified, buffered and clipped lines
=create_Lines(Input=LineData,Densify=TRUE,Buffer=c(10,40,50,80,100),Clip=TRUE)
MyLinesplot(MyLines,col=rainbow(length(MyLines)),main='Example 3',cex.main=0.5,lwd=1)
plot(Coast[Coast$ID=='All',],col='grey',add=TRUE,lwd=0.5)
box()
par(Mypar)
Adding a buffer with the argument SeparateBuf set to FALSE results in a single polygon which may be viewed as a footprint:
#Set the figure margins as c(bottom, left, top, right)
<-par(mai=c(0.01,0.01,0.01,0.01))
Mypar
#Buffer merged lines
=create_Lines(Input=LineData,Buffer=10,SeparateBuf=FALSE)
MyLines#The resulting polygon has an area of:
$Buffered_AreaKm2 MyLines
## [1] 222653.6
plot(MyLines,col='green',lwd=1)
box()
par(Mypar)
For details, type:
?create_Polys
#Prepare layout for 3 sub-plots
<-par(mfrow=c(1,3),mai=c(0,0.01,0.2,0.01))
Mypar
#Example 1: Simple and non-densified polygons
=create_Polys(Input=PolyData,Densify=FALSE)
MyPolysplot(MyPolys,col='blue',main='Example 1',cex.main=0.5,lwd=0.5)
text(MyPolys$Labx,MyPolys$Laby,MyPolys$ID,col='white',cex=0.5)
box()
#Example 2: Simple and densified polygons (note the curvature of iso-latitude lines)
=create_Polys(Input=PolyData)
MyPolysplot(MyPolys,col='red',main='Example 2',cex.main=0.5,lwd=0.5)
text(MyPolys$Labx,MyPolys$Laby,MyPolys$ID,col='white',cex=0.5)
box()
#Example 3: Buffered and clipped polygons
=create_Polys(Input=PolyData,Buffer=c(10,-15,120))
MyPolysBefore=create_Polys(Input=PolyData,Buffer=c(10,-15,120),Clip=TRUE)
MyPolysAfterplot(MyPolysBefore,col='green',main='Example 3',cex.main=0.5,lwd=0.5)
plot(Coast[Coast$ID=='All',],add=TRUE,lwd=0.5)
plot(MyPolysAfter,col='orange',add=TRUE,lwd=0.5)
text(MyPolysAfter$Labx,MyPolysAfter$Laby,MyPolysAfter$ID,col='white',cex=0.5)
box()
par(Mypar)
For details, type:
?create_PolyGrids
More examples are available here.
#Prepare layout for 2 sub-plots
<-par(mfrow=c(1,2),mai=c(0,0.01,0.2,0.01))
Mypar
#Example 1: Simple grid, using automatic colors
=create_PolyGrids(Input=GridData,dlon=2,dlat=1)
MyGridplot(MyGrid,col=MyGrid$Col_Catch_sum,main='Example 1',cex.main=0.5,lwd=0.1)
box()
#Example 2: Same grid, colored by the area of each cell. This function offers an equal-area gridding
# option if required (see ?create_PolyGrids).
plot(MyGrid,col=MyGrid$Col_AreaKm2,main='Example 2',cex.main=0.5,lwd=0.1)
box()
par(Mypar)
Customizing a grid and adding a color scale:
#Prepare layout for 2 sub-plots
<-par(mfrow=c(2,1),mai=c(0.2,0.05,0.1,0.15))
Mypar
#Step 2: Inspect your gridded data (e.g. sum of Catch) to determine whether irregular cuts are required
hist(MyGrid$Catch_sum,100,cex=0.5,main='Frequency distribution of data',
cex.main=0.5,col='grey',axes=FALSE)
axis(1,pos=0,tcl=-0.15,lwd=0.8,lwd.ticks=0.8,labels=FALSE)
text(seq(0,2500,by=500),-1.5,seq(0,2500,by=500),cex=0.5,xpd=TRUE)
#In this case (heterogeneously distributed data) irregular cuts would be preferable
#Such as:
=c(0,50,100,500,2000,3500)
MyCutsabline(v=MyCuts,col='green',lwd=0.1,lty=2) #Add classes to histogram as green dashed lines
#Step 3: Generate colors according to the desired classes (MyCuts)
=add_col(MyGrid$Catch_sum,cuts=MyCuts,cols=c('yellow','purple'))
Gridcol
#Step 4: Plot result and add color scale
#Use the colors generated by add_col
plot(MyGrid,col=Gridcol$varcol,lwd=0.1)
#Add color scale using cuts and cols generated by add_col
add_Cscale(title='Sum of Catch',cuts=Gridcol$cuts,cols=Gridcol$cols,width=17,
fontsize=0.35,lwd=0.5,offset=-400)
par(Mypar)
This function was designed to create random point locations inside a polygon and within bathymetry strata constraints. A distance constraint between stations may also be used if desired.
For details, type:
?create_Stations
More examples are available here.
First, create a polygon within which stations will be created:
#Create polygons
=create_Polys(Input=PolyData,Densify=TRUE)
MyPolys
#Set the figure margins as c(bottom, left, top, right)
<-par(mai=c(0,0,0,0))
Myparplot(MyPolys)
#Subsample MyPolys to only keep the polygon with ID 'one'
=MyPolys[MyPolys$ID=='one',]
MyPoly
plot(MyPoly,col='green',add=TRUE)
text(MyPolys$Labx,MyPolys$Laby,MyPolys$ID)
par(Mypar)
Example 1. Set numbers of stations, no distance constraint:
#Create polygon as shown above
=create_Polys(Input=PolyData,Densify=TRUE)
MyPolys=MyPolys[MyPolys$ID=='one',]
MyPoly
#optional: crop your bathymetry raster to match the extent of your polygon
=raster::crop(SmallBathy,MyPoly)
BathyCroped
=create_Stations(Poly=MyPoly,Bathy=BathyCroped,Depths=c(-2000,-1500,-1000,-550),N=c(20,15,10))
MyStations#Set the figure margins as c(bottom, left, top, right)
<-par(mai=c(0,0,0,0))
Mypar
#add custom colors to the bathymetry to indicate the strata of interest
=add_col(var=c(-10000,10000),cuts=c(-2000,-1500,-1000,-550),cols=c('blue','cyan'))
MyColsplot(BathyCroped,breaks=MyCols$cuts,col=MyCols$cols,legend=FALSE,axes=FALSE,box=FALSE)
add_Cscale(height=90,fontsize=0.5,width=25,lwd=0.5,offset=0,cuts=MyCols$cuts,cols=MyCols$cols)
plot(MyPoly,add=TRUE,border='red',lwd=1)
plot(MyStations,add=TRUE,col='orange',cex=0.5)
par(Mypar)
Example 2. Set numbers of stations, with distance constraint: see here.
Example 3. Automatic numbers of stations, with distance constraint: see here.
Download the up-to-date spatial layers from the online CCAMLRGIS and load them to your environment.
For details, type:
?load_ASDs
#Load ASDs and EEZs (if you haven't yet, uncomment the following lines)
# ASDs=load_ASDs()
# EEZs=load_EEZs()
#Set the figure margins as c(bottom, left, top, right)
<-par(mai=c(0,0,0,0))
Mypar#Plot
plot(ASDs,col='green',border='blue')
plot(EEZs,col='orange',border='purple',add=TRUE)
plot(Coast[Coast$ID=='All',],col='grey',add=TRUE)
add_labels(mode='auto',layer='ASDs',fontsize=0.5,col='red')
par(Mypar)
Since the ‘load_’ functions require an internet connection, users may desire to save layers on their hard drive for offline use. This may be done, at the risk of not having the most up-to-date layers, as follows:
#Load all layers
=load_ASDs()
ASDs=load_EEZs()
EEZs=load_Coastline()
Coastline=load_SSRUs()
SSRUs=load_RBs()
RBs=load_SSMUs()
SSMUs=load_MAs()
MAs=load_MPAs()
MPAs
#Save as .RData file (here in the temp directory)
save(list=c('ASDs','EEZs','Coastline','SSRUs','RBs','SSMUs','MAs','MPAs'),
file = file.path(tempdir(), "CCAMLRLayers.RData"), compress='xz')
#Later, when offline load layers:
load(file.path(tempdir(), "CCAMLRLayers.RData"))
Given a bathymetry raster and a an input dataframe of latitudes/longitudes, this function computes the depths at these locations. Optionally it can also compute the horizontal distance of locations to chosen isobaths.
For details, type:
?get_depths
#Generate a dataframe
=data.frame(Lat=PointData$Lat,
MyDataLon=PointData$Lon,
Catch=PointData$Catch)
#The input data looks like this:
head(MyData)
## Lat Lon Catch
## 1 -68.63966 -175.0078 53.33002
## 2 -67.03475 -178.0322 38.66385
## 3 -65.44164 -170.1656 20.32608
## 4 -68.36806 151.0247 69.81201
## 5 -63.89171 154.4327 52.32101
## 6 -66.35370 153.6906 78.65576
#Example 1: get depths of locations
=get_depths(Input=MyData,Bathy=SmallBathy)
MyDataD#The resulting data looks like this (where 'd' is the depth and 'x' and 'y' are the projected locations):
head(MyDataD)
## Lat Lon Catch x y d
## 1 -68.63966 -175.0078 53.33002 -206321.41 -2361962 -3902.17494
## 2 -67.03475 -178.0322 38.66385 -87445.72 -2545119 -3944.33588
## 3 -65.44164 -170.1656 20.32608 -464656.29 -2680488 -3002.31098
## 4 -68.36806 151.0247 69.81201 1162986.84 -2100218 -95.20888
## 5 -63.89171 154.4327 52.32101 1246832.20 -2606157 -3306.09463
## 6 -66.35370 153.6906 78.65576 1161675.96 -2349505 -2263.46712
#Prepare layout for 2 sub-plots
<-par(mfrow=c(2,1),mai=c(0.2,0.2,0.01,0.01))
Mypar#Plot Catch vs Depth
=c(-5000,0) #Set plot x-axis limits
XL=c(10,80) #Set plot y-axis limits
YLplot(MyDataD$d,MyDataD$Catch,xlab='',ylab='',pch=21,bg='red',axes=FALSE,xpd=TRUE,xlim=XL,ylim=YL)
axis(1,pos=YL[1],tcl=-0.15,lwd=0.8,lwd.ticks=0.8,at=seq(XL[1],XL[2],by=500),cex.axis=0.5,labels=FALSE)
axis(2,pos=XL[1],tcl=-0.15,lwd=0.8,lwd.ticks=0.8,at=seq(YL[1],YL[2],by=10),cex.axis=0.5,labels=FALSE)
text(seq(XL[1],XL[2],by=500),YL[1]-3,seq(XL[1],XL[2],by=500),cex=0.5,xpd=TRUE)
text(XL[1]-100,seq(YL[1],YL[2],by=10),seq(YL[1],YL[2],by=10),cex=0.5,xpd=TRUE)
text(mean(XL),YL[1]-7,'Depth',cex=0.5,xpd=TRUE)
text(XL[1]-500,mean(YL),'Catch',cex=0.5,xpd=TRUE,srt=90)
#Example 2: get depths of locations and distance to isobath -3000m
=get_depths(Input=MyData,Bathy=SmallBathy,Isobaths=-3000,IsoLocs=TRUE,d=200000)
MyDataDplot(MyDataD$x,MyDataD$y,pch=21,bg='green',cex=0.75,lwd=0.5)
::contour(SmallBathy,levels=-3000,add=TRUE,col='blue',maxpixels=10000000)
rastersegments(x0=MyDataD$x,
y0=MyDataD$y,
x1=MyDataD$X_3000,
y1=MyDataD$Y_3000,col='red')
par(Mypar)
Function to calculate planimetric seabed area within polygons and depth strata in square kilometers. Its accuracy depends on the input bathymetry raster.
For details, type:
?seabed_area
#create some polygons
=create_Polys(Input=PolyData,Densify=TRUE)
MyPolys#compute the seabed areas
=seabed_area(Bathy=SmallBathy,Polys=MyPolys,depth_classes=c(0,-200,-600,-1800,-3000,-5000))
FishDepth#Result looks like this (note that the -600m to -1800m is renamed 'Fishable_area')
head(FishDepth)
## Polys 0|-200 -200|-600 Fishable_area -1800|-3000 -3000|-5000
## 1 one 0 18000 40300 39200 89800
## 2 two 0 1100 1100 8900 84300
## 3 three 300 1600 6400 223200 128100
Given a set of polygons and a set of point locations (given in decimal degrees), finds in which polygon those locations fall. Finds, for example, in which ASD the given fishing locations occurred.
For details, type:
?assign_areas
#Generate a dataframe with random locations
=data.frame(Lat=runif(100,min=-65,max=-50),
MyDataLon=runif(100,min=20,max=40))
#The input data looks like this:
head(MyData)
## Lat Lon
## 1 -57.34562 35.90555
## 2 -62.74853 36.58154
## 3 -51.94328 23.35095
## 4 -57.28337 28.19920
## 5 -64.87028 23.92505
## 6 -64.71208 25.18801
#load ASDs and SSRUs (if you haven't yet, uncomment the following line)
# ASDs=load_ASDs()
=load_SSRUs()
SSRUs
#Assign ASDs and SSRUs to these locations
=assign_areas(Input=MyData,Polys=c('ASDs','SSRUs'),NamesOut=c('MyASDs','MySSRUs'))
MyData#The output data looks like this:
head(MyData)
## Lat Lon MyASDs MySSRUs
## 1 -57.34562 35.90555 58.4.4a 58.4.4a D
## 2 -62.74853 36.58154 58.4.2 58.4.2 A
## 3 -51.94328 23.35095 48.6 48.6 G
## 4 -57.28337 28.19920 48.6 48.6 G
## 5 -64.87028 23.92505 48.6 48.6 F
## 6 -64.71208 25.18801 48.6 48.6 F
#count of locations per ASD
table(MyData$MyASDs)
##
## 48.6 58.4.2 58.4.4a
## 46 6 48
#count of locations per SSRU
table(MyData$MySSRUs)
##
## 48.6 F 48.6 G 58.4.2 A 58.4.4a D
## 12 34 6 48
A simple function to project user-supplied locations. Input must be a dataframe, outputs may be appended to the dataframe.
#The input data looks like this:
head(PointData)
## Lat Lon name Catch Nfishes n
## 1 -68.63966 -175.0078 one 53.33002 460 1
## 2 -67.03475 -178.0322 two 38.66385 945 2
## 3 -65.44164 -170.1656 two 20.32608 374 3
## 4 -68.36806 151.0247 two 69.81201 87 4
## 5 -63.89171 154.4327 three 52.32101 552 5
## 6 -66.35370 153.6906 four 78.65576 22 6
#Generate a dataframe with random locations
=project_data(Input=PointData,NamesIn=c('Lat','Lon'),NamesOut=c('Projected_Y','Projectd_X'),append=TRUE)
MyData#The output data looks like this:
head(MyData)
## Lat Lon name Catch Nfishes n Projected_Y Projectd_X
## 1 -68.63966 -175.0078 one 53.33002 460 1 -2361962 -206321.41
## 2 -67.03475 -178.0322 two 38.66385 945 2 -2545119 -87445.72
## 3 -65.44164 -170.1656 two 20.32608 374 3 -2680488 -464656.29
## 4 -68.36806 151.0247 two 69.81201 87 4 -2100218 1162986.84
## 5 -63.89171 154.4327 three 52.32101 552 5 -2606157 1246832.20
## 6 -66.35370 153.6906 four 78.65576 22 6 -2349505 1161675.96
Coloring bathymetry requires a vector of depth classes and a vector of colors. Colors are applied between depth classes (so there is one less color than there are depth classes). Two sets of bathymetry colors are included in the package. One simply colors the bathymetry in shades of blue (Depth_cols and Depth_cuts), the other adds shades of green to highlight the Fishable Depth (600-1800m; Depth_cols2 and Depth_cuts2).
#Set the figure margins as c(bottom, left, top, right)
<-par(mai=c(0,0.4,0,0))
Mypar#Plot the bathymetry
plot(SmallBathy,breaks=Depth_cuts,col=Depth_cols,axes=FALSE,box=FALSE,legend=FALSE)
#Add color scale
add_Cscale(cuts=Depth_cuts,cols=Depth_cols,fontsize=0.4,height=65,offset=600,width=25)
par(Mypar)
#Set the figure margins as c(bottom, left, top, right)
<-par(mai=c(0,0.4,0,0))
Mypar#Plot the bathymetry
plot(SmallBathy,breaks=Depth_cuts2,col=Depth_cols2,axes=FALSE,box=FALSE,legend=FALSE)
#Add color scale
add_Cscale(cuts=Depth_cuts2,cols=Depth_cols2,fontsize=0.4,height=65,offset=600,width=25)
par(Mypar)
Adding colors to plots revolves around two functions:
?add_col#and
?add_Cscale
add_col() generates colors for a variable of interest as well as a set of color classes and colors to be used as inputs to the add_Cscale() function. Colors and color classes may be generated automatically or customized, depending on the intended appearance. Knowing the names of colors in R would be useful here (http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf).
#Adding color to points
#Prepare layout for 3 sub-plots
<-par(mfrow=c(3,1),mai=c(0.01,0.01,0.1,0.6))
Mypar#Create some points
=create_Points(Input=PointData)
MyPoints
#Example 1: Add default cols and cuts
=add_col(MyPoints$Nfishes)
MyColsplot(MyPoints,pch=21,bg=MyCols$varcol,main='Example 1:',cex.main=0.5,cex=1.5,lwd=0.5)
box()
add_Cscale(title='Number of fishes',
height=80,fontsize=0.5,width=23,lwd=0.5,offset=0,
cuts=MyCols$cuts,cols=MyCols$cols)
#Example 2: Given the look of example 1, reduce the number of cuts and round their values (in add_Cscale)
=add_col(MyPoints$Nfishes,cuts=10)
MyColsplot(MyPoints,pch=21,bg=MyCols$varcol,main='Example 2:',cex.main=0.5,cex=1.5,lwd=0.5)
box()
add_Cscale(title='Number of fishes',
height=80,fontsize=0.5,width=23,lwd=0.5,offset=0,
cuts=round(MyCols$cuts,1),cols=MyCols$cols)
#Example 3: same as example 2 but with custom colors
=add_col(MyPoints$Nfishes,cuts=10,cols=c('black','yellow','purple','cyan'))
MyColsplot(MyPoints,pch=21,bg=MyCols$varcol,main='Example 3:',cex.main=0.5,cex=1.5,lwd=0.5)
add_Cscale(title='Number of fishes',
height=80,fontsize=0.5,width=23,lwd=0.5,offset=0,
cuts=round(MyCols$cuts,1),cols=MyCols$cols)
box()
par(Mypar)
To Add colors to a grid with custom cuts, see the last example in section 2.1.
To add a legend, use the base legend() function:
?legend
To position the legend, the add_Cscale() function can generate legend coordinates which correspond to the top-left corner of the legend box. These may be adjusted using the ‘pos’, ‘height’ and ‘offset’ arguments within add_Cscale(), e.g.:
=add_Cscale(pos='2/3',offset=1000,height=40) Legend_Coordinates
#Adding a color scale and a legend
#Create some point data
=create_Points(Input=PointData)
MyPoints
#Crop the bathymetry to match the extent of MyPoints (extended extent)
=raster::crop(SmallBathy,raster::extend(raster::extent(MyPoints),100000))
BathyCr#set plot margins as c(bottom, left, top, right)
<-par(mai=c(0,0,0,0.05))
Mypar#Plot the bathymetry
plot(BathyCr,breaks=Depth_cuts,col=Depth_cols,legend=FALSE,axes=FALSE,box=FALSE)
#Add a color scale
add_Cscale(pos='1/2',height=50,maxVal=-1,minVal=-4000,fontsize=0.45,lwd=0.5,width=24)
#Plot points with different symbols and colors (see ?points)
=c(21,22,23,24)
Psymbols=c('red','green','blue','yellow')
Pcolorsplot(MyPoints[MyPoints$name=='one',],pch=Psymbols[1],bg=Pcolors[1],add=TRUE)
plot(MyPoints[MyPoints$name=='two',],pch=Psymbols[2],bg=Pcolors[2],add=TRUE)
plot(MyPoints[MyPoints$name=='three',],pch=Psymbols[3],bg=Pcolors[3],add=TRUE)
plot(MyPoints[MyPoints$name=='four',],pch=Psymbols[4],bg=Pcolors[4],add=TRUE)
#Add legend with position determined by add_Cscale
=add_Cscale(pos='2/2',height=40,mode='Legend')
Loclegend(Loc,legend=c('one','two','three','four'),
title='Vessel',pch=Psymbols,pt.bg=Pcolors,xpd=TRUE,
box.lwd=0.5,cex=0.5,pt.cex=1,y.intersp=1.5)
par(Mypar)
To add labels, use the add_labels() function:
?add_labels
Three modes are available within the add_labels function:
In ‘auto’ mode, labels are placed at the centres of polygon parts of spatial objects loaded via the load_ functions.
In ‘manual’ mode, users may click on their plot to position labels. An editable label table is generated to allow fine-tuning of labels appearance, and may be saved for external use. To edit the label table, double-click inside one of its cells, edit the value, then close the table.
In ‘input’ mode, a label table that was generated in ‘manual’ mode is re-used.
#Example 1: 'auto' mode
#label ASDs in bold and red
#load ASDs (if you haven't yet, uncomment the following line)
# ASDs=load_ASDs()
#set plot margins as c(bottom, left, top, right)
<-par(mai=c(0,0,0,0))
Myparplot(ASDs)
add_labels(mode='auto',layer='ASDs',fontsize=0.5,fonttype=2,col='red')
#add MPAs and EEZs and their labels in large, green and vertical text
=load_MPAs()
MPAs# EEZs=load_EEZs() (if you haven't loaded EEZs yet, uncomment the following line)
plot(MPAs,add=TRUE,border='green')
plot(EEZs,add=TRUE,border='green')
add_labels(mode='auto',layer=c('EEZs','MPAs'),fontsize=1,col='green',angle=90)
par(Mypar)
#Example 2: 'auto' and 'input' modes
#This example is not executed here because it needs user interaction.
#Please copy and paste it to see how it works.
#Prepare a basemap
plot(SmallBathy)
#Load ASDs
=load_ASDs()
ASDsplot(ASDs,add=TRUE)
#Build your labels
=add_labels(mode='manual')
MyLabels
#Re-use the label table generated (if desired)
plot(SmallBathy)
plot(ASDs,add=TRUE)
add_labels(mode='input',LabelTable=MyLabels)