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Abstract

This is a vignette for the R package CARBayesST version 2.2, which describes the
class of models that can be implemented by the package and gives a simultated ex-
ample of how to implement the models. Version 2.2 has the following changes from
version 2.1. Firstly, missing values are allowed in the response variable for the models
ST.CARanova(), ST.CARar() and ST.CARlinear(). Secondly, the spatial and temporal
dependence parameters (denoted ρ) in ST.CARanova(), ST.CARar(), ST.CARlinear()
and ST.CARsepspatial() are allowed to be fixed at values in the unit interval [0,1] or
estimated in the model. Thirdly, the modelfit component of the fitted model object now
additionally returns the Watanabe-Akaike Information Criterion (WAIC) and an estimate
of the effective number of effective parameters (p.w).

Keywords: Bayesian inference, conditional autoregressive priors, spatio-temporal areal unit
modelling.

1. Introduction

Areal unit data are a type of spatial data where the observations relate to a set of K contiguous
but non-overlapping areal units, such as electoral wards or census tracts. Each observation
relates to an entire areal unit, and thus is typically a summary measure such as an average,
proportion, or total of the quantity being measured throughout the unit. Examples include
the total yield in sectors in an agricultural field trial (Besag and Higdon 1999), the propor-
tion of people who are Catholic in lower super output areas in Northern Ireland (Lee et al.
2015), the average score on SAT college entrance exams across US states (Wall 2004), or
the total number of cases of chronic obstructive pulmonary disease from populations living
in counties in Georgia, USA (Choi and Lawson 2011). Areal unit data such as these have
become increasingly available in recent times, due to the creation of databases such as Scot-
tish Neighbourhood Statistics (http://www.sns.gov.uk), Health and Social Care Information
Centre Indicator Portal (http://www.hscic.gov.uk/indicatorportal), and Surveillance Epidemi-
ology and End Results programme (http://seer.cancer.gov). These databases provide data
on a set of K areal units for N consecutive time periods, yielding a rectangular array of
K × N spatio-temporal observations. The motivations for modelling these data are varied,
and include estimating the effect of a risk factor on a response (see Wakefield 2007 and Lee
et al. 2009), identifying clusters of contiguous areal units that exhibit an elevated risk of dis-
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ease compared with neighbouring areas (see Charras-Garrido et al. 2012 and Anderson et al.
2014), and quantifying the level of segregation in a city between two or more different groups
(see Lee et al. 2015).

The key statistical modelling challenge for these data is that of spatio-temporal autocorre-
lation, namely that observations from geographically close areal units and temporally close
time periods tend to have more similar values than units and time periods that are further
apart. Temporal autocorrelation occurs because the data relate to the same set of individuals
over consecutive time periods, while the spatial autocorrelation can arise for a number of
reasons. The first is unmeasured confounding, which occurs when a spatially patterned risk
factor for the response variable is not included in a regression model, and hence its omission
induces unmeasured spatial structure into the response. Other causes of spatial autocorre-
lation include neighbourhood effects, where the behaviours of individuals in an areal unit
are influenced by individuals in adjacent units, and grouping effects where groups of people
with similar behaviours choose to live together. A number of models have been developed to
allow for such spatio-temporal autocorrelation in areal unit data, the majority of which utilise
autocorrelated random effects. Autoregressive (AR) priors are commonly used to represent
the temporal autocorrelation in the random effects, while conditional autoregressive (CAR)
priors (Besag et al. 1991) are most often utilised for modelling the spatial autocorrelation.
Both these models are special cases of a Gaussian Markov Random Field (GMRF), and in-
ference for these models is typically implemented in a Bayesian setting using either Markov
chain Monte Carlo (McMC) simulation or Integrated Nested Laplace Approximations (INLA).

An array of freely available software can now implement purely spatial areal unit models,
ranging from general purpose statistical modelling software such as BUGS (Lunn et al. 2009)
and R-INLA (Rue et al. 2009), to specialist spatial modelling packages in the statistical soft-
ware R (R Core Team 2013) such as CARBayes (Lee 2013), spatcounts (Schabenberger 2009)
and spdep (Bivand 2013). However, due to the flexibility of general purpose software, imple-
menting spatial models, in say BUGS, requires a degree of programming that is non-trivial
for applied researchers. Specialist software for spatio-temporal modelling is much less well
developed, with examples for geostatistical data including spTimer (Bakar and Sahu 2015)
and spBayes (Finley et al. 2015). For areal unit data the surveillance (Paul and Meyer 2016)
package models epidemic data, the plm (Croissant and Millo 2008) and splm (Millo and Pi-
ras 2012) packages model panel data, while the nlme (Pinheiro et al. 2015) and lme4 (Bates
et al. 2015) packages have functionality to model spatial and temporal random effects struc-
tures. However, software to fit a range of spatio-temporal areal unit models with CAR type
autocorrelation structures is not avaiable, which has motivated us to develop the R package
CARBayesST.

The software can fit a number of different spatio-temporal models, which allow the user to
answer different questions about their data within a common software environment. These
models include a spatially varying linear time trends model similar to that proposed by Bernar-
dinelli et al. (1995), a spatial and temporal main effects and interaction model similar to that
proposed by Knorr-Held (2000), the spatially autocorrelated autoregressive time series model
of Rushworth et al. (2014a), and a model with a common temporal trend but varying spatial
surfaces proposed by Napier et al. (2016). The software can also fit more complex spatio-
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temporal structures, including the adaptive smoothing model of Rushworth et al. (2014b) and
a localised smoothing model which is a spatio-temporal extension of Lee and Sarran (2015).
The software has the same syntax and feel as the R package CARBayes for spatial areal unit
modelling, and retains all of its easy-to-use features. These include specifying the spatial
adjacency information via a single matrix (unlike BUGS that requires 3 separate list objects),
fitting models via a one-line function call, and compatibility with CARBayes which allows it
to share the latter’s model summary functionality for interpreting the results. The models
available in this software can be fitted to binomial, Gaussian or Poisson data, and Section 2 in
this vignette summarises the models that can be fitted. Section 3 provides an overview of the
software and its functionality, while Section 4 gives an example of how to apply the software
to simulated data. Finally, Section 5 gives a summary of future work for this package.

2. Spatio-temporal models for areal unit data

This section outlines the class of Bayesian hierarchial models that CARBayesST can fit, and
in all cases inference is based on McMC simulation.

2.1. Data structure and likelihood

The study region comprises a set of k = 1, . . . ,K non-overlapping areal units S = {S1, . . . ,SK},
and data are recorded for each unit for t = 1, . . . , N consecutive time periods. Thus data are
available for a K × N rectangular array with K rows (spatial units) and N columns (time
periods). The response data are denoted by Y = (Y1, . . . ,YN ), where Yt = (Y1t, . . . , YKt)
denotes the vector of observations for all K spatial units for time period t. Also available are
a vector of known offsets O = (O1, . . . ,ON ), where Ot = (O1t, . . . , OKt) denotes the vector
of offsets for time period t. Finally, xkt = (xkt1, . . . , xktp) is a vector of p known covariates for
areal unit k and time period t, and can include factors or continuous variables and a column
of ones for the intercept term. Additionally, non-linear covariate-response relationships can
be handled by including transformations of covariates (e.g. squared) or spline basis functions
(e.g. using ns()). CARBayesST models these data with a generalised linear mixed model,
whose general form is:

Ykt|µkt ∼ f(ykt|µkt, ν2) for k = 1, . . . ,K, t = 1, . . . , N, (1)

g(µkt) = x>ktβ +Okt +Mkt,

β ∼ N(µβ,Σβ).

The vector of regression parameters are denoted by β = (β1, . . . , βp), and a multivariate
Gaussian prior is assumed with mean µβ and diagonal variance matrix Σβ that can be chosen
by the user. The Mkt term is a latent component for areal unit k and time period t, and
the complete set M = (M1, . . . ,MN ), where Mt = (M1t, . . . ,MKt), captures any remaining
spatio-temporal autocorrelation in these data. CARBayesST can fit a number of different
models for Mkt, which are outlined in Section 2.2 below. The package can fit 3 special cases
of the above model, for binomial, Gaussian and Poisson data, and their exact specifications
are given below:

• Binomial - Ykt ∼ Binomial(nkt, θkt) and log(θkt/(1− θkt)) = x>ktβ +Okt +Mkt.
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• Gaussian - Ykt ∼ N(µkt, ν
2) and µkt = x>ktβ +Okt +Mkt.

• Poisson - Ykt ∼ Poisson(µkt) and ln(µkt) = x>ktβ +Okt +Mkt.

2.2. Spatio-temporal models for Mkt

All models in this package induce spatial autocorrelation into the response data Y via the
latent component M, which is achieved by a K × K neighbourhood matrix W = (wkj).
Typically, W contains binary elements, where wkj = 1 if areal units (Sk,Sj) share a common
border (i.e. are spatially close) and is zero otherwise. Additionally, wkk = 0. This means
that for spatially adjacent areal units (Sk,Sj), (Mkt,Mjt) are spatially autocorrelated, where
as values for non-neighbouring areal units are conditionally independent given the remaining
{Mit} values. This binary specification of W based on sharing a common border is the most
commonly used for areal data, but the only requirement by CARBayesST is for W to be
symmetric and contain non-negative elements. Similarly, the model ST.CARanova() uses a
binary N × N temporal neighbourhood matrix D = (dtj), where dtj = 1 if |j − t| = 1 and
dtj = 0 otherwise. CARBayesST can fit the following models which vary in their specification
of M:

• ST.CARlinear() - fits a model similar to the spatially varying linear time trends model
proposed by Bernardinelli et al. (1995).

• ST.CARanova() - fits a model similar to the spatial and temporal main effects and
space-time interaction model proposed by Knorr-Held (2000).

• ST.CARsepspatial() - fits a model similar to the overall temporal trend and separate
spatial surfaces model proposed by Napier et al. (2016). Note, this model can only be
applied to binomial or Poisson data.

• ST.CARar() - fits the spatially autocorrelated autoregressive time series model of Rush-
worth et al. (2014a).

• ST.CARadaptive() - fits the localised smoothing model of Rushworth et al. (2014b)
that is an extension of Rushworth et al. (2014a).

• ST.CARlocalised() - fits the localised smoothing and clustering model that is an ex-
tension of Rushworth et al. (2014a) and Lee and Sarran (2015). Note, this model can
only be applied to binomial or Poisson data.

Full details of each model are given below.
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ST.CARlinear()

The model is a modification of that proposed by Bernardinelli et al. (1995) and is given by

Mkt = β1 + φk + (α+ δk)
(t− t̄)
N

, (2)

φk|φ−k,W ∼ N

(
ρint

∑K
j=1wkjφj

ρint
∑K

j=1wkj + 1− ρint
,

τ2int
ρint

∑K
j=1wkj + 1− ρint

)
,

δk|δ−k,W ∼ N

(
ρslo

∑K
j=1wkjδj

ρslo
∑K

j=1wkj + 1− ρslo
,

τ2slo
ρslo

∑K
j=1wkj + 1− ρslo

)
,

τ2int, τ
2
slo ∼ Inverse-Gamma(a, b),

ρint, ρslo ∼ Uniform(0, 1),

α ∼ N(µα, σ
2
α).

Here t̄ = (1/N)
∑N

t=1 t and thus the modified linear temporal trend covariate is t∗ = (t− t̄)/N
and runs over a centered unit interval. Each areal unit k has its own linear time trend, with
a spatially varying intercept β1 + φk and a spatially varying slope α+ δk. Note, the β1 term
comes from the covariate component x>ktβ in (1). Each set of random effects φ = (φ1, . . . , φK)
and δ = (δ1, . . . , δK) are modelled as spatially autocorrelated by the CAR prior proposed
by Leroux et al. (1999), and are mean centered. Here (ρint, ρslo) are spatial dependence
parameters, with values of one corresponding to strong spatial smoothness that is equivalent
to the intrinsic CAR prior proposed by Besag et al. (1991), while values of zero correspond to
independence. Flat uniform priors on the unit interval are specified for the spatial dependence
parameters (ρint, ρslo), while conjugate inverse-gamma and Gaussian priors are specified for
the random effects variances (τ2int, τ

2
slo) and the overall slope parameter α respectively. The

corresponding hyperparameters (a, b, µα, σ
2
α) can be chosen by the user, and default values

are (a = 0.001, b = 0.001, µα = 0, σ2α = 1000). Alternatively, the dependence parameters
(ρint, ρslo) can be fixed at values in the unit interval [0, 1] rather than being estimated in
the model, by specifying arguments to the ST.CARlinear() function. For example, using
the arguments fix.rho.slo=TRUE, rho.slo=1 sets ρslo = 1 when fitting the model. Finally,
missing (NA) values are allowed in the response data Y for this model.

ST.CARanova()

The model is a modification of that proposed by Knorr-Held (2000), and is given by

Mkt = φk + δt + γkt,

φk|φ−k,W ∼ N

(
ρS
∑K

j=1wkjφj

ρS
∑K

j=1wkj + 1− ρS
,

τ2S
ρS
∑K

j=1wkj + 1− ρS

)
,

δt|δ−t,D ∼ N

(
ρT
∑N

j=1 dtjδj

ρT
∑N

j=1 dtj + 1− ρT
,

τ2T
ρT
∑N

j=1 dtj + 1− ρT

)
,

γkt ∼ N(0, τ2I ),
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τ2S , τ
2
T , τ

2
I ∼ Inverse-Gamma(a, b),

ρS , ρT ∼ Uniform(0, 1).

Here the spatio-temporal autocorrelation is modelled by a common set of spatial random
effects φ = (φ1, . . . , φK) and a common set of temporal random effects δ = (δ1, . . . , δN ), and
both are modelled by the CAR prior proposed by Leroux et al. (1999). Additionally, the model
can incorporate an optional set of independent space-time interactions γ = (γ11, . . . , γKN ),
which can be specified by the argument interaction=TRUE (the default) in the function call.
All sets of random effects are mean centered. Fixed uniform (ρS , ρT ) or conjugate (τ2S , τ

2
T , τ

2
I )

priors are specified for the remaining paramters, and the default specifications for the latter
are (a = 0.001, b = 0.001). Alternatively, in common with the ST.CARlinear() function the
dependence parameters (ρS , ρT ) can be fixed at values in the unit interval [0, 1] rather than
being estimated in the model. Finally, missing (NA) values are allowed in the response data
Y for this model.

ST.CARsepspatial()

The model is a generalisation of that proposed by Napier et al. (2016) and is given by

Mkt = φkt + δt,

φkt|φ−kt,W ∼ N

(
ρS
∑K

j=1wkjφjt

ρS
∑K

j=1wkj + 1− ρS
,

τ2t

ρS
∑K

j=1wkj + 1− ρS

)
,

δt|δ−t,D ∼ N

(
ρT
∑N

j=1 dtjδj

ρT
∑N

j=1 dtj + 1− ρT
,

τ2T
ρT
∑N

j=1 dtj + 1− ρT

)
,

τ21 , . . . , τ
2
N , τ

2
T , ∼ Inverse-Gamma(a, b),

ρS , ρT ∼ Uniform(0, 1),

where φ−k,t = (φ1,t, . . . , φk−1,t, φk+1,t, . . . , φK,t). This model fits an overall temporal trend to
the data δ = (δ1, . . . , δN ) that is common to all areal units, which is augmented with a separate
(uncorrelated) spatial surface φ = (φ1t, . . . , φKt) at each time period t. The overall temporal
trend and each spatial surface are modelled by the CAR prior proposed by Leroux et al. (1999),
and the latter have a common spatial dependence parameter ρS but a temporally-varying
variance parameter τ2t . Thus the collection (τ21 , . . . , τ

2
N ) allows one to examine the extent to

which the magnitude of the spatial variation in the data has changed over time. As with
all other models the random effects are zero mean centered, while flat and conjugate priors
are specified for (ρS , ρT , τ

2
T , τ

2
1 , . . . , τ

2
N ) respectively with (a = 0.001, b = 0.001) being the

default values. Alternatively, in common with the ST.CARlinear() function the dependence
parameters (ρS , ρT ) can be fixed at values in the unit interval [0, 1] rather than being estimated
in the model.
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ST.CARar()

The model is that proposed by Rushworth et al. (2014a), and is given by

Mkt = φkt, (3)

φt|φt−1 ∼ N
(
ρTφt−1, τ

2Q(W, ρS)−1
)

t = 2, . . . , N,

φ1 ∼ N
(
0, τ2Q(W, ρS)−1

)
,

τ2 ∼ Inverse-Gamma(a, b),

ρS , ρT ∼ Uniform(0, 1).

In this model φt = (φ1t, . . . , φKt) is the vector of random effects for time period t, which
evolve over time via a multivariate first order autoregressive process with temporal autore-
gressive parameter ρT . The temporal autocorrelation is thus induced via the mean ρTφt−1,
while spatial autocorrelation is induced by the varince τ2Q(W, ρS)−1. This precision matrix
corresponds to the CAR prior proposed by Leroux et al. (1999) and is given by

Q(W, ρS) = ρS [diag(W1)−W] + (1− ρS)I,

where 1 is the K × 1 vector of ones while I is the K × K identity matrix. The model
φ1 ∼ N

(
0, τ2Q(W, ρS)−1

)
is equivalent to the full conditional specification for φ given in the

ST.CARanova() section. As with all other models the random effects are zero mean centered,
while flat and conjugate priors are specified for (ρS , ρT , τ

2) respectively with (a = 0.001, b =
0.001) being the default values. Alternatively, in common with the ST.CARlinear() function
the dependence parameters (ρS , ρT ) can be fixed at values in the unit interval [0, 1] rather
than being estimated in the model. Finally, missing (NA) values are allowed in the response
data Y for this model.

ST.CARadaptive()

The model is that proposed by Rushworth et al. (2014b), and is an extension of ST.CARar()
proposed by Rushworth et al. (2014a). It has the same autoregressive random effects structure
as ST.CARar(), namely:

Mkt = φkt, (4)

φt|φt−1 ∼ N
(
ρTφt−1, τ

2Q(W, ρS)−1
)

t = 2, . . . , N,

φ1 ∼ N
(
0, τ2Q(W, ρS)−1

)
,

τ2 ∼ Inverse-Gamma(a, b),

ρS , ρT ∼ Uniform(0, 1).

However, this random effects structure assumes there is a single level of spatial dependence in
the data, which is controlled by ρS . Thus all pairs of adjacent areal units will have strongly
autocorrelated random effets if ρS is close to one, while no such spatial dependence will exist
anywhere if ρS is close to zero. However, real data may exhibit spatially varying dependences,
as two adjacent areal units may exhibit similar values suggesting a value of ρS close to one,
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while another pair may exhibit different values suggesting a value of ρS close to zero.

We allow for localised residual spatial autocorrelation by allowing spatially neighbouring ran-
dom effects to be correlated (inducing smoothness) or conditionally independent (no smooth-
ing), which is achieved by modelling the non-zero elements of the neighbourhood matrix W
as unknown parameters rather than fixed constants equal to one. These adjacency parame-
ters are collectively denoted by w+ = {wkj |k ∼ j}, where k ∼ j means areas (k, j) share a
common border. Estimating wkj ∈ w+ as equal to zero means (φkt, φjt) are conditionally in-
dependent for all time periods t given the remaining random effects, while estimating it close
to one means they are correlated. The adjacency parameters in w+ are each modelled on
the unit interval, by assuming a multivariate Gaussian prior distribution on the transformed
scale v+ = log (w+/(1−w+)). This prior is a shrinkage model with a constant mean µ and
a diagonal variance matrix with variance parameter ζ2, and is given by

f(v+|ζ2, µ) ∝ exp

− 1

2τ2w

 ∑
vik∈v+

(vik − µ)2

 , (5)

τ2w ∼ Inverse-Gamma(a, b).

The prior distribution for v+ assumes that the degree of smoothing between pairs of adjacent
random effects is not spatially dependent, which results from the work of Rushworth et al.
(2014b) that shows poor estimation performance when v+ (and hence w+) is assumed to
be spatially autocorrelated. Under small values of τ2w the elements of v+ are shrunk to µ,
and here we follow the work of Rushworth et al. (2014b) and fix µ = 15 because it avoids
numerical issues when transforming between v+ and w+ and implies a prior preference for
values of wkj close to 1. That is as τ2w → 0 the prior becomes the global smoothing model
ST.CARar(). As with the other models the default values for the inverse-gamma prior for τ2w
are (a = 0.001, b = 0.001). Alternatively, it is possible to fix ρS using the rhofix argument,
e.g. rhofix=1 fixes ρS = 1, so that globally the spatial correlation is strong and is altered
locally by the estimates of w+. For further details see Rushworth et al. (2014b).

ST.CARlocalised()

The model extends ST.CARar() proposed by Rushworth et al. (2014a) and the localised
smoothing and clustering model of Lee and Sarran (2015). In common with ST.CARadaptive(),
this model allows for localised spatio-temporal autocorrelation, in that some pairs of obser-
vations from spatially or temporal adjacent areal units will have similar values (correlation)
while others will have large differences between their values (step-changes, no correlation).
This model captures these step-changes via the mean function, where as ST.CARadaptive()

captured then via the correlation structure (via W). Model ST.CARlocalised() is given by
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Mkt = λZkt
+ φkt, (6)

φt|φt−1 ∼ N
(
ρTφt−1, τ

2Q(W)−
)

t = 2, . . . , N,

φ1 ∼ N
(
0, τ2Q(W)−

)
,

τ2 ∼ Inverse-Gamma(a, b),

ρT ∼ Uniform(0, 1).

The random effects φ = (φ1, . . . ,φT ) are modelled as a simplification of the ST.CARar()

model with ρS = 1, which corresponds to the intrinsic CAR model proposed by Besag et al.
(1991). Note, for this model the inverse Q(W)−1 does not exist as the precision matrix is
singular. These random effects capture the globally smooth spatio-temporal autocorrelation
in the data. The other component in the model is a piecewise constant clustering or intercept
component λZkt

. Thus spatially and temporally adjacent data points (Ykt, Yjs) will be similar
(autocorrelated) if they are in the same cluster or intercept, that is if λZkt

= λZjs , but exhibit
a step-change if they are estimated to be in different clusters, that is if λZkt

6= λZjs . The
piecewise constant intercept or clustering component comprises at most G distinct levels,
making this component a piecewise constant intercept term. The G levels are ordered via the
prior specification:

λj ∼ Uniform(λj−1, λj+1) for j = 1, . . . , G, (7)

where λ0 = −∞ and λG+1 = ∞. Here Zkt ∈ {1, . . . , G} and controls the assignment of the
(k, t)th data point to one of the G intercept levels. A penalty based approach is used to model
Zkt, where G is chosen larger than necessary and a penalty prior is used to shrink it to the
middle intercept level. This middle level is G∗ = (G + 1)/2 if G is odd and G∗ = G/2 if
G is even, and this penalty ensures that Zkt is only in risk class 1 or G if supported by the
data. Thus, G is the maximum number of distinct intercept terms allowed in the model and
is not the actual number of intercept terms estimated in the model. The allocation prior is
independent across areal units but correlated in time, and is given by:

f(Zkt|Zk,t−1) =
exp(−δ[(Zkt − Zk,t−1)2 + (Zkt −G∗)2])∑G
r=1 exp(−δ[(r − Zk,t−1)2 + (r −G∗)2])

for t = 2, . . . , N,

f(Zk1) =
exp(−δ(Zk1 −G∗)2)∑G
r=1 exp(−δ(r −G∗)2)

,

δ ∼ Uniform(1,m). (8)

Temporal autocorrelation is induced by the (Zkt − Zk,t−1)2 component of the penalty, while
the (Zkt − G∗)2 component penalises class indicators Zkt towards the middle risk class G∗.
The size of this penalty and hence the amount of smoothing that is imparted on Z is controlled
by δ, which is assigned a uniform prior. The default value for m = 10.

2.3. Inference

All models in this package are fitted in a Bayesian setting using Markov chain Monte Carlo
simulation. A combination of Gibbs sampling (when the appropriate full conditional distri-
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butions are standard statistical distributions) and Metropolis / Metropolis-Hastings steps are
used, and the majority of the latter use simple random walk proposals. The overall functions
that implement the MCMC algorithms are written in R, while the computationally intensive
updating steps are written as computationally efficient C++ routines using the R package
Rcpp (Eddelbuettel and Francois 2011). Additionally, the sparsities of the neighbourhood
matrices W and D are utilised via their triplet form within the algorithms, to make the
software more computationally efficient.

3. Obtaining and using the software

3.1. Obtaining the software

CARBayesST can be downloaded from the Comprehensive R Archive Network (CRAN,
http://cran.r-project.org/ ) for Windows, Linux and Apple platforms, and requires R (≥ 3.0.0)
and depends on packages MASS (Venables and Ripley 2002), and Rcpp (≥ 0.11.5). It also
imports functionality from the coda (Plummer et al. 2006), spam (Furrer and Sain 2010),
stats, truncdist (Novomestky and Nadarajah 2012) and utils packages. Once installed, CAR-
BayesST can be loaded using the command

> library(CARBayesST)

The functionality required from the above packages for CARBayesST to work are automat-
ically loaded by the above call, but a complete spatial analysis includes many features in
addition to running models. These include reading in and formatting shapefiles and data,
creating the neighbourhood matrix W, and plotting the results of the modelling, all of which
require a number of other packages. Thus you may also find loading the following packages
useful: CARBayes, maptools (Bivand and Lewin-Koh 2015), shapefiles (Stabler 2013), sp
(Bivand and Gomez-Rubio 2013), spdep.

3.2. Using the software

The software can fit the six main models: ST.CARlinear(), ST.CARanova(), ST.CARsepspatial(),
ST.CARar() , ST.CARadaptive() ST.CARlocalised(), and their mathematical details are
given in the previous section. Full details of the exact arguments required for each function
are given in the helpfiles accompanying this package, but a summary of the main arguments
requried to run the models is given below.

• formula - A formula for the covariate part of the model using the syntax of the lm()

function. Offsets can be included here using the offset() function. The response and
each covariate should be vectors of length KN × 1, where each vector is ordered so that
the first K data points are the set of all K spatial locations at time 1, the next K are
the set of spatial locations for time 2 and so on.

• family - The likelihood model which must be one of ‘binomial’, ‘Gaussian’ or
‘Poisson’.
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• trials - A vector the same length as the response containing the total number of trials
for each area and time period. Only used if family=‘binomial’.

• W - A K ×K neighbourhood matrix, which must be symmetric and non-negative. Typ-
ically a binary specification is used, where the kjth element equals one if areas (Sj ,Sk)
are spatially close (e.g. share a common border) and is zero otherwise. This matrix can
be created from a shapefile and data frame using functionality from the CARBayes and
spdep packages, see the vignette for CARBayes for an example of how to achieve this.

• burnin - The number of McMC samples to discard as the burnin period.

• n.sample - The number of McMC samples to generate.

• thin - The level of thinning to apply to the McMC samples to reduce their temporal
autocorrelation. Defaults to 1 (no thinning).

When a model has been run the results can be summarised using the print() function, which
gives a similar model summary to that provided by the equivalent function in CARBayes.
The fitted model object from each of the six models returns a carbayesST list object with
the following components.

• summary.results - A summary table of selected parameters that is presented in the
print function. For each parameter the table includes the posterior median (Median) and
95% credible interval (2.5%, 97.5%), the number of samples generated (n.sample), the
acceptance rate for the Markov chain (% accept), the effective number of independent
samples using the function effectiveSize() from the coda package (n.effective),
and the convergence Z-score diagnostic (convergence is suggested by the statistic being
within the range (-1.96, 1.96)) proposed by Geweke (1992) and implemented in the coda
package (Geweke.diag).

• samples - A list containing the McMC samples from the model. Each element in the list
is an mcmc matrix object from the coda package, where each column relates to a single
parameter. The names of the elements in this list correspond to the parameter names in
this vignette. For example, for the ST.CARanova() model the (tau2, rho) elements of
the list have columns ordered as (τ2S , τ

2
T , τ

2
I ) (the latter only if interaction=TRUE) and

(ρS , ρT ) respectively. Finally, each model returns samples from the posterior distribution
of the fitted values for each data point (fitted).

• fitted.values - A vector of fitted values for each area and time period in the same
order as the data Y.

• residuals - A vector of residuals for each area and time period in the same order as
the data Y.

• modelfit - Model fit criteria including the Deviance Information Criterion (DIC, Spiegel-
halter et al. 2002), the effective number of parameters in the model (p.d), the Log
Marginal Predictive Likelihood (LMPL, Congdon 2005), and the Watanabe-Akaike In-
formation Criterion (WAIC, Watanabe 2010) and its corresponding estimated number
of effective parameters (p.w).
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• accept The acceptance probabilities for the parameters.

• localised.structure - This element is NULL except for the models ST.CARadaptive()
and ST.CARlocalised(). For ST.CARadaptive() this element is a list with 2 K ×K
matrices, Wmedian and W99 summarising the estimated adjacency relationships. Wmedian
contains the posterior median for each wkj element estimated in the model for adjacent
areal units, while W99 contains binary indicator variables for whether P(wjk < 0.5|Y) >
0.99. For both matrices, elements corresponding to non-adjacent pairs of areas have NA

values. For ST.CARlocalised() this element is a vector of length KN , and gives the
posterior median class (Zkt value) that each data point is assigned to. This vector is in
the same order as the data Y.

• formula - The formula (as a text string) for the covariate and offset part of the model.

• model- A text string describing the model that has been fitted.

• X - The design matrix of covariates inherited from the formula argument.

Additionally, the CARBayes functions summarise.samples() and summarise.lincomb() can
be applied to carbayesST model objects to summarise their results.

4. Simulation example

This section presents a short simulation example, to illustrate both how to use the software
to fit a model and the appropriateness of the model fitting algorithm. The example here is
for the ST.CARanova() model. We assume here that the interaction terms γkt are absent
and that the data come from a Poisson likelihood. Similar simulated examples can easiliy be
created for the other models by adapting the code below.

4.1. Data generation

Consider a spatial region comprising K = 100 areal units on a regular 10×10 grid and N = 10
consecutive time periods. Such a grid can be constructed from the code

> x.easting <- 1:10

> x.northing <- 1:10

> Grid <- expand.grid(x.easting, x.northing)

> K <- nrow(Grid)

> N <- 10

> N.all <- N * K

A binary 100 × 100 spatial neighbourhood matrix W can be constructred for this spatial
region based on (rook) adjacency using the code

> W <-array(0, c(K,K))

> for(i in 1:K)

+ {

+ for(j in 1:K)
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+ {

+ temp <- (Grid[i,1] - Grid[j,1])^2 + (Grid[i,2] - Grid[j,2])^2

+ if(temp==1) W[i,j] <- 1

+ }

+ }

whilst a binary 10 × 10 temporal neighbourhood matrix D can be constructed in a similar
manner using

> D <-array(0, c(N,N))

> for(i in 1:N)

+ {

+ for(j in 1:N)

+ {

+ if(abs((i-j))==1) D[i,j] <- 1

+ }

+ }

From this the precision matrix can be computed for the multivariate Gaussian representation
of the spatial random effects φ from (Leroux et al. 1999) as follows:

> Q.W <- 0.99 * (diag(apply(W, 2, sum)) - W) + 0.01 * diag(rep(1,K))

where here ρS = 0.99. This matrix can then be inverted and a sample of random effects
generated (assuming τ2S = 0.01) using the code

> Q.W.inv <- solve(Q.W)

> phi <- mvrnorm(n=1, mu=rep(0,K), Sigma=(0.01 * Q.W.inv))

The temporal random effects under the ST.CARanova() model have the same functional form
but depend on D rather than W, and thus a realisation can be generated analogously using
the code

> Q.D <- 0.99 * (diag(apply(D, 2, sum)) - D) + 0.01 * diag(rep(1,N))

> Q.D.inv <- solve(Q.D)

> delta <- mvrnorm(n=1, mu=rep(0,N), Sigma=(0.01 * Q.D.inv))

Assuming no offset, an intercept term of 4 and no covariates, the mean function for the Poisson
likelihood for all KN = 1000 spatio-temporal observations and the simulated Poisson counts
can be computed as

> phi.long <- rep(phi, N)

> delta.long <- kronecker(delta, rep(1,K))

> LP <- 4 + phi.long + delta.long

> mean <- exp(LP)

> Y <- rpois(n=N.all, lambda=mean)
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Figure 1: Scatterplot of the true mean values that generated the data and the fitted values
from the model. The red line is that of equality.

4.2. Running the model

The ST.CARanova() model can then be applied to these data using the following code.

R> model <- ST.CARanova(formula=Y~1, family="poisson", W=W, interaction=FALSE,

+ burnin=10000, n.sample=60000, thin=10, verbose=FALSE)

In the code above inference is based on 5,000 MCMC samples, which were generated from a
single Markov chain that was run for 60,000 iterations with a 10,000 burn-in period and sub-
sequently thinned by 10 to reduce the temporal autocorrelation. The fitted values (posterior
means) are plotted in Figure 1 against the true mean values that generated the Poisson count
data (mean), where the red line is the line of equality. The code to generate the plot is below.
As you can see the fitted values are close to the true values.

plot(fitted, model$fitted.values, pch=19, xlab="True values",

+ ylab="Fitted values from the model")

abline(0,1, col="red", lwd=2)

5. Future work

This vignette is for version 2.2 of CARBayesST, and future version of the software (and
hence the vignette) will come out in due course. These future versions will contain a larger
suit of spatio-temporal areal unit models, a more comprehensive vignette with fully worked
examples, and more functionality for summarising the results.
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