This is a short guide to adapting existing algorithms and problem instances for running an experiment using CAISEr. In this document, we cover:
A general description of the CAISE methodology is available in our paper.1
As stated in the documentation of both run_experiment
and calc_nreps2
, each instance must be a named list containing all relevant parameters that define the problem instance. This list must contain at least the field instance$FUN
, with the name of the problem instance function, that is, a routine that calculates \(y = f(x)\). If the instance requires additional parameters, these must also be provided as named fields. Each instance can also have an alias
, a unique name to distinguish it from other instances. If no alias is provided, the name of the function (instance$FUN
) is used as the instance ID.
The Instance.list
parameter for run_experiment()
is simply a vector of these instance lists.
To illustrate how to adapt existing implementations to this structure, we assume that we are interested in comparing two multiobjective optimization algorithms for a (hypothetical) problem class that is well-represented by problems UF1 - UF7 (in dimensions between 10 and 40) from package smoof, . For this implementation to work with the MOEADr::moead()
routine (see next section) some manipulation is necessary, but the instance list in this case is simply a list with each element containing the name of the routine as field $FUN
(since all function names are different, no need for aliases).
suppressPackageStartupMessages(library(smoof))
suppressPackageStartupMessages(library(MOEADr))
### Build function names (instances: UF1 - UF7, dimensions 10 - 40)
fname <- paste0("UF_", 1:7)
dims <- c(10:40)
allfuns <- expand.grid(fname, dims, stringsAsFactors = FALSE)
# Assemble instances list
Instance.list <- vector(nrow(allfuns), mode = "list")
for (i in 1:length(Instance.list)){
Instance.list[[i]]$FUN <- paste0(allfuns[i,1], "_", allfuns[i,2])
}
### Build the functions listed in Instance.list
# (so that they can be properly used)
for (i in 1:nrow(allfuns)){
assign(x = Instance.list[[i]]$FUN,
value = MOEADr::make_vectorized_smoof(prob.name = "UF",
dimensions = allfuns[i, 2],
id = as.numeric(strsplit(allfuns[i, 1], "_")[[1]][2])))
}
We will use the MOEA/D implementation available in the MOEADr package as our base algorithm, and assume that we are interested in comparing the performance of two versions of this algorithm: the original MOEA/D and the MOEA/D-DE (see the documentation of MOEADr and references therein for details of these methods) as solvers of the hypothetical problem class represented by the available test instances. The performance of each algorithm on each instance will be measured according to an indicator known as Inverted Generational Distance (IGD - details here), for which smaller = better.
As described in the documentation of both run_experiment()
and calc_nreps2()
, an algorithm
must contain an algorithm$FUN
field (the name of the function that calls the algorithm) and any other elements/parameters that algorithm$FUN
requires (e.g., stop criteria, operator names and parameters, etc.). An additional field, algorithm$alias
, can be used to provide the algorithm with a unique identifier.
Supposing that the list in algorithm
has fields algorithm$FUN = myalgo
, algorithm$par1 = "a"
, algorithm$par2 = 5
, then the function in algorithm$FUN
must have the following structure:
myalgo <- function(par1, par2, instance, ...){
# do stuff
return(results)
}
That is, it must be able to run if called as:
# remove '$FUN' and '$alias' field from list of arguments
# and include the problem definition as field 'instance'
myargs <- algorithm[names(algorithm) != "FUN"]
myargs <- myargs[names(myargs) != "alias"]
myargs$instance <- instance
# call 'algorithm$FUN' with the arguments in 'myargs'
do.call(algorithm$FUN, args = myargs)
Finally, the algorithm$FUN
routine must return a list object containing (at least) the performance value of the final solution obtained after a given run, in a field named value
(e.g., result$value
) .
To build the algorithm functions to be used in run_experiment()
, we encapsulate (almost) all algorithm parameters within a myalgo()
function, which receives only two inputs: the instance to be solved (i.e., one element from Instance.list
) and the specification of which version of the algorithm is to be run (the original MOEA/D or the MOEA/D-DE).
# Prepare algorithm function to be used in run_experiment():
myalgo <- function(type, instance){
# Input parameters:
# - type (variant to use: "original" or "moead.de")
# - instance (instance to be solved, e.g., instance = Instance.list[[i]])
# All other parameters are set internally
## Extract instance information to build the MOEADr problem format
fdef <- unlist(strsplit(instance$FUN, split = "_"))
uffun <- smoof::makeUFFunction(dimensions = as.numeric(fdef[3]),
id = as.numeric(fdef[2]))
fattr <- attr(uffun, "par.set")
prob.dim <- fattr$pars$x$len
## Build MOEADr problem list
problem <- list(name = instance$FUN,
xmin = fattr$pars$x$lower,
xmax = fattr$pars$x$upper,
m = attr(uffun, "n.objectives"))
## Load presets for the algorithm provided in input 'type' and
## modify whatever is needed for this particular experiment
algo.preset <- MOEADr::preset_moead(type)
algo.preset$decomp$H <- 99 # <-- set population size
algo.preset$stopcrit[[1]]$name <- "maxeval" # <-- type of stop criterion
algo.preset$stopcrit[[1]]$maxeval <- 2000 * prob.dim # stop crit.
poly.ind <- which(sapply(algo.preset$variation,
function(x){x$name == "polymut"}))
algo.preset$variation[[poly.ind]]$pm <- 1 / prob.dim # <--- pm = 1/d
## Run algorithm on "instance"
out <- MOEADr::moead(preset = algo.preset, problem = problem,
showpars = list(show.iters = "none"))
## Read reference data to calculate the IGD
Yref <- as.matrix(read.table(paste0("../inst/extdata/pf_data/",
fdef[1], fdef[2], ".dat")))
IGD = MOEADr::calcIGD(Y = out$Y, Yref = Yref)
## Return IGD as field "value" in the output list
return(list(value = IGD))
}
Finally, the Algorithm.list
parameter must be assembled as a list of algorithm objects (each containing fields $FUN
, $alias
and, in this case, $type
).
# Assemble Algorithm.list. Notice that we need to provide an alias for each
# method, since both algorithms have the same '$FUN' argument.
Algorithm.list <- list(list(FUN = "myalgo",
alias = "Algorithm 1",
type = "original"),
list(FUN = "myalgo",
alias = "Algorithm 2",
type = "moead.de"))
With the definitions above it is possible now to run an experiment using the iterative sample size determination implemented in CAISEr. For that, all we have to do is define the desired experimental parameters and use run_experiment()
:
#library(CAISEr)
my.results <- run_experiment(Instance.list = Instance.list,
Algorithm.list = Algorithm.list,
power = 0.8, # Desired power: 80%
d = 0.5, # to detect differences greater
# than 0.5 standard deviations
sig.level = 0.05, # at a 95% confidence level.
se.max = 0.05, # Measurement error: 5%
dif = "perc", # on the paired percent
# differences of means,
method = "boot", # calculated using bootstrap.
nstart = 15, # Start with 20 runs/algo/inst
nmax = 200, # and do no more than 200 runs/inst
seed = 1234) # PRNG seed (for reproducibility)
After that we can interrogate the results and perform inference, if we are so inclined. For instance, we can check if our sample of paired differences in performance is (at least approximately) Normal, so that we can assume a Normal sampling distribution of the means and use a t test with a clean conscience:
# Take a look at the data summary:
print(my.results)
## $Configuration
## $Configuration[[1]]
## run_experiment
##
## $Configuration$Instance.list
## Instance.list
##
## $Configuration$Algorithm.list
## Algorithm.list
##
## $Configuration$power
## [1] 0.8
##
## $Configuration$d
## [1] 0.5
##
## $Configuration$sig.level
## [1] 0.05
##
## $Configuration$se.max
## [1] 0.05
##
## $Configuration$dif
## [1] "perc"
##
## $Configuration$method
## [1] "boot"
##
## $Configuration$nstart
## [1] 15
##
## $Configuration$nmax
## [1] 200
##
## $Configuration$seed
## [1] 1234
##
##
## $data.raw
## Algorithm Instance Observation
## 1 Algorithm 1 UF_4_13 0.06668496
## 2 Algorithm 1 UF_4_13 0.07174461
## 3 Algorithm 1 UF_4_13 0.06519550
## 4 Algorithm 1 UF_4_13 0.05780341
## 5 Algorithm 1 UF_4_13 0.06114531
## 6 Algorithm 1 UF_4_13 0.05794732
## 7 Algorithm 1 UF_4_13 0.06176148
## 8 Algorithm 1 UF_4_13 0.06379853
## 9 Algorithm 1 UF_4_13 0.06544827
## 10 Algorithm 1 UF_4_13 0.06096137
## 11 Algorithm 1 UF_4_13 0.06458852
## 12 Algorithm 1 UF_4_13 0.06307042
## 13 Algorithm 1 UF_4_13 0.06124503
## 14 Algorithm 1 UF_4_13 0.06576863
## 15 Algorithm 1 UF_4_13 0.06729768
## 16 Algorithm 2 UF_4_13 0.05345008
## 17 Algorithm 2 UF_4_13 0.05834417
## 18 Algorithm 2 UF_4_13 0.06173589
## 19 Algorithm 2 UF_4_13 0.05767850
## 20 Algorithm 2 UF_4_13 0.05557940
## 21 Algorithm 2 UF_4_13 0.04882276
## 22 Algorithm 2 UF_4_13 0.05724819
## 23 Algorithm 2 UF_4_13 0.04741506
## 24 Algorithm 2 UF_4_13 0.05437620
## 25 Algorithm 2 UF_4_13 0.05197991
## 26 Algorithm 2 UF_4_13 0.05434006
## 27 Algorithm 2 UF_4_13 0.05372360
## 28 Algorithm 2 UF_4_13 0.05173860
## 29 Algorithm 2 UF_4_13 0.05166588
## 30 Algorithm 2 UF_4_13 0.06224151
## 31 Algorithm 1 UF_2_29 0.04034199
## 32 Algorithm 1 UF_2_29 0.08482150
## 33 Algorithm 1 UF_2_29 0.02928047
## 34 Algorithm 1 UF_2_29 0.03286747
## 35 Algorithm 1 UF_2_29 0.02816334
## 36 Algorithm 1 UF_2_29 0.07032420
## 37 Algorithm 1 UF_2_29 0.07918861
## 38 Algorithm 1 UF_2_29 0.07324642
## 39 Algorithm 1 UF_2_29 0.08379163
## 40 Algorithm 1 UF_2_29 0.03008440
## 41 Algorithm 1 UF_2_29 0.10424497
## 42 Algorithm 1 UF_2_29 0.02883648
## 43 Algorithm 1 UF_2_29 0.02916721
## 44 Algorithm 1 UF_2_29 0.03335048
## 45 Algorithm 1 UF_2_29 0.03984722
## 46 Algorithm 1 UF_2_29 0.03055968
## 47 Algorithm 1 UF_2_29 0.07853463
## 48 Algorithm 1 UF_2_29 0.04703420
## 49 Algorithm 1 UF_2_29 0.06217556
## 50 Algorithm 1 UF_2_29 0.03434102
## 51 Algorithm 1 UF_2_29 0.03060020
## 52 Algorithm 1 UF_2_29 0.03262545
## 53 Algorithm 1 UF_2_29 0.04979062
## 54 Algorithm 1 UF_2_29 0.18867565
## 55 Algorithm 1 UF_2_29 0.04288892
## 56 Algorithm 1 UF_2_29 0.02914426
## 57 Algorithm 1 UF_2_29 0.07506079
## 58 Algorithm 1 UF_2_29 0.03035634
## 59 Algorithm 1 UF_2_29 0.03221542
## 60 Algorithm 1 UF_2_29 0.09093811
## 61 Algorithm 1 UF_2_29 0.08148270
## 62 Algorithm 1 UF_2_29 0.03151895
## 63 Algorithm 1 UF_2_29 0.09164118
## 64 Algorithm 1 UF_2_29 0.02895830
## 65 Algorithm 1 UF_2_29 0.07594967
## 66 Algorithm 1 UF_2_29 0.08147212
## 67 Algorithm 1 UF_2_29 0.07022693
## 68 Algorithm 1 UF_2_29 0.07324860
## 69 Algorithm 1 UF_2_29 0.04400419
## 70 Algorithm 1 UF_2_29 0.05548376
## 71 Algorithm 1 UF_2_29 0.07330740
## 72 Algorithm 1 UF_2_29 0.14449624
## 73 Algorithm 1 UF_2_29 0.07168279
## 74 Algorithm 1 UF_2_29 0.09493847
## 75 Algorithm 1 UF_2_29 0.02709823
## 76 Algorithm 1 UF_2_29 0.03358611
## 77 Algorithm 1 UF_2_29 0.03103623
## 78 Algorithm 1 UF_2_29 0.06128940
## 79 Algorithm 1 UF_2_29 0.02872702
## 80 Algorithm 1 UF_2_29 0.03138152
## 81 Algorithm 1 UF_2_29 0.08037487
## 82 Algorithm 1 UF_2_29 0.05041394
## 83 Algorithm 1 UF_2_29 0.07927069
## 84 Algorithm 1 UF_2_29 0.03112332
## 85 Algorithm 1 UF_2_29 0.02573133
## 86 Algorithm 1 UF_2_29 0.04781369
## 87 Algorithm 1 UF_2_29 0.03207411
## 88 Algorithm 1 UF_2_29 0.09784276
## 89 Algorithm 1 UF_2_29 0.04085161
## 90 Algorithm 1 UF_2_29 0.09050657
## 91 Algorithm 1 UF_2_29 0.03756956
## 92 Algorithm 1 UF_2_29 0.03150457
## 93 Algorithm 1 UF_2_29 0.02680941
## 94 Algorithm 1 UF_2_29 0.09625425
## 95 Algorithm 1 UF_2_29 0.04165846
## 96 Algorithm 2 UF_2_29 0.03521839
## 97 Algorithm 2 UF_2_29 0.03080864
## 98 Algorithm 2 UF_2_29 0.03017560
## 99 Algorithm 2 UF_2_29 0.04653534
## 100 Algorithm 2 UF_2_29 0.03637654
## 101 Algorithm 2 UF_2_29 0.03905905
## 102 Algorithm 2 UF_2_29 0.03799805
## 103 Algorithm 2 UF_2_29 0.04376631
## 104 Algorithm 2 UF_2_29 0.03458192
## 105 Algorithm 2 UF_2_29 0.03054443
## 106 Algorithm 2 UF_2_29 0.03664902
## 107 Algorithm 2 UF_2_29 0.03471599
## 108 Algorithm 2 UF_2_29 0.03215568
## 109 Algorithm 2 UF_2_29 0.04999694
## 110 Algorithm 2 UF_2_29 0.02968448
## 111 Algorithm 1 UF_5_28 0.31418503
## 112 Algorithm 1 UF_5_28 0.36043217
## 113 Algorithm 1 UF_5_28 0.40764830
## 114 Algorithm 1 UF_5_28 0.38299393
## 115 Algorithm 1 UF_5_28 0.23798117
## 116 Algorithm 1 UF_5_28 0.40111422
## 117 Algorithm 1 UF_5_28 0.38956883
## 118 Algorithm 1 UF_5_28 0.31733214
## 119 Algorithm 1 UF_5_28 0.35470902
## 120 Algorithm 1 UF_5_28 0.39298365
## 121 Algorithm 1 UF_5_28 0.39080700
## 122 Algorithm 1 UF_5_28 0.39558147
## 123 Algorithm 1 UF_5_28 0.48442203
## 124 Algorithm 1 UF_5_28 0.29354717
## 125 Algorithm 1 UF_5_28 0.34466974
## 126 Algorithm 1 UF_5_28 0.38568634
## 127 Algorithm 1 UF_5_28 0.34445052
## 128 Algorithm 1 UF_5_28 0.47067123
## 129 Algorithm 1 UF_5_28 0.40286730
## 130 Algorithm 1 UF_5_28 0.37579615
## 131 Algorithm 1 UF_5_28 0.43448529
## 132 Algorithm 1 UF_5_28 0.38917758
## 133 Algorithm 1 UF_5_28 0.41727851
## 134 Algorithm 1 UF_5_28 0.32752972
## 135 Algorithm 1 UF_5_28 0.40069034
## 136 Algorithm 1 UF_5_28 0.38819321
## 137 Algorithm 1 UF_5_28 0.45456313
## 138 Algorithm 1 UF_5_28 0.38114293
## 139 Algorithm 1 UF_5_28 0.43110816
## 140 Algorithm 1 UF_5_28 0.45454948
## 141 Algorithm 1 UF_5_28 0.23506711
## 142 Algorithm 1 UF_5_28 0.45456657
## 143 Algorithm 1 UF_5_28 0.38918752
## 144 Algorithm 1 UF_5_28 0.38420066
## 145 Algorithm 1 UF_5_28 0.23589024
## 146 Algorithm 1 UF_5_28 0.44399440
## 147 Algorithm 1 UF_5_28 0.32487443
## 148 Algorithm 1 UF_5_28 0.23812081
## 149 Algorithm 1 UF_5_28 0.26140033
## 150 Algorithm 1 UF_5_28 0.43051879
## 151 Algorithm 1 UF_5_28 0.22618751
## 152 Algorithm 1 UF_5_28 0.36089234
## 153 Algorithm 1 UF_5_28 0.30742528
## 154 Algorithm 1 UF_5_28 0.36308815
## 155 Algorithm 1 UF_5_28 0.38963148
## 156 Algorithm 1 UF_5_28 0.21119894
## 157 Algorithm 1 UF_5_28 0.34360884
## 158 Algorithm 1 UF_5_28 0.37859872
## 159 Algorithm 1 UF_5_28 0.26323488
## 160 Algorithm 1 UF_5_28 0.23912361
## 161 Algorithm 1 UF_5_28 0.34086502
## 162 Algorithm 1 UF_5_28 0.38979188
## 163 Algorithm 1 UF_5_28 0.38228217
## 164 Algorithm 1 UF_5_28 0.22906087
## 165 Algorithm 1 UF_5_28 0.25137446
## 166 Algorithm 1 UF_5_28 0.34248434
## 167 Algorithm 1 UF_5_28 0.34572988
## 168 Algorithm 1 UF_5_28 0.57577792
## 169 Algorithm 1 UF_5_28 0.28831185
## 170 Algorithm 1 UF_5_28 0.35109824
## 171 Algorithm 1 UF_5_28 0.38267523
## 172 Algorithm 1 UF_5_28 0.48658894
## 173 Algorithm 1 UF_5_28 0.38962900
## 174 Algorithm 1 UF_5_28 0.34166645
## 175 Algorithm 1 UF_5_28 0.41456356
## 176 Algorithm 1 UF_5_28 0.42187494
## 177 Algorithm 1 UF_5_28 0.31688655
## 178 Algorithm 1 UF_5_28 0.40358298
## 179 Algorithm 1 UF_5_28 0.32524689
## 180 Algorithm 1 UF_5_28 0.43394548
## 181 Algorithm 1 UF_5_28 0.28633755
## 182 Algorithm 1 UF_5_28 0.27371692
## 183 Algorithm 1 UF_5_28 0.19127030
## 184 Algorithm 1 UF_5_28 0.44000926
## 185 Algorithm 1 UF_5_28 0.36145331
## 186 Algorithm 1 UF_5_28 0.32725276
## 187 Algorithm 1 UF_5_28 0.40826109
## 188 Algorithm 1 UF_5_28 0.39171818
## 189 Algorithm 1 UF_5_28 0.45867835
## 190 Algorithm 1 UF_5_28 0.30763754
## 191 Algorithm 2 UF_5_28 0.65106130
## 192 Algorithm 2 UF_5_28 0.59313343
## 193 Algorithm 2 UF_5_28 0.10603429
## 194 Algorithm 2 UF_5_28 0.67314213
## 195 Algorithm 2 UF_5_28 0.83807464
## 196 Algorithm 2 UF_5_28 0.99860606
## 197 Algorithm 2 UF_5_28 0.51336319
## 198 Algorithm 2 UF_5_28 0.44791345
## 199 Algorithm 2 UF_5_28 0.58330388
## 200 Algorithm 2 UF_5_28 0.55583159
## 201 Algorithm 2 UF_5_28 0.69133464
## 202 Algorithm 2 UF_5_28 0.70263352
## 203 Algorithm 2 UF_5_28 0.45475384
## 204 Algorithm 2 UF_5_28 0.60643257
## 205 Algorithm 2 UF_5_28 0.61319932
## 206 Algorithm 2 UF_5_28 0.65544674
## 207 Algorithm 2 UF_5_28 0.71176229
## 208 Algorithm 2 UF_5_28 0.62746928
## 209 Algorithm 2 UF_5_28 0.47396727
## 210 Algorithm 2 UF_5_28 0.49501237
## 211 Algorithm 2 UF_5_28 0.59813851
## 212 Algorithm 2 UF_5_28 0.49443735
## 213 Algorithm 2 UF_5_28 0.62039137
## 214 Algorithm 2 UF_5_28 0.91085082
## 215 Algorithm 2 UF_5_28 0.61241038
## 216 Algorithm 2 UF_5_28 0.68001481
## 217 Algorithm 2 UF_5_28 0.51795796
## 218 Algorithm 2 UF_5_28 0.72628335
## 219 Algorithm 2 UF_5_28 0.64558739
## 220 Algorithm 2 UF_5_28 0.47290837
## 221 Algorithm 2 UF_5_28 0.44886000
## 222 Algorithm 2 UF_5_28 0.58466173
## 223 Algorithm 2 UF_5_28 0.74549083
## 224 Algorithm 2 UF_5_28 0.74066089
## 225 Algorithm 2 UF_5_28 0.58503785
## 226 Algorithm 2 UF_5_28 0.60734755
## 227 Algorithm 2 UF_5_28 0.48915696
## 228 Algorithm 2 UF_5_28 0.46016858
## 229 Algorithm 2 UF_5_28 0.70461591
## 230 Algorithm 2 UF_5_28 0.77616399
## 231 Algorithm 2 UF_5_28 0.68965699
## 232 Algorithm 2 UF_5_28 0.52656329
## 233 Algorithm 2 UF_5_28 0.74801734
## 234 Algorithm 2 UF_5_28 0.54066704
## 235 Algorithm 2 UF_5_28 0.39196324
## 236 Algorithm 2 UF_5_28 0.64936114
## 237 Algorithm 2 UF_5_28 0.57381021
## 238 Algorithm 2 UF_5_28 0.47273522
## 239 Algorithm 2 UF_5_28 0.73955162
## 240 Algorithm 2 UF_5_28 0.51666917
## 241 Algorithm 2 UF_5_28 0.95779358
## 242 Algorithm 2 UF_5_28 0.56914304
## 243 Algorithm 2 UF_5_28 0.78221531
## 244 Algorithm 2 UF_5_28 0.67513996
## 245 Algorithm 2 UF_5_28 0.61450298
## 246 Algorithm 2 UF_5_28 0.61516815
## 247 Algorithm 2 UF_5_28 0.54712648
## 248 Algorithm 2 UF_5_28 0.54111707
## 249 Algorithm 2 UF_5_28 0.60746841
## 250 Algorithm 2 UF_5_28 0.66999863
## 251 Algorithm 2 UF_5_28 0.75475758
## 252 Algorithm 2 UF_5_28 0.84201911
## 253 Algorithm 2 UF_5_28 0.71941448
## 254 Algorithm 2 UF_5_28 0.48489491
## 255 Algorithm 2 UF_5_28 0.66812959
## 256 Algorithm 2 UF_5_28 0.49830723
## 257 Algorithm 2 UF_5_28 0.48619180
## 258 Algorithm 2 UF_5_28 0.67976218
## 259 Algorithm 2 UF_5_28 0.59709340
## 260 Algorithm 2 UF_5_28 0.53727034
## 261 Algorithm 2 UF_5_28 0.61687045
## 262 Algorithm 2 UF_5_28 0.56772397
## 263 Algorithm 2 UF_5_28 0.90018399
## 264 Algorithm 2 UF_5_28 0.51045208
## 265 Algorithm 2 UF_5_28 0.44902949
## 266 Algorithm 2 UF_5_28 0.80138435
## 267 Algorithm 2 UF_5_28 0.69484727
## 268 Algorithm 2 UF_5_28 0.52543506
## 269 Algorithm 2 UF_5_28 0.58084608
## 270 Algorithm 2 UF_5_28 0.62927665
## 271 Algorithm 2 UF_5_28 0.62419444
## 272 Algorithm 2 UF_5_28 0.55311301
## 273 Algorithm 2 UF_5_28 0.55495439
## 274 Algorithm 2 UF_5_28 0.60072481
## 275 Algorithm 2 UF_5_28 0.65231928
## 276 Algorithm 2 UF_5_28 0.69289110
## 277 Algorithm 2 UF_5_28 0.69577417
## 278 Algorithm 2 UF_5_28 0.60408674
## 279 Algorithm 2 UF_5_28 0.58851832
## 280 Algorithm 2 UF_5_28 0.34357199
## 281 Algorithm 2 UF_5_28 0.75770296
## 282 Algorithm 2 UF_5_28 0.54843495
## 283 Algorithm 2 UF_5_28 0.54897481
## 284 Algorithm 2 UF_5_28 0.37409346
## 285 Algorithm 2 UF_5_28 0.83076449
## 286 Algorithm 2 UF_5_28 0.58824427
## 287 Algorithm 2 UF_5_28 0.60686481
## 288 Algorithm 2 UF_5_28 0.39088280
## 289 Algorithm 2 UF_5_28 0.59911602
## 290 Algorithm 2 UF_5_28 0.52230976
## 291 Algorithm 2 UF_5_28 0.39295374
## 292 Algorithm 2 UF_5_28 0.76299457
## 293 Algorithm 2 UF_5_28 0.66596785
## 294 Algorithm 2 UF_5_28 0.79616153
## 295 Algorithm 2 UF_5_28 0.47038921
## 296 Algorithm 2 UF_5_28 0.28973261
## 297 Algorithm 2 UF_5_28 0.55908501
## 298 Algorithm 2 UF_5_28 0.72015076
## 299 Algorithm 2 UF_5_28 0.51853937
## 300 Algorithm 2 UF_5_28 0.66269414
## 301 Algorithm 2 UF_5_28 0.69629310
## 302 Algorithm 2 UF_5_28 0.54792902
## 303 Algorithm 2 UF_5_28 0.52993300
## 304 Algorithm 2 UF_5_28 0.84193993
## 305 Algorithm 2 UF_5_28 0.58557940
## 306 Algorithm 2 UF_5_28 0.57800482
## 307 Algorithm 2 UF_5_28 0.65949926
## 308 Algorithm 2 UF_5_28 0.44620837
## 309 Algorithm 2 UF_5_28 0.59111152
## 310 Algorithm 2 UF_5_28 0.67327912
## 311 Algorithm 1 UF_1_29 0.17079563
## 312 Algorithm 1 UF_1_29 0.10305189
## 313 Algorithm 1 UF_1_29 0.08562614
## 314 Algorithm 1 UF_1_29 0.13576414
## 315 Algorithm 1 UF_1_29 0.09885127
## 316 Algorithm 1 UF_1_29 0.09108061
## 317 Algorithm 1 UF_1_29 0.12478635
## 318 Algorithm 1 UF_1_29 0.09304815
## 319 Algorithm 1 UF_1_29 0.12785744
## 320 Algorithm 1 UF_1_29 0.07230859
## 321 Algorithm 1 UF_1_29 0.13264596
## 322 Algorithm 1 UF_1_29 0.17913137
## 323 Algorithm 1 UF_1_29 0.21385808
## 324 Algorithm 1 UF_1_29 0.48731078
## 325 Algorithm 1 UF_1_29 0.10811966
## 326 Algorithm 1 UF_1_29 0.09861468
## 327 Algorithm 1 UF_1_29 0.16108209
## 328 Algorithm 1 UF_1_29 0.09278349
## 329 Algorithm 1 UF_1_29 0.17056863
## 330 Algorithm 1 UF_1_29 0.13008200
## 331 Algorithm 1 UF_1_29 0.13481016
## 332 Algorithm 1 UF_1_29 0.20699227
## 333 Algorithm 1 UF_1_29 0.09833294
## 334 Algorithm 1 UF_1_29 0.10841241
## 335 Algorithm 1 UF_1_29 0.18423834
## 336 Algorithm 2 UF_1_29 0.03817489
## 337 Algorithm 2 UF_1_29 0.08405970
## 338 Algorithm 2 UF_1_29 0.03992789
## 339 Algorithm 2 UF_1_29 0.08001466
## 340 Algorithm 2 UF_1_29 0.06862952
## 341 Algorithm 2 UF_1_29 0.05970668
## 342 Algorithm 2 UF_1_29 0.05595731
## 343 Algorithm 2 UF_1_29 0.05366178
## 344 Algorithm 2 UF_1_29 0.05758635
## 345 Algorithm 2 UF_1_29 0.04146082
## 346 Algorithm 2 UF_1_29 0.05549422
## 347 Algorithm 2 UF_1_29 0.04532183
## 348 Algorithm 2 UF_1_29 0.04104027
## 349 Algorithm 2 UF_1_29 0.04251228
## 350 Algorithm 2 UF_1_29 0.03329520
## 351 Algorithm 1 UF_2_36 0.03441510
## 352 Algorithm 1 UF_2_36 0.03876661
## 353 Algorithm 1 UF_2_36 0.04194750
## 354 Algorithm 1 UF_2_36 0.11271591
## 355 Algorithm 1 UF_2_36 0.09337724
## 356 Algorithm 1 UF_2_36 0.05181730
## 357 Algorithm 1 UF_2_36 0.03201601
## 358 Algorithm 1 UF_2_36 0.05956520
## 359 Algorithm 1 UF_2_36 0.04486447
## 360 Algorithm 1 UF_2_36 0.03400949
## 361 Algorithm 1 UF_2_36 0.03350702
## 362 Algorithm 1 UF_2_36 0.03201656
## 363 Algorithm 1 UF_2_36 0.03255274
## 364 Algorithm 1 UF_2_36 0.03056980
## 365 Algorithm 1 UF_2_36 0.02731216
## 366 Algorithm 1 UF_2_36 0.08948446
## 367 Algorithm 1 UF_2_36 0.02934978
## 368 Algorithm 1 UF_2_36 0.04111900
## 369 Algorithm 1 UF_2_36 0.04162181
## 370 Algorithm 1 UF_2_36 0.03259478
## 371 Algorithm 1 UF_2_36 0.09638080
## 372 Algorithm 1 UF_2_36 0.03163931
## 373 Algorithm 1 UF_2_36 0.03819944
## 374 Algorithm 1 UF_2_36 0.03020800
## 375 Algorithm 1 UF_2_36 0.03100325
## 376 Algorithm 1 UF_2_36 0.08873506
## 377 Algorithm 1 UF_2_36 0.04335315
## 378 Algorithm 1 UF_2_36 0.08944417
## 379 Algorithm 1 UF_2_36 0.03008220
## 380 Algorithm 1 UF_2_36 0.07352627
## 381 Algorithm 1 UF_2_36 0.03694254
## 382 Algorithm 1 UF_2_36 0.03395909
## 383 Algorithm 1 UF_2_36 0.03655852
## 384 Algorithm 1 UF_2_36 0.03349721
## 385 Algorithm 1 UF_2_36 0.03233938
## 386 Algorithm 1 UF_2_36 0.08642831
## 387 Algorithm 1 UF_2_36 0.03770713
## 388 Algorithm 1 UF_2_36 0.03854461
## 389 Algorithm 1 UF_2_36 0.02846811
## 390 Algorithm 1 UF_2_36 0.02894436
## 391 Algorithm 1 UF_2_36 0.08874924
## 392 Algorithm 1 UF_2_36 0.16861583
## 393 Algorithm 1 UF_2_36 0.04021527
## 394 Algorithm 1 UF_2_36 0.03053868
## 395 Algorithm 1 UF_2_36 0.06616631
## 396 Algorithm 1 UF_2_36 0.09609435
## 397 Algorithm 1 UF_2_36 0.09209959
## 398 Algorithm 1 UF_2_36 0.03763834
## 399 Algorithm 1 UF_2_36 0.03259443
## 400 Algorithm 1 UF_2_36 0.06769211
## 401 Algorithm 1 UF_2_36 0.06895552
## 402 Algorithm 1 UF_2_36 0.08142635
## 403 Algorithm 1 UF_2_36 0.05186895
## 404 Algorithm 1 UF_2_36 0.09952544
## 405 Algorithm 1 UF_2_36 0.03359356
## 406 Algorithm 1 UF_2_36 0.03653540
## 407 Algorithm 1 UF_2_36 0.03552658
## 408 Algorithm 1 UF_2_36 0.06242334
## 409 Algorithm 1 UF_2_36 0.03440577
## 410 Algorithm 1 UF_2_36 0.05416082
## 411 Algorithm 1 UF_2_36 0.08957604
## 412 Algorithm 1 UF_2_36 0.03055216
## 413 Algorithm 1 UF_2_36 0.06465175
## 414 Algorithm 1 UF_2_36 0.07058542
## 415 Algorithm 1 UF_2_36 0.08028116
## 416 Algorithm 1 UF_2_36 0.03005397
## 417 Algorithm 1 UF_2_36 0.09708527
## 418 Algorithm 1 UF_2_36 0.06055014
## 419 Algorithm 1 UF_2_36 0.06375896
## 420 Algorithm 1 UF_2_36 0.06599654
## 421 Algorithm 1 UF_2_36 0.03662137
## 422 Algorithm 2 UF_2_36 0.04141037
## 423 Algorithm 2 UF_2_36 0.05351244
## 424 Algorithm 2 UF_2_36 0.03610849
## 425 Algorithm 2 UF_2_36 0.03939121
## 426 Algorithm 2 UF_2_36 0.03259172
## 427 Algorithm 2 UF_2_36 0.03489153
## 428 Algorithm 2 UF_2_36 0.04458333
## 429 Algorithm 2 UF_2_36 0.04489122
## 430 Algorithm 2 UF_2_36 0.03970704
## 431 Algorithm 2 UF_2_36 0.03803534
## 432 Algorithm 2 UF_2_36 0.03377483
## 433 Algorithm 2 UF_2_36 0.03301098
## 434 Algorithm 2 UF_2_36 0.03983152
## 435 Algorithm 2 UF_2_36 0.04184384
## 436 Algorithm 2 UF_2_36 0.02544661
## 437 Algorithm 2 UF_2_36 0.03291922
## 438 Algorithm 1 UF_3_29 0.13485979
## 439 Algorithm 1 UF_3_29 0.10206843
## 440 Algorithm 1 UF_3_29 0.07472094
## 441 Algorithm 1 UF_3_29 0.09577617
## 442 Algorithm 1 UF_3_29 0.15385904
## 443 Algorithm 1 UF_3_29 0.10000981
## 444 Algorithm 1 UF_3_29 0.10262553
## 445 Algorithm 1 UF_3_29 0.09990467
## 446 Algorithm 1 UF_3_29 0.15149806
## 447 Algorithm 1 UF_3_29 0.08571304
## 448 Algorithm 1 UF_3_29 0.13445214
## 449 Algorithm 1 UF_3_29 0.11971940
## 450 Algorithm 1 UF_3_29 0.09581176
## 451 Algorithm 1 UF_3_29 0.07642467
## 452 Algorithm 1 UF_3_29 0.11710521
## 453 Algorithm 1 UF_3_29 0.09883760
## 454 Algorithm 1 UF_3_29 0.14214975
## 455 Algorithm 1 UF_3_29 0.11161669
## 456 Algorithm 1 UF_3_29 0.17094952
## 457 Algorithm 1 UF_3_29 0.11327628
## 458 Algorithm 1 UF_3_29 0.12426388
## 459 Algorithm 1 UF_3_29 0.13546382
## 460 Algorithm 1 UF_3_29 0.08993221
## 461 Algorithm 1 UF_3_29 0.09169918
## 462 Algorithm 1 UF_3_29 0.10849825
## 463 Algorithm 1 UF_3_29 0.15933083
## 464 Algorithm 1 UF_3_29 0.13845079
## 465 Algorithm 1 UF_3_29 0.11287348
## 466 Algorithm 1 UF_3_29 0.11608015
## 467 Algorithm 1 UF_3_29 0.17478963
## 468 Algorithm 1 UF_3_29 0.21609988
## 469 Algorithm 1 UF_3_29 0.14298520
## 470 Algorithm 1 UF_3_29 0.14638206
## 471 Algorithm 1 UF_3_29 0.08846388
## 472 Algorithm 1 UF_3_29 0.09833903
## 473 Algorithm 1 UF_3_29 0.12372334
## 474 Algorithm 1 UF_3_29 0.10634481
## 475 Algorithm 1 UF_3_29 0.12812203
## 476 Algorithm 1 UF_3_29 0.10252423
## 477 Algorithm 1 UF_3_29 0.12072432
## 478 Algorithm 1 UF_3_29 0.10986797
## 479 Algorithm 1 UF_3_29 0.12439233
## 480 Algorithm 1 UF_3_29 0.09865325
## 481 Algorithm 1 UF_3_29 0.11761155
## 482 Algorithm 1 UF_3_29 0.11005573
## 483 Algorithm 1 UF_3_29 0.10190078
## 484 Algorithm 1 UF_3_29 0.16029106
## 485 Algorithm 1 UF_3_29 0.09820187
## 486 Algorithm 1 UF_3_29 0.11031301
## 487 Algorithm 1 UF_3_29 0.12242608
## 488 Algorithm 1 UF_3_29 0.48119821
## 489 Algorithm 1 UF_3_29 0.13640272
## 490 Algorithm 1 UF_3_29 0.08975813
## 491 Algorithm 1 UF_3_29 0.13018791
## 492 Algorithm 1 UF_3_29 0.10109603
## 493 Algorithm 1 UF_3_29 0.14886520
## 494 Algorithm 1 UF_3_29 0.12962382
## 495 Algorithm 1 UF_3_29 0.09808411
## 496 Algorithm 1 UF_3_29 0.09233720
## 497 Algorithm 1 UF_3_29 0.09972590
## 498 Algorithm 1 UF_3_29 0.17701927
## 499 Algorithm 1 UF_3_29 0.11158489
## 500 Algorithm 1 UF_3_29 0.10291353
## 501 Algorithm 1 UF_3_29 0.11843044
## 502 Algorithm 1 UF_3_29 0.23901969
## 503 Algorithm 1 UF_3_29 0.14318706
## 504 Algorithm 1 UF_3_29 0.10577634
## 505 Algorithm 1 UF_3_29 0.11188581
## 506 Algorithm 1 UF_3_29 0.14605218
## 507 Algorithm 1 UF_3_29 0.09764713
## 508 Algorithm 1 UF_3_29 0.12974414
## 509 Algorithm 1 UF_3_29 0.12200796
## 510 Algorithm 1 UF_3_29 0.28929009
## 511 Algorithm 1 UF_3_29 0.12945296
## 512 Algorithm 1 UF_3_29 0.17038442
## 513 Algorithm 1 UF_3_29 0.09833576
## 514 Algorithm 1 UF_3_29 0.17917405
## 515 Algorithm 1 UF_3_29 0.15512351
## 516 Algorithm 1 UF_3_29 0.13556987
## 517 Algorithm 1 UF_3_29 0.16295540
## 518 Algorithm 1 UF_3_29 0.11308877
## 519 Algorithm 1 UF_3_29 0.08509735
## 520 Algorithm 1 UF_3_29 0.08802555
## 521 Algorithm 1 UF_3_29 0.15082430
## 522 Algorithm 1 UF_3_29 0.12369275
## 523 Algorithm 1 UF_3_29 0.10068139
## 524 Algorithm 1 UF_3_29 0.09316523
## 525 Algorithm 1 UF_3_29 0.12488037
## 526 Algorithm 1 UF_3_29 0.12052388
## 527 Algorithm 1 UF_3_29 0.12234219
## 528 Algorithm 1 UF_3_29 0.09664046
## 529 Algorithm 1 UF_3_29 0.10133131
## 530 Algorithm 1 UF_3_29 0.20309962
## 531 Algorithm 1 UF_3_29 0.09673441
## 532 Algorithm 1 UF_3_29 0.12987671
## 533 Algorithm 1 UF_3_29 0.09150593
## 534 Algorithm 1 UF_3_29 0.10660809
## 535 Algorithm 1 UF_3_29 0.19627255
## 536 Algorithm 1 UF_3_29 0.12269570
## 537 Algorithm 2 UF_3_29 0.17179585
## 538 Algorithm 2 UF_3_29 0.14935235
## 539 Algorithm 2 UF_3_29 0.08976703
## 540 Algorithm 2 UF_3_29 0.07986184
## 541 Algorithm 2 UF_3_29 0.17287715
## 542 Algorithm 2 UF_3_29 0.15091010
## 543 Algorithm 2 UF_3_29 0.21834300
## 544 Algorithm 2 UF_3_29 0.05693440
## 545 Algorithm 2 UF_3_29 0.24294369
## 546 Algorithm 2 UF_3_29 0.15570224
## 547 Algorithm 2 UF_3_29 0.20061253
## 548 Algorithm 2 UF_3_29 0.09380417
## 549 Algorithm 2 UF_3_29 0.14570548
## 550 Algorithm 2 UF_3_29 0.09119522
## 551 Algorithm 2 UF_3_29 0.13784852
## 552 Algorithm 2 UF_3_29 0.12336010
## 553 Algorithm 2 UF_3_29 0.21364514
## 554 Algorithm 2 UF_3_29 0.09859683
## 555 Algorithm 2 UF_3_29 0.13689709
## 556 Algorithm 2 UF_3_29 0.10546887
## 557 Algorithm 2 UF_3_29 0.11866019
## 558 Algorithm 2 UF_3_29 0.04726745
## 559 Algorithm 2 UF_3_29 0.12907583
## 560 Algorithm 2 UF_3_29 0.14997826
## 561 Algorithm 2 UF_3_29 0.08379961
## 562 Algorithm 2 UF_3_29 0.12823083
## 563 Algorithm 2 UF_3_29 0.10963671
## 564 Algorithm 2 UF_3_29 0.18413519
## 565 Algorithm 2 UF_3_29 0.20033710
## 566 Algorithm 2 UF_3_29 0.21029523
## 567 Algorithm 2 UF_3_29 0.12307836
## 568 Algorithm 2 UF_3_29 0.14992596
## 569 Algorithm 2 UF_3_29 0.11267252
## 570 Algorithm 2 UF_3_29 0.18136523
## 571 Algorithm 2 UF_3_29 0.07413493
## 572 Algorithm 2 UF_3_29 0.11028110
## 573 Algorithm 2 UF_3_29 0.08736141
## 574 Algorithm 2 UF_3_29 0.06081145
## 575 Algorithm 2 UF_3_29 0.14929344
## 576 Algorithm 2 UF_3_29 0.14109291
## 577 Algorithm 2 UF_3_29 0.13293422
## 578 Algorithm 2 UF_3_29 0.10631891
## 579 Algorithm 2 UF_3_29 0.06397775
## 580 Algorithm 2 UF_3_29 0.11659815
## 581 Algorithm 2 UF_3_29 0.08072298
## 582 Algorithm 2 UF_3_29 0.08469108
## 583 Algorithm 2 UF_3_29 0.14249538
## 584 Algorithm 2 UF_3_29 0.12127790
## 585 Algorithm 2 UF_3_29 0.06284180
## 586 Algorithm 2 UF_3_29 0.08685965
## 587 Algorithm 2 UF_3_29 0.15710756
## 588 Algorithm 2 UF_3_29 0.13389627
## 589 Algorithm 2 UF_3_29 0.05992256
## 590 Algorithm 2 UF_3_29 0.08705484
## 591 Algorithm 2 UF_3_29 0.10014311
## 592 Algorithm 2 UF_3_29 0.15054485
## 593 Algorithm 2 UF_3_29 0.21781253
## 594 Algorithm 2 UF_3_29 0.11001830
## 595 Algorithm 2 UF_3_29 0.17948330
## 596 Algorithm 2 UF_3_29 0.12243941
## 597 Algorithm 2 UF_3_29 0.21775619
## 598 Algorithm 2 UF_3_29 0.08728484
## 599 Algorithm 2 UF_3_29 0.12805215
## 600 Algorithm 2 UF_3_29 0.25833195
## 601 Algorithm 2 UF_3_29 0.12205996
## 602 Algorithm 2 UF_3_29 0.25501416
## 603 Algorithm 2 UF_3_29 0.18502751
## 604 Algorithm 2 UF_3_29 0.31734201
## 605 Algorithm 2 UF_3_29 0.10377003
## 606 Algorithm 2 UF_3_29 0.06480213
## 607 Algorithm 2 UF_3_29 0.07935004
## 608 Algorithm 2 UF_3_29 0.11782088
## 609 Algorithm 2 UF_3_29 0.12889231
## 610 Algorithm 2 UF_3_29 0.13407144
## 611 Algorithm 2 UF_3_29 0.11565925
## 612 Algorithm 2 UF_3_29 0.13820761
## 613 Algorithm 2 UF_3_29 0.19109675
## 614 Algorithm 2 UF_3_29 0.24604979
## 615 Algorithm 2 UF_3_29 0.12089089
## 616 Algorithm 2 UF_3_29 0.09260491
## 617 Algorithm 2 UF_3_29 0.12692324
## 618 Algorithm 2 UF_3_29 0.21288388
## 619 Algorithm 2 UF_3_29 0.07983592
## 620 Algorithm 2 UF_3_29 0.10948601
## 621 Algorithm 2 UF_3_29 0.17447620
## 622 Algorithm 2 UF_3_29 0.12536783
## 623 Algorithm 2 UF_3_29 0.04000001
## 624 Algorithm 2 UF_3_29 0.11032864
## 625 Algorithm 2 UF_3_29 0.11386252
## 626 Algorithm 2 UF_3_29 0.12681584
## 627 Algorithm 2 UF_3_29 0.08638529
## 628 Algorithm 2 UF_3_29 0.13240447
## 629 Algorithm 2 UF_3_29 0.21648460
## 630 Algorithm 2 UF_3_29 0.15807440
## 631 Algorithm 2 UF_3_29 0.07970772
## 632 Algorithm 2 UF_3_29 0.12711245
## 633 Algorithm 2 UF_3_29 0.14833358
## 634 Algorithm 2 UF_3_29 0.14594639
## 635 Algorithm 2 UF_3_29 0.10294851
## 636 Algorithm 2 UF_3_29 0.16289247
## 637 Algorithm 2 UF_3_29 0.13221329
## 638 Algorithm 1 UF_3_10 0.21261113
## 639 Algorithm 1 UF_3_10 0.29895429
## 640 Algorithm 1 UF_3_10 0.23084350
## 641 Algorithm 1 UF_3_10 0.18611964
## 642 Algorithm 1 UF_3_10 0.27618336
## 643 Algorithm 1 UF_3_10 0.27727948
## 644 Algorithm 1 UF_3_10 0.25683815
## 645 Algorithm 1 UF_3_10 0.42839175
## 646 Algorithm 1 UF_3_10 0.37219036
## 647 Algorithm 1 UF_3_10 0.20448010
## 648 Algorithm 1 UF_3_10 0.28635020
## 649 Algorithm 1 UF_3_10 0.24647764
## 650 Algorithm 1 UF_3_10 0.23002484
## 651 Algorithm 1 UF_3_10 0.18230544
## 652 Algorithm 1 UF_3_10 0.25248777
## 653 Algorithm 1 UF_3_10 0.24499462
## 654 Algorithm 1 UF_3_10 0.17263053
## 655 Algorithm 1 UF_3_10 0.46137637
## 656 Algorithm 1 UF_3_10 0.19857867
## 657 Algorithm 1 UF_3_10 0.19995401
## 658 Algorithm 1 UF_3_10 0.22729567
## 659 Algorithm 1 UF_3_10 0.23244152
## 660 Algorithm 1 UF_3_10 0.25275378
## 661 Algorithm 1 UF_3_10 0.18546551
## 662 Algorithm 1 UF_3_10 0.32573540
## 663 Algorithm 1 UF_3_10 0.28838125
## 664 Algorithm 1 UF_3_10 0.19719456
## 665 Algorithm 1 UF_3_10 0.19401104
## 666 Algorithm 1 UF_3_10 0.17582304
## 667 Algorithm 1 UF_3_10 0.37284891
## 668 Algorithm 1 UF_3_10 0.23979182
## 669 Algorithm 1 UF_3_10 0.25752895
## 670 Algorithm 1 UF_3_10 0.25951982
## 671 Algorithm 1 UF_3_10 0.28908056
## 672 Algorithm 1 UF_3_10 0.36965661
## 673 Algorithm 1 UF_3_10 0.33768411
## 674 Algorithm 1 UF_3_10 0.21983339
## 675 Algorithm 1 UF_3_10 0.25207412
## 676 Algorithm 1 UF_3_10 0.19580014
## 677 Algorithm 1 UF_3_10 0.18501337
## 678 Algorithm 1 UF_3_10 0.21725800
## 679 Algorithm 1 UF_3_10 0.44850388
## 680 Algorithm 1 UF_3_10 0.26232790
## 681 Algorithm 1 UF_3_10 0.25373492
## 682 Algorithm 1 UF_3_10 0.23827010
## 683 Algorithm 1 UF_3_10 0.33846039
## 684 Algorithm 1 UF_3_10 0.23006682
## 685 Algorithm 1 UF_3_10 0.18223609
## 686 Algorithm 1 UF_3_10 0.18442585
## 687 Algorithm 1 UF_3_10 0.23355307
## 688 Algorithm 1 UF_3_10 0.21203698
## 689 Algorithm 1 UF_3_10 0.32369435
## 690 Algorithm 1 UF_3_10 0.33974954
## 691 Algorithm 1 UF_3_10 0.33892079
## 692 Algorithm 1 UF_3_10 0.26487471
## 693 Algorithm 1 UF_3_10 0.26664721
## 694 Algorithm 1 UF_3_10 0.24778361
## 695 Algorithm 2 UF_3_10 0.33997001
## 696 Algorithm 2 UF_3_10 0.31487208
## 697 Algorithm 2 UF_3_10 0.29220692
## 698 Algorithm 2 UF_3_10 0.27039131
## 699 Algorithm 2 UF_3_10 0.21124338
## 700 Algorithm 2 UF_3_10 0.17855591
## 701 Algorithm 2 UF_3_10 0.34303997
## 702 Algorithm 2 UF_3_10 0.34004086
## 703 Algorithm 2 UF_3_10 0.26147582
## 704 Algorithm 2 UF_3_10 0.34300722
## 705 Algorithm 2 UF_3_10 0.33978810
## 706 Algorithm 2 UF_3_10 0.32939652
## 707 Algorithm 2 UF_3_10 0.14449738
## 708 Algorithm 2 UF_3_10 0.33574298
## 709 Algorithm 2 UF_3_10 0.26036389
## 710 Algorithm 2 UF_3_10 0.21023651
## 711 Algorithm 2 UF_3_10 0.33093256
## 712 Algorithm 2 UF_3_10 0.34639752
## 713 Algorithm 2 UF_3_10 0.34832671
## 714 Algorithm 2 UF_3_10 0.34058037
## 715 Algorithm 2 UF_3_10 0.20811065
## 716 Algorithm 2 UF_3_10 0.16038942
## 717 Algorithm 2 UF_3_10 0.27385015
## 718 Algorithm 2 UF_3_10 0.20493942
## 719 Algorithm 2 UF_3_10 0.33848381
## 720 Algorithm 2 UF_3_10 0.32383683
## 721 Algorithm 2 UF_3_10 0.12533315
## 722 Algorithm 2 UF_3_10 0.29106978
## 723 Algorithm 2 UF_3_10 0.28406942
## 724 Algorithm 2 UF_3_10 0.33849774
## 725 Algorithm 2 UF_3_10 0.34661065
## 726 Algorithm 2 UF_3_10 0.33603363
## 727 Algorithm 2 UF_3_10 0.20375244
## 728 Algorithm 2 UF_3_10 0.33723771
## 729 Algorithm 2 UF_3_10 0.18293321
## 730 Algorithm 2 UF_3_10 0.33175677
## 731 Algorithm 2 UF_3_10 0.31874093
## 732 Algorithm 2 UF_3_10 0.34248399
## 733 Algorithm 2 UF_3_10 0.34043753
## 734 Algorithm 2 UF_3_10 0.13829614
## 735 Algorithm 2 UF_3_10 0.34040530
## 736 Algorithm 2 UF_3_10 0.16391707
## 737 Algorithm 2 UF_3_10 0.29605923
## 738 Algorithm 2 UF_3_10 0.34416609
## 739 Algorithm 2 UF_3_10 0.18572599
## 740 Algorithm 2 UF_3_10 0.30950668
## 741 Algorithm 2 UF_3_10 0.31844760
## 742 Algorithm 2 UF_3_10 0.30609215
## 743 Algorithm 2 UF_3_10 0.34198565
## 744 Algorithm 2 UF_3_10 0.24911329
## 745 Algorithm 2 UF_3_10 0.34880029
## 746 Algorithm 2 UF_3_10 0.19205396
## 747 Algorithm 2 UF_3_10 0.20053106
## 748 Algorithm 2 UF_3_10 0.33282104
## 749 Algorithm 2 UF_3_10 0.16099665
## 750 Algorithm 2 UF_3_10 0.33864796
## 751 Algorithm 2 UF_3_10 0.17493419
## 752 Algorithm 2 UF_3_10 0.22689130
## 753 Algorithm 1 UF_7_16 0.34239563
## 754 Algorithm 1 UF_7_16 0.33050389
## 755 Algorithm 1 UF_7_16 0.34379216
## 756 Algorithm 1 UF_7_16 0.34848111
## 757 Algorithm 1 UF_7_16 0.32683561
## 758 Algorithm 1 UF_7_16 0.34138221
## 759 Algorithm 1 UF_7_16 0.34878661
## 760 Algorithm 1 UF_7_16 0.35504147
## 761 Algorithm 1 UF_7_16 0.35818776
## 762 Algorithm 1 UF_7_16 0.34668495
## 763 Algorithm 1 UF_7_16 0.34745398
## 764 Algorithm 1 UF_7_16 0.33937478
## 765 Algorithm 1 UF_7_16 0.39901176
## 766 Algorithm 1 UF_7_16 0.34971566
## 767 Algorithm 1 UF_7_16 0.35123767
## 768 Algorithm 2 UF_7_16 0.01403717
## 769 Algorithm 2 UF_7_16 0.01562596
## 770 Algorithm 2 UF_7_16 0.01567629
## 771 Algorithm 2 UF_7_16 0.01402523
## 772 Algorithm 2 UF_7_16 0.01448069
## 773 Algorithm 2 UF_7_16 0.02262519
## 774 Algorithm 2 UF_7_16 0.01457875
## 775 Algorithm 2 UF_7_16 0.02471940
## 776 Algorithm 2 UF_7_16 0.02056412
## 777 Algorithm 2 UF_7_16 0.01987860
## 778 Algorithm 2 UF_7_16 0.02204249
## 779 Algorithm 2 UF_7_16 0.02034747
## 780 Algorithm 2 UF_7_16 0.01987121
## 781 Algorithm 2 UF_7_16 0.01884027
## 782 Algorithm 2 UF_7_16 0.01943830
## 783 Algorithm 1 UF_7_29 0.34182458
## 784 Algorithm 1 UF_7_29 0.35663732
## 785 Algorithm 1 UF_7_29 0.52732558
## 786 Algorithm 1 UF_7_29 0.56975282
## 787 Algorithm 1 UF_7_29 0.59761349
## 788 Algorithm 1 UF_7_29 0.40466139
## 789 Algorithm 1 UF_7_29 0.36367979
## 790 Algorithm 1 UF_7_29 0.35907023
## 791 Algorithm 1 UF_7_29 0.35662430
## 792 Algorithm 1 UF_7_29 0.35881693
## 793 Algorithm 1 UF_7_29 0.34606098
## 794 Algorithm 1 UF_7_29 0.35785914
## 795 Algorithm 1 UF_7_29 0.54617604
## 796 Algorithm 1 UF_7_29 0.36115163
## 797 Algorithm 1 UF_7_29 0.53726879
## 798 Algorithm 2 UF_7_29 0.03090315
## 799 Algorithm 2 UF_7_29 0.01686651
## 800 Algorithm 2 UF_7_29 0.02210778
## 801 Algorithm 2 UF_7_29 0.27676492
## 802 Algorithm 2 UF_7_29 0.02755434
## 803 Algorithm 2 UF_7_29 0.03114942
## 804 Algorithm 2 UF_7_29 0.02725695
## 805 Algorithm 2 UF_7_29 0.02849915
## 806 Algorithm 2 UF_7_29 0.02226347
## 807 Algorithm 2 UF_7_29 0.01950048
## 808 Algorithm 2 UF_7_29 0.02586767
## 809 Algorithm 2 UF_7_29 0.03733569
## 810 Algorithm 2 UF_7_29 0.02230300
## 811 Algorithm 2 UF_7_29 0.02895698
## 812 Algorithm 2 UF_7_29 0.02652764
## 813 Algorithm 1 UF_2_25 0.03094333
## 814 Algorithm 1 UF_2_25 0.03000915
## 815 Algorithm 1 UF_2_25 0.02789043
## 816 Algorithm 1 UF_2_25 0.08605605
## 817 Algorithm 1 UF_2_25 0.04275696
## 818 Algorithm 1 UF_2_25 0.13119906
## 819 Algorithm 1 UF_2_25 0.04145332
## 820 Algorithm 1 UF_2_25 0.03074464
## 821 Algorithm 1 UF_2_25 0.03211799
## 822 Algorithm 1 UF_2_25 0.07378741
## 823 Algorithm 1 UF_2_25 0.03744218
## 824 Algorithm 1 UF_2_25 0.09128189
## 825 Algorithm 1 UF_2_25 0.09543743
## 826 Algorithm 1 UF_2_25 0.02969880
## 827 Algorithm 1 UF_2_25 0.03006556
## 828 Algorithm 1 UF_2_25 0.05481254
## 829 Algorithm 1 UF_2_25 0.08585325
## 830 Algorithm 1 UF_2_25 0.07910609
## 831 Algorithm 1 UF_2_25 0.02885818
## 832 Algorithm 1 UF_2_25 0.02973658
## 833 Algorithm 1 UF_2_25 0.02903613
## 834 Algorithm 1 UF_2_25 0.03147280
## 835 Algorithm 1 UF_2_25 0.03712773
## 836 Algorithm 1 UF_2_25 0.03550769
## 837 Algorithm 1 UF_2_25 0.05613123
## 838 Algorithm 1 UF_2_25 0.03639893
## 839 Algorithm 1 UF_2_25 0.03630912
## 840 Algorithm 1 UF_2_25 0.04259047
## 841 Algorithm 1 UF_2_25 0.08913257
## 842 Algorithm 1 UF_2_25 0.03000228
## 843 Algorithm 1 UF_2_25 0.02716640
## 844 Algorithm 1 UF_2_25 0.08948897
## 845 Algorithm 1 UF_2_25 0.02825884
## 846 Algorithm 1 UF_2_25 0.02922361
## 847 Algorithm 1 UF_2_25 0.03655307
## 848 Algorithm 1 UF_2_25 0.03663795
## 849 Algorithm 1 UF_2_25 0.09029349
## 850 Algorithm 1 UF_2_25 0.08896406
## 851 Algorithm 1 UF_2_25 0.08150821
## 852 Algorithm 1 UF_2_25 0.02836609
## 853 Algorithm 1 UF_2_25 0.03254869
## 854 Algorithm 1 UF_2_25 0.05620543
## 855 Algorithm 1 UF_2_25 0.03801131
## 856 Algorithm 1 UF_2_25 0.16415257
## 857 Algorithm 1 UF_2_25 0.02891167
## 858 Algorithm 1 UF_2_25 0.02851139
## 859 Algorithm 1 UF_2_25 0.04057341
## 860 Algorithm 1 UF_2_25 0.03147554
## 861 Algorithm 1 UF_2_25 0.03197201
## 862 Algorithm 1 UF_2_25 0.08775909
## 863 Algorithm 1 UF_2_25 0.02978161
## 864 Algorithm 1 UF_2_25 0.04187708
## 865 Algorithm 1 UF_2_25 0.14073992
## 866 Algorithm 1 UF_2_25 0.02929343
## 867 Algorithm 1 UF_2_25 0.03704238
## 868 Algorithm 1 UF_2_25 0.04884736
## 869 Algorithm 1 UF_2_25 0.02893671
## 870 Algorithm 1 UF_2_25 0.09230550
## 871 Algorithm 1 UF_2_25 0.07504791
## 872 Algorithm 1 UF_2_25 0.03303044
## 873 Algorithm 1 UF_2_25 0.03330396
## 874 Algorithm 1 UF_2_25 0.02683304
## 875 Algorithm 1 UF_2_25 0.07757438
## 876 Algorithm 1 UF_2_25 0.04600811
## 877 Algorithm 1 UF_2_25 0.02960550
## 878 Algorithm 1 UF_2_25 0.10287454
## 879 Algorithm 2 UF_2_25 0.02684243
## 880 Algorithm 2 UF_2_25 0.03190485
## 881 Algorithm 2 UF_2_25 0.03439615
## 882 Algorithm 2 UF_2_25 0.02857159
## 883 Algorithm 2 UF_2_25 0.03680506
## 884 Algorithm 2 UF_2_25 0.03706374
## 885 Algorithm 2 UF_2_25 0.03243283
## 886 Algorithm 2 UF_2_25 0.03285117
## 887 Algorithm 2 UF_2_25 0.02793493
## 888 Algorithm 2 UF_2_25 0.03237850
## 889 Algorithm 2 UF_2_25 0.03145263
## 890 Algorithm 2 UF_2_25 0.03197610
## 891 Algorithm 2 UF_2_25 0.02975796
## 892 Algorithm 2 UF_2_25 0.04239616
## 893 Algorithm 2 UF_2_25 0.03304485
## 894 Algorithm 1 UF_4_30 0.06899149
## 895 Algorithm 1 UF_4_30 0.07720830
## 896 Algorithm 1 UF_4_30 0.07680575
## 897 Algorithm 1 UF_4_30 0.06756990
## 898 Algorithm 1 UF_4_30 0.07525072
## 899 Algorithm 1 UF_4_30 0.07638802
## 900 Algorithm 1 UF_4_30 0.06946953
## 901 Algorithm 1 UF_4_30 0.08088519
## 902 Algorithm 1 UF_4_30 0.07955435
## 903 Algorithm 1 UF_4_30 0.07585220
## 904 Algorithm 1 UF_4_30 0.07337896
## 905 Algorithm 1 UF_4_30 0.07948034
## 906 Algorithm 1 UF_4_30 0.08107560
## 907 Algorithm 1 UF_4_30 0.05949978
## 908 Algorithm 1 UF_4_30 0.08358997
## 909 Algorithm 2 UF_4_30 0.06530389
## 910 Algorithm 2 UF_4_30 0.07140367
## 911 Algorithm 2 UF_4_30 0.06964194
## 912 Algorithm 2 UF_4_30 0.07042767
## 913 Algorithm 2 UF_4_30 0.07316897
## 914 Algorithm 2 UF_4_30 0.06781261
## 915 Algorithm 2 UF_4_30 0.07832749
## 916 Algorithm 2 UF_4_30 0.07586210
## 917 Algorithm 2 UF_4_30 0.07047986
## 918 Algorithm 2 UF_4_30 0.07177145
## 919 Algorithm 2 UF_4_30 0.06857085
## 920 Algorithm 2 UF_4_30 0.07746472
## 921 Algorithm 2 UF_4_30 0.07372832
## 922 Algorithm 2 UF_4_30 0.06933716
## 923 Algorithm 2 UF_4_30 0.07500989
## 924 Algorithm 1 UF_1_26 0.09800765
## 925 Algorithm 1 UF_1_26 0.09844016
## 926 Algorithm 1 UF_1_26 0.10795866
## 927 Algorithm 1 UF_1_26 0.11788732
## 928 Algorithm 1 UF_1_26 0.34710320
## 929 Algorithm 1 UF_1_26 0.20622943
## 930 Algorithm 1 UF_1_26 0.17325298
## 931 Algorithm 1 UF_1_26 0.07931058
## 932 Algorithm 1 UF_1_26 0.09534811
## 933 Algorithm 1 UF_1_26 0.21149598
## 934 Algorithm 1 UF_1_26 0.09536897
## 935 Algorithm 1 UF_1_26 0.18980243
## 936 Algorithm 1 UF_1_26 0.12961563
## 937 Algorithm 1 UF_1_26 0.13937697
## 938 Algorithm 1 UF_1_26 0.09248966
## 939 Algorithm 2 UF_1_26 0.03931478
## 940 Algorithm 2 UF_1_26 0.05013548
## 941 Algorithm 2 UF_1_26 0.07533751
## 942 Algorithm 2 UF_1_26 0.06090974
## 943 Algorithm 2 UF_1_26 0.04675321
## 944 Algorithm 2 UF_1_26 0.05605795
## 945 Algorithm 2 UF_1_26 0.03958948
## 946 Algorithm 2 UF_1_26 0.07504439
## 947 Algorithm 2 UF_1_26 0.05222853
## 948 Algorithm 2 UF_1_26 0.05639071
## 949 Algorithm 2 UF_1_26 0.03492968
## 950 Algorithm 2 UF_1_26 0.04779897
## 951 Algorithm 2 UF_1_26 0.05203207
## 952 Algorithm 2 UF_1_26 0.04245498
## 953 Algorithm 2 UF_1_26 0.03712472
## 954 Algorithm 1 UF_2_18 0.02687181
## 955 Algorithm 1 UF_2_18 0.04470041
## 956 Algorithm 1 UF_2_18 0.04038913
## 957 Algorithm 1 UF_2_18 0.08282422
## 958 Algorithm 1 UF_2_18 0.06111107
## 959 Algorithm 1 UF_2_18 0.03114082
## 960 Algorithm 1 UF_2_18 0.10277213
## 961 Algorithm 1 UF_2_18 0.02728864
## 962 Algorithm 1 UF_2_18 0.02974868
## 963 Algorithm 1 UF_2_18 0.05043122
## 964 Algorithm 1 UF_2_18 0.09455486
## 965 Algorithm 1 UF_2_18 0.03265708
## 966 Algorithm 1 UF_2_18 0.03370670
## 967 Algorithm 1 UF_2_18 0.05026110
## 968 Algorithm 1 UF_2_18 0.02757064
## 969 Algorithm 1 UF_2_18 0.02834260
## 970 Algorithm 1 UF_2_18 0.02361871
## 971 Algorithm 1 UF_2_18 0.07467500
## 972 Algorithm 1 UF_2_18 0.08567590
## 973 Algorithm 1 UF_2_18 0.03644772
## 974 Algorithm 1 UF_2_18 0.03231066
## 975 Algorithm 1 UF_2_18 0.08661764
## 976 Algorithm 1 UF_2_18 0.04267055
## 977 Algorithm 1 UF_2_18 0.10098167
## 978 Algorithm 1 UF_2_18 0.02716095
## 979 Algorithm 1 UF_2_18 0.07983843
## 980 Algorithm 1 UF_2_18 0.03395053
## 981 Algorithm 1 UF_2_18 0.02831690
## 982 Algorithm 1 UF_2_18 0.02994789
## 983 Algorithm 1 UF_2_18 0.03755208
## 984 Algorithm 1 UF_2_18 0.09684179
## 985 Algorithm 1 UF_2_18 0.04164197
## 986 Algorithm 1 UF_2_18 0.02795233
## 987 Algorithm 1 UF_2_18 0.04156414
## 988 Algorithm 1 UF_2_18 0.02644570
## 989 Algorithm 1 UF_2_18 0.08494499
## 990 Algorithm 1 UF_2_18 0.02884323
## 991 Algorithm 1 UF_2_18 0.07137627
## 992 Algorithm 1 UF_2_18 0.07203910
## 993 Algorithm 1 UF_2_18 0.05883526
## 994 Algorithm 2 UF_2_18 0.02615053
## 995 Algorithm 2 UF_2_18 0.02608111
## 996 Algorithm 2 UF_2_18 0.03269484
## 997 Algorithm 2 UF_2_18 0.03109422
## 998 Algorithm 2 UF_2_18 0.02258887
## 999 Algorithm 2 UF_2_18 0.02382149
## 1000 Algorithm 2 UF_2_18 0.02251701
## 1001 Algorithm 2 UF_2_18 0.01995230
## 1002 Algorithm 2 UF_2_18 0.02419279
## 1003 Algorithm 2 UF_2_18 0.02852803
## 1004 Algorithm 2 UF_2_18 0.03076944
## 1005 Algorithm 2 UF_2_18 0.02701743
## 1006 Algorithm 2 UF_2_18 0.03733098
## 1007 Algorithm 2 UF_2_18 0.02783179
## 1008 Algorithm 2 UF_2_18 0.02942199
## 1009 Algorithm 1 UF_7_36 0.36283397
## 1010 Algorithm 1 UF_7_36 0.40367524
## 1011 Algorithm 1 UF_7_36 0.33230389
## 1012 Algorithm 1 UF_7_36 0.36183014
## 1013 Algorithm 1 UF_7_36 0.70444665
## 1014 Algorithm 1 UF_7_36 0.35296129
## 1015 Algorithm 1 UF_7_36 0.34737677
## 1016 Algorithm 1 UF_7_36 0.40652206
## 1017 Algorithm 1 UF_7_36 0.53498524
## 1018 Algorithm 1 UF_7_36 0.70506956
## 1019 Algorithm 1 UF_7_36 0.59840072
## 1020 Algorithm 1 UF_7_36 0.36252971
## 1021 Algorithm 1 UF_7_36 0.54043714
## 1022 Algorithm 1 UF_7_36 0.58976566
## 1023 Algorithm 1 UF_7_36 0.70370474
## 1024 Algorithm 2 UF_7_36 0.03128883
## 1025 Algorithm 2 UF_7_36 0.02150318
## 1026 Algorithm 2 UF_7_36 0.02589815
## 1027 Algorithm 2 UF_7_36 0.03524419
## 1028 Algorithm 2 UF_7_36 0.03403753
## 1029 Algorithm 2 UF_7_36 0.01864268
## 1030 Algorithm 2 UF_7_36 0.01950871
## 1031 Algorithm 2 UF_7_36 0.02330434
## 1032 Algorithm 2 UF_7_36 0.01984352
## 1033 Algorithm 2 UF_7_36 0.04035095
## 1034 Algorithm 2 UF_7_36 0.02458901
## 1035 Algorithm 2 UF_7_36 0.02045718
## 1036 Algorithm 2 UF_7_36 0.17989645
## 1037 Algorithm 2 UF_7_36 0.03146327
## 1038 Algorithm 2 UF_7_36 0.03549736
## 1039 Algorithm 1 UF_4_18 0.07135943
## 1040 Algorithm 1 UF_4_18 0.07013495
## 1041 Algorithm 1 UF_4_18 0.07430603
## 1042 Algorithm 1 UF_4_18 0.07419233
## 1043 Algorithm 1 UF_4_18 0.06913871
## 1044 Algorithm 1 UF_4_18 0.07693806
## 1045 Algorithm 1 UF_4_18 0.06906136
## 1046 Algorithm 1 UF_4_18 0.07550941
## 1047 Algorithm 1 UF_4_18 0.09182527
## 1048 Algorithm 1 UF_4_18 0.07864215
## 1049 Algorithm 1 UF_4_18 0.06080577
## 1050 Algorithm 1 UF_4_18 0.06465215
## 1051 Algorithm 1 UF_4_18 0.06819287
## 1052 Algorithm 1 UF_4_18 0.07047517
## 1053 Algorithm 1 UF_4_18 0.06993621
## 1054 Algorithm 2 UF_4_18 0.05535791
## 1055 Algorithm 2 UF_4_18 0.05696925
## 1056 Algorithm 2 UF_4_18 0.06177844
## 1057 Algorithm 2 UF_4_18 0.06123496
## 1058 Algorithm 2 UF_4_18 0.05534115
## 1059 Algorithm 2 UF_4_18 0.05968352
## 1060 Algorithm 2 UF_4_18 0.05933566
## 1061 Algorithm 2 UF_4_18 0.06463361
## 1062 Algorithm 2 UF_4_18 0.06246089
## 1063 Algorithm 2 UF_4_18 0.06538523
## 1064 Algorithm 2 UF_4_18 0.06283626
## 1065 Algorithm 2 UF_4_18 0.06598971
## 1066 Algorithm 2 UF_4_18 0.05529079
## 1067 Algorithm 2 UF_4_18 0.06206258
## 1068 Algorithm 2 UF_4_18 0.05745316
## 1069 Algorithm 1 UF_2_34 0.03935866
## 1070 Algorithm 1 UF_2_34 0.07819420
## 1071 Algorithm 1 UF_2_34 0.09700939
## 1072 Algorithm 1 UF_2_34 0.03082474
## 1073 Algorithm 1 UF_2_34 0.04957996
## 1074 Algorithm 1 UF_2_34 0.05721314
## 1075 Algorithm 1 UF_2_34 0.06623194
## 1076 Algorithm 1 UF_2_34 0.08118620
## 1077 Algorithm 1 UF_2_34 0.02973160
## 1078 Algorithm 1 UF_2_34 0.02874883
## 1079 Algorithm 1 UF_2_34 0.04392976
## 1080 Algorithm 1 UF_2_34 0.03259528
## 1081 Algorithm 1 UF_2_34 0.08734551
## 1082 Algorithm 1 UF_2_34 0.09690031
## 1083 Algorithm 1 UF_2_34 0.09311586
## 1084 Algorithm 1 UF_2_34 0.04637322
## 1085 Algorithm 1 UF_2_34 0.03153827
## 1086 Algorithm 1 UF_2_34 0.08299036
## 1087 Algorithm 1 UF_2_34 0.03120060
## 1088 Algorithm 1 UF_2_34 0.18334988
## 1089 Algorithm 1 UF_2_34 0.05040548
## 1090 Algorithm 1 UF_2_34 0.09998270
## 1091 Algorithm 1 UF_2_34 0.03534562
## 1092 Algorithm 1 UF_2_34 0.04231811
## 1093 Algorithm 1 UF_2_34 0.07963446
## 1094 Algorithm 1 UF_2_34 0.07929059
## 1095 Algorithm 1 UF_2_34 0.03554327
## 1096 Algorithm 1 UF_2_34 0.03558154
## 1097 Algorithm 1 UF_2_34 0.10858877
## 1098 Algorithm 1 UF_2_34 0.05635853
## 1099 Algorithm 1 UF_2_34 0.05968655
## 1100 Algorithm 1 UF_2_34 0.03594967
## 1101 Algorithm 1 UF_2_34 0.04471301
## 1102 Algorithm 1 UF_2_34 0.08177387
## 1103 Algorithm 1 UF_2_34 0.03087765
## 1104 Algorithm 1 UF_2_34 0.04649282
## 1105 Algorithm 1 UF_2_34 0.09356856
## 1106 Algorithm 1 UF_2_34 0.09093488
## 1107 Algorithm 1 UF_2_34 0.03751002
## 1108 Algorithm 1 UF_2_34 0.03027751
## 1109 Algorithm 1 UF_2_34 0.09674447
## 1110 Algorithm 1 UF_2_34 0.03508532
## 1111 Algorithm 1 UF_2_34 0.06576767
## 1112 Algorithm 1 UF_2_34 0.09281265
## 1113 Algorithm 2 UF_2_34 0.04243291
## 1114 Algorithm 2 UF_2_34 0.03757650
## 1115 Algorithm 2 UF_2_34 0.03505778
## 1116 Algorithm 2 UF_2_34 0.03506574
## 1117 Algorithm 2 UF_2_34 0.03077859
## 1118 Algorithm 2 UF_2_34 0.03448647
## 1119 Algorithm 2 UF_2_34 0.03930687
## 1120 Algorithm 2 UF_2_34 0.03616759
## 1121 Algorithm 2 UF_2_34 0.03385390
## 1122 Algorithm 2 UF_2_34 0.03972591
## 1123 Algorithm 2 UF_2_34 0.03805128
## 1124 Algorithm 2 UF_2_34 0.03985157
## 1125 Algorithm 2 UF_2_34 0.04417166
## 1126 Algorithm 2 UF_2_34 0.04663509
## 1127 Algorithm 2 UF_2_34 0.03264524
## 1128 Algorithm 1 UF_2_39 0.03093071
## 1129 Algorithm 1 UF_2_39 0.03128476
## 1130 Algorithm 1 UF_2_39 0.04815801
## 1131 Algorithm 1 UF_2_39 0.03090203
## 1132 Algorithm 1 UF_2_39 0.10463275
## 1133 Algorithm 1 UF_2_39 0.09181518
## 1134 Algorithm 1 UF_2_39 0.04536654
## 1135 Algorithm 1 UF_2_39 0.18460527
## 1136 Algorithm 1 UF_2_39 0.10494294
## 1137 Algorithm 1 UF_2_39 0.03103229
## 1138 Algorithm 1 UF_2_39 0.03504527
## 1139 Algorithm 1 UF_2_39 0.03132444
## 1140 Algorithm 1 UF_2_39 0.03490366
## 1141 Algorithm 1 UF_2_39 0.03235873
## 1142 Algorithm 1 UF_2_39 0.07876201
## 1143 Algorithm 1 UF_2_39 0.05028283
## 1144 Algorithm 1 UF_2_39 0.03072089
## 1145 Algorithm 1 UF_2_39 0.03189853
## 1146 Algorithm 1 UF_2_39 0.04190666
## 1147 Algorithm 1 UF_2_39 0.05610102
## 1148 Algorithm 1 UF_2_39 0.08396469
## 1149 Algorithm 1 UF_2_39 0.08112024
## 1150 Algorithm 1 UF_2_39 0.03548716
## 1151 Algorithm 1 UF_2_39 0.04683573
## 1152 Algorithm 1 UF_2_39 0.08051210
## 1153 Algorithm 1 UF_2_39 0.08545027
## 1154 Algorithm 1 UF_2_39 0.03319449
## 1155 Algorithm 1 UF_2_39 0.03144649
## 1156 Algorithm 1 UF_2_39 0.09651847
## 1157 Algorithm 1 UF_2_39 0.09188922
## 1158 Algorithm 1 UF_2_39 0.03390673
## 1159 Algorithm 1 UF_2_39 0.03026143
## 1160 Algorithm 1 UF_2_39 0.08513249
## 1161 Algorithm 1 UF_2_39 0.03738877
## 1162 Algorithm 1 UF_2_39 0.08102169
## 1163 Algorithm 1 UF_2_39 0.03345063
## 1164 Algorithm 1 UF_2_39 0.03409181
## 1165 Algorithm 1 UF_2_39 0.03409215
## 1166 Algorithm 1 UF_2_39 0.03263014
## 1167 Algorithm 1 UF_2_39 0.03184338
## 1168 Algorithm 1 UF_2_39 0.03495952
## 1169 Algorithm 1 UF_2_39 0.03437677
## 1170 Algorithm 1 UF_2_39 0.03157692
## 1171 Algorithm 1 UF_2_39 0.03203987
## 1172 Algorithm 1 UF_2_39 0.03059812
## 1173 Algorithm 1 UF_2_39 0.03374986
## 1174 Algorithm 1 UF_2_39 0.08791002
## 1175 Algorithm 1 UF_2_39 0.04708382
## 1176 Algorithm 1 UF_2_39 0.05189724
## 1177 Algorithm 1 UF_2_39 0.10205945
## 1178 Algorithm 1 UF_2_39 0.08159649
## 1179 Algorithm 1 UF_2_39 0.03812531
## 1180 Algorithm 1 UF_2_39 0.03429483
## 1181 Algorithm 1 UF_2_39 0.04043496
## 1182 Algorithm 1 UF_2_39 0.03538721
## 1183 Algorithm 1 UF_2_39 0.08576006
## 1184 Algorithm 1 UF_2_39 0.06129355
## 1185 Algorithm 1 UF_2_39 0.05469734
## 1186 Algorithm 1 UF_2_39 0.02967428
## 1187 Algorithm 1 UF_2_39 0.03177627
## 1188 Algorithm 1 UF_2_39 0.03393455
## 1189 Algorithm 1 UF_2_39 0.03668224
## 1190 Algorithm 1 UF_2_39 0.08758847
## 1191 Algorithm 1 UF_2_39 0.03917503
## 1192 Algorithm 1 UF_2_39 0.03277562
## 1193 Algorithm 1 UF_2_39 0.15134399
## 1194 Algorithm 1 UF_2_39 0.08962600
## 1195 Algorithm 1 UF_2_39 0.03575246
## 1196 Algorithm 1 UF_2_39 0.10099779
## 1197 Algorithm 1 UF_2_39 0.03481408
## 1198 Algorithm 1 UF_2_39 0.08060940
## 1199 Algorithm 2 UF_2_39 0.03322346
## 1200 Algorithm 2 UF_2_39 0.03954014
## 1201 Algorithm 2 UF_2_39 0.04192228
## 1202 Algorithm 2 UF_2_39 0.03570221
## 1203 Algorithm 2 UF_2_39 0.04157639
## 1204 Algorithm 2 UF_2_39 0.04134390
## 1205 Algorithm 2 UF_2_39 0.03803307
## 1206 Algorithm 2 UF_2_39 0.03660917
## 1207 Algorithm 2 UF_2_39 0.03673834
## 1208 Algorithm 2 UF_2_39 0.04106130
## 1209 Algorithm 2 UF_2_39 0.03687262
## 1210 Algorithm 2 UF_2_39 0.04486406
## 1211 Algorithm 2 UF_2_39 0.03669031
## 1212 Algorithm 2 UF_2_39 0.03849836
## 1213 Algorithm 2 UF_2_39 0.04402458
## 1214 Algorithm 1 UF_5_17 0.35287259
## 1215 Algorithm 1 UF_5_17 0.23955321
## 1216 Algorithm 1 UF_5_17 0.44808876
## 1217 Algorithm 1 UF_5_17 0.29055995
## 1218 Algorithm 1 UF_5_17 0.27601146
## 1219 Algorithm 1 UF_5_17 0.40566888
## 1220 Algorithm 1 UF_5_17 0.25603699
## 1221 Algorithm 1 UF_5_17 0.29897739
## 1222 Algorithm 1 UF_5_17 0.45121370
## 1223 Algorithm 1 UF_5_17 0.37788127
## 1224 Algorithm 1 UF_5_17 0.32468823
## 1225 Algorithm 1 UF_5_17 0.22704101
## 1226 Algorithm 1 UF_5_17 0.38710819
## 1227 Algorithm 1 UF_5_17 0.43793479
## 1228 Algorithm 1 UF_5_17 0.33816441
## 1229 Algorithm 1 UF_5_17 0.36180104
## 1230 Algorithm 1 UF_5_17 0.46883720
## 1231 Algorithm 1 UF_5_17 0.42541190
## 1232 Algorithm 1 UF_5_17 0.33051862
## 1233 Algorithm 1 UF_5_17 0.39578070
## 1234 Algorithm 1 UF_5_17 0.40019439
## 1235 Algorithm 1 UF_5_17 0.33807370
## 1236 Algorithm 1 UF_5_17 0.37357954
## 1237 Algorithm 1 UF_5_17 0.38312285
## 1238 Algorithm 1 UF_5_17 0.36194764
## 1239 Algorithm 1 UF_5_17 0.30114009
## 1240 Algorithm 1 UF_5_17 0.42653016
## 1241 Algorithm 1 UF_5_17 0.24249536
## 1242 Algorithm 1 UF_5_17 0.70480685
## 1243 Algorithm 1 UF_5_17 0.34341075
## 1244 Algorithm 1 UF_5_17 0.39898267
## 1245 Algorithm 1 UF_5_17 0.43157560
## 1246 Algorithm 1 UF_5_17 0.39584332
## 1247 Algorithm 1 UF_5_17 0.36481683
## 1248 Algorithm 1 UF_5_17 0.32330553
## 1249 Algorithm 1 UF_5_17 0.31599173
## 1250 Algorithm 1 UF_5_17 0.44772821
## 1251 Algorithm 1 UF_5_17 0.39061294
## 1252 Algorithm 1 UF_5_17 0.36467252
## 1253 Algorithm 1 UF_5_17 0.33932665
## 1254 Algorithm 1 UF_5_17 0.28534739
## 1255 Algorithm 1 UF_5_17 0.36039221
## 1256 Algorithm 1 UF_5_17 0.37996457
## 1257 Algorithm 1 UF_5_17 0.38846563
## 1258 Algorithm 1 UF_5_17 0.17855765
## 1259 Algorithm 1 UF_5_17 0.34446971
## 1260 Algorithm 1 UF_5_17 0.34257744
## 1261 Algorithm 1 UF_5_17 0.47739378
## 1262 Algorithm 1 UF_5_17 0.23256287
## 1263 Algorithm 1 UF_5_17 0.38549912
## 1264 Algorithm 1 UF_5_17 0.28974813
## 1265 Algorithm 1 UF_5_17 0.20723410
## 1266 Algorithm 1 UF_5_17 0.37120226
## 1267 Algorithm 1 UF_5_17 0.24297097
## 1268 Algorithm 1 UF_5_17 0.45457684
## 1269 Algorithm 1 UF_5_17 0.45458153
## 1270 Algorithm 1 UF_5_17 0.48305714
## 1271 Algorithm 1 UF_5_17 0.64430561
## 1272 Algorithm 1 UF_5_17 0.34296329
## 1273 Algorithm 1 UF_5_17 0.29996400
## 1274 Algorithm 1 UF_5_17 0.38479061
## 1275 Algorithm 1 UF_5_17 0.41743189
## 1276 Algorithm 1 UF_5_17 0.23649963
## 1277 Algorithm 1 UF_5_17 0.37345843
## 1278 Algorithm 1 UF_5_17 0.23479365
## 1279 Algorithm 1 UF_5_17 0.33933905
## 1280 Algorithm 1 UF_5_17 0.44129592
## 1281 Algorithm 1 UF_5_17 0.21286555
## 1282 Algorithm 1 UF_5_17 0.35341553
## 1283 Algorithm 1 UF_5_17 0.39797876
## 1284 Algorithm 1 UF_5_17 0.40745384
## 1285 Algorithm 1 UF_5_17 0.38616746
## 1286 Algorithm 1 UF_5_17 0.53282950
## 1287 Algorithm 1 UF_5_17 0.28523344
## 1288 Algorithm 1 UF_5_17 0.30059312
## 1289 Algorithm 1 UF_5_17 0.50081472
## 1290 Algorithm 1 UF_5_17 0.21907968
## 1291 Algorithm 1 UF_5_17 0.40638490
## 1292 Algorithm 1 UF_5_17 0.38505630
## 1293 Algorithm 1 UF_5_17 0.48357905
## 1294 Algorithm 1 UF_5_17 0.30180354
## 1295 Algorithm 1 UF_5_17 0.33863041
## 1296 Algorithm 1 UF_5_17 0.37856446
## 1297 Algorithm 2 UF_5_17 0.18642884
## 1298 Algorithm 2 UF_5_17 0.45840918
## 1299 Algorithm 2 UF_5_17 0.65165995
## 1300 Algorithm 2 UF_5_17 0.52658541
## 1301 Algorithm 2 UF_5_17 0.54366971
## 1302 Algorithm 2 UF_5_17 0.49814493
## 1303 Algorithm 2 UF_5_17 0.43816353
## 1304 Algorithm 2 UF_5_17 0.59757003
## 1305 Algorithm 2 UF_5_17 0.74168131
## 1306 Algorithm 2 UF_5_17 0.45359961
## 1307 Algorithm 2 UF_5_17 0.50060983
## 1308 Algorithm 2 UF_5_17 0.52689337
## 1309 Algorithm 2 UF_5_17 0.74767978
## 1310 Algorithm 2 UF_5_17 0.67485451
## 1311 Algorithm 2 UF_5_17 0.40360537
## 1312 Algorithm 2 UF_5_17 0.61701156
## 1313 Algorithm 2 UF_5_17 0.61981652
## 1314 Algorithm 2 UF_5_17 0.62072889
## 1315 Algorithm 2 UF_5_17 0.54576453
## 1316 Algorithm 2 UF_5_17 0.49104053
## 1317 Algorithm 2 UF_5_17 0.65863458
## 1318 Algorithm 2 UF_5_17 0.66284927
## 1319 Algorithm 2 UF_5_17 0.55657131
## 1320 Algorithm 2 UF_5_17 0.65968516
## 1321 Algorithm 2 UF_5_17 1.00446327
## 1322 Algorithm 2 UF_5_17 0.48181004
## 1323 Algorithm 2 UF_5_17 0.66778057
## 1324 Algorithm 2 UF_5_17 0.46405181
## 1325 Algorithm 2 UF_5_17 0.48923268
## 1326 Algorithm 2 UF_5_17 0.41676222
## 1327 Algorithm 2 UF_5_17 0.50635565
## 1328 Algorithm 2 UF_5_17 0.61779641
## 1329 Algorithm 2 UF_5_17 0.47943359
## 1330 Algorithm 2 UF_5_17 0.50795743
## 1331 Algorithm 2 UF_5_17 0.45866081
## 1332 Algorithm 2 UF_5_17 0.54504615
## 1333 Algorithm 2 UF_5_17 0.62374748
## 1334 Algorithm 2 UF_5_17 0.73202373
## 1335 Algorithm 2 UF_5_17 0.59857729
## 1336 Algorithm 2 UF_5_17 0.13138399
## 1337 Algorithm 2 UF_5_17 0.59902847
## 1338 Algorithm 2 UF_5_17 0.60045652
## 1339 Algorithm 2 UF_5_17 0.57912643
## 1340 Algorithm 2 UF_5_17 0.68380498
## 1341 Algorithm 2 UF_5_17 0.56406553
## 1342 Algorithm 2 UF_5_17 0.66660829
## 1343 Algorithm 2 UF_5_17 0.47016247
## 1344 Algorithm 2 UF_5_17 0.45797021
## 1345 Algorithm 2 UF_5_17 0.49714721
## 1346 Algorithm 2 UF_5_17 0.41344616
## 1347 Algorithm 2 UF_5_17 0.31851151
## 1348 Algorithm 2 UF_5_17 0.71363641
## 1349 Algorithm 2 UF_5_17 0.50271066
## 1350 Algorithm 2 UF_5_17 0.26926169
## 1351 Algorithm 2 UF_5_17 0.53700330
## 1352 Algorithm 2 UF_5_17 0.41655963
## 1353 Algorithm 2 UF_5_17 0.82841671
## 1354 Algorithm 2 UF_5_17 0.64589890
## 1355 Algorithm 2 UF_5_17 0.49846446
## 1356 Algorithm 2 UF_5_17 0.40414764
## 1357 Algorithm 2 UF_5_17 0.54591384
## 1358 Algorithm 2 UF_5_17 0.62949797
## 1359 Algorithm 2 UF_5_17 0.58995666
## 1360 Algorithm 2 UF_5_17 0.54381024
## 1361 Algorithm 2 UF_5_17 0.56841473
## 1362 Algorithm 2 UF_5_17 0.65815717
## 1363 Algorithm 2 UF_5_17 0.59287434
## 1364 Algorithm 2 UF_5_17 0.62762074
## 1365 Algorithm 2 UF_5_17 0.64151323
## 1366 Algorithm 2 UF_5_17 0.62437241
## 1367 Algorithm 2 UF_5_17 0.57720162
## 1368 Algorithm 2 UF_5_17 0.52699616
## 1369 Algorithm 2 UF_5_17 0.53580697
## 1370 Algorithm 2 UF_5_17 0.31126052
## 1371 Algorithm 2 UF_5_17 0.49997230
## 1372 Algorithm 2 UF_5_17 0.49031109
## 1373 Algorithm 2 UF_5_17 0.64116542
## 1374 Algorithm 2 UF_5_17 0.59045949
## 1375 Algorithm 2 UF_5_17 0.37141491
## 1376 Algorithm 2 UF_5_17 0.47768511
## 1377 Algorithm 2 UF_5_17 0.69752893
## 1378 Algorithm 2 UF_5_17 0.60259944
## 1379 Algorithm 2 UF_5_17 0.62453110
## 1380 Algorithm 2 UF_5_17 0.76626362
## 1381 Algorithm 2 UF_5_17 0.20590968
## 1382 Algorithm 2 UF_5_17 0.46496812
## 1383 Algorithm 2 UF_5_17 0.40892905
## 1384 Algorithm 2 UF_5_17 0.44690239
## 1385 Algorithm 2 UF_5_17 0.67317536
## 1386 Algorithm 2 UF_5_17 0.39906688
## 1387 Algorithm 2 UF_5_17 0.60521195
## 1388 Algorithm 2 UF_5_17 0.70934562
## 1389 Algorithm 2 UF_5_17 0.23645970
## 1390 Algorithm 2 UF_5_17 0.35613211
## 1391 Algorithm 2 UF_5_17 0.38341422
## 1392 Algorithm 2 UF_5_17 0.45122518
## 1393 Algorithm 2 UF_5_17 0.43716721
## 1394 Algorithm 2 UF_5_17 0.48578136
## 1395 Algorithm 2 UF_5_17 0.20558550
## 1396 Algorithm 2 UF_5_17 0.25669954
## 1397 Algorithm 2 UF_5_17 0.65335789
## 1398 Algorithm 2 UF_5_17 0.53936673
## 1399 Algorithm 2 UF_5_17 0.74466178
## 1400 Algorithm 2 UF_5_17 0.49718147
## 1401 Algorithm 2 UF_5_17 0.53996575
## 1402 Algorithm 2 UF_5_17 0.61716003
## 1403 Algorithm 2 UF_5_17 0.66077972
## 1404 Algorithm 2 UF_5_17 0.43631220
## 1405 Algorithm 2 UF_5_17 0.62054483
## 1406 Algorithm 2 UF_5_17 0.43674646
## 1407 Algorithm 2 UF_5_17 0.68755279
## 1408 Algorithm 2 UF_5_17 0.35336726
## 1409 Algorithm 2 UF_5_17 0.52298100
## 1410 Algorithm 2 UF_5_17 0.67290285
## 1411 Algorithm 2 UF_5_17 0.46982332
## 1412 Algorithm 2 UF_5_17 0.14577856
## 1413 Algorithm 2 UF_5_17 0.52136782
## 1414 Algorithm 1 UF_3_15 0.29000648
## 1415 Algorithm 1 UF_3_15 0.22259278
## 1416 Algorithm 1 UF_3_15 0.23147668
## 1417 Algorithm 1 UF_3_15 0.22798573
## 1418 Algorithm 1 UF_3_15 0.20530921
## 1419 Algorithm 1 UF_3_15 0.30285258
## 1420 Algorithm 1 UF_3_15 0.22169861
## 1421 Algorithm 1 UF_3_15 0.25831919
## 1422 Algorithm 1 UF_3_15 0.21497320
## 1423 Algorithm 1 UF_3_15 0.25033231
## 1424 Algorithm 1 UF_3_15 0.24111625
## 1425 Algorithm 1 UF_3_15 0.15668966
## 1426 Algorithm 1 UF_3_15 0.37327553
## 1427 Algorithm 1 UF_3_15 0.23532235
## 1428 Algorithm 1 UF_3_15 0.23566732
## 1429 Algorithm 1 UF_3_15 0.22990281
## 1430 Algorithm 1 UF_3_15 0.26954363
## 1431 Algorithm 1 UF_3_15 0.22954214
## 1432 Algorithm 1 UF_3_15 0.27162609
## 1433 Algorithm 1 UF_3_15 0.20280339
## 1434 Algorithm 1 UF_3_15 0.21631901
## 1435 Algorithm 1 UF_3_15 0.20770243
## 1436 Algorithm 1 UF_3_15 0.39279428
## 1437 Algorithm 1 UF_3_15 0.25928228
## 1438 Algorithm 1 UF_3_15 0.19456376
## 1439 Algorithm 1 UF_3_15 0.36261478
## 1440 Algorithm 1 UF_3_15 0.16612928
## 1441 Algorithm 1 UF_3_15 0.19695997
## 1442 Algorithm 1 UF_3_15 0.33446922
## 1443 Algorithm 1 UF_3_15 0.19599918
## 1444 Algorithm 1 UF_3_15 0.20891803
## 1445 Algorithm 1 UF_3_15 0.22701278
## 1446 Algorithm 1 UF_3_15 0.25117497
## 1447 Algorithm 1 UF_3_15 0.20647033
## 1448 Algorithm 1 UF_3_15 0.34889126
## 1449 Algorithm 1 UF_3_15 0.24149505
## 1450 Algorithm 1 UF_3_15 0.25693436
## 1451 Algorithm 1 UF_3_15 0.24034821
## 1452 Algorithm 1 UF_3_15 0.28703108
## 1453 Algorithm 1 UF_3_15 0.19247202
## 1454 Algorithm 2 UF_3_15 0.18284190
## 1455 Algorithm 2 UF_3_15 0.28981168
## 1456 Algorithm 2 UF_3_15 0.25465209
## 1457 Algorithm 2 UF_3_15 0.15269134
## 1458 Algorithm 2 UF_3_15 0.29591931
## 1459 Algorithm 2 UF_3_15 0.14500138
## 1460 Algorithm 2 UF_3_15 0.34013984
## 1461 Algorithm 2 UF_3_15 0.13839694
## 1462 Algorithm 2 UF_3_15 0.18703447
## 1463 Algorithm 2 UF_3_15 0.17951046
## 1464 Algorithm 2 UF_3_15 0.24942870
## 1465 Algorithm 2 UF_3_15 0.29927756
## 1466 Algorithm 2 UF_3_15 0.17061441
## 1467 Algorithm 2 UF_3_15 0.22619912
## 1468 Algorithm 2 UF_3_15 0.33736364
## 1469 Algorithm 2 UF_3_15 0.17558850
## 1470 Algorithm 2 UF_3_15 0.21687428
## 1471 Algorithm 2 UF_3_15 0.16022485
## 1472 Algorithm 2 UF_3_15 0.31894183
## 1473 Algorithm 2 UF_3_15 0.21865929
## 1474 Algorithm 2 UF_3_15 0.15709828
## 1475 Algorithm 2 UF_3_15 0.31932754
## 1476 Algorithm 2 UF_3_15 0.14872501
## 1477 Algorithm 2 UF_3_15 0.18444741
## 1478 Algorithm 2 UF_3_15 0.31241434
## 1479 Algorithm 2 UF_3_15 0.18095746
## 1480 Algorithm 2 UF_3_15 0.21044794
## 1481 Algorithm 2 UF_3_15 0.33367269
## 1482 Algorithm 2 UF_3_15 0.19360129
## 1483 Algorithm 2 UF_3_15 0.16201441
## 1484 Algorithm 2 UF_3_15 0.08611372
## 1485 Algorithm 2 UF_3_15 0.25739255
## 1486 Algorithm 2 UF_3_15 0.21059341
## 1487 Algorithm 2 UF_3_15 0.13390572
## 1488 Algorithm 2 UF_3_15 0.34361741
## 1489 Algorithm 2 UF_3_15 0.33996019
## 1490 Algorithm 2 UF_3_15 0.32811894
## 1491 Algorithm 2 UF_3_15 0.19979762
## 1492 Algorithm 2 UF_3_15 0.25905367
## 1493 Algorithm 2 UF_3_15 0.24948943
## 1494 Algorithm 2 UF_3_15 0.11591314
## 1495 Algorithm 2 UF_3_15 0.33283752
## 1496 Algorithm 2 UF_3_15 0.14311561
## 1497 Algorithm 2 UF_3_15 0.34373873
## 1498 Algorithm 2 UF_3_15 0.21071887
## 1499 Algorithm 2 UF_3_15 0.15733441
## 1500 Algorithm 2 UF_3_15 0.24760815
## 1501 Algorithm 2 UF_3_15 0.27202924
## 1502 Algorithm 2 UF_3_15 0.32514558
## 1503 Algorithm 2 UF_3_15 0.21386848
## 1504 Algorithm 2 UF_3_15 0.16298839
## 1505 Algorithm 2 UF_3_15 0.14661225
## 1506 Algorithm 2 UF_3_15 0.24419356
## 1507 Algorithm 1 UF_4_16 0.05493201
## 1508 Algorithm 1 UF_4_16 0.06336805
## 1509 Algorithm 1 UF_4_16 0.06559547
## 1510 Algorithm 1 UF_4_16 0.06641982
## 1511 Algorithm 1 UF_4_16 0.06915655
## 1512 Algorithm 1 UF_4_16 0.06278642
## 1513 Algorithm 1 UF_4_16 0.05877090
## 1514 Algorithm 1 UF_4_16 0.07659814
## 1515 Algorithm 1 UF_4_16 0.06587625
## 1516 Algorithm 1 UF_4_16 0.06599309
## 1517 Algorithm 1 UF_4_16 0.07055077
## 1518 Algorithm 1 UF_4_16 0.06099361
## 1519 Algorithm 1 UF_4_16 0.07363596
## 1520 Algorithm 1 UF_4_16 0.07718932
## 1521 Algorithm 1 UF_4_16 0.07200404
## 1522 Algorithm 2 UF_4_16 0.06100680
## 1523 Algorithm 2 UF_4_16 0.06428126
## 1524 Algorithm 2 UF_4_16 0.06280575
## 1525 Algorithm 2 UF_4_16 0.06691924
## 1526 Algorithm 2 UF_4_16 0.05987861
## 1527 Algorithm 2 UF_4_16 0.06097958
## 1528 Algorithm 2 UF_4_16 0.05431484
## 1529 Algorithm 2 UF_4_16 0.05652381
## 1530 Algorithm 2 UF_4_16 0.05282301
## 1531 Algorithm 2 UF_4_16 0.05645443
## 1532 Algorithm 2 UF_4_16 0.05760218
## 1533 Algorithm 2 UF_4_16 0.05821081
## 1534 Algorithm 2 UF_4_16 0.06148058
## 1535 Algorithm 2 UF_4_16 0.06208412
## 1536 Algorithm 2 UF_4_16 0.05698077
## 1537 Algorithm 1 UF_7_18 0.34966204
## 1538 Algorithm 1 UF_7_18 0.36028843
## 1539 Algorithm 1 UF_7_18 0.34324295
## 1540 Algorithm 1 UF_7_18 0.35034670
## 1541 Algorithm 1 UF_7_18 0.34665304
## 1542 Algorithm 1 UF_7_18 0.35573576
## 1543 Algorithm 1 UF_7_18 0.34957461
## 1544 Algorithm 1 UF_7_18 0.34294613
## 1545 Algorithm 1 UF_7_18 0.35098644
## 1546 Algorithm 1 UF_7_18 0.35697207
## 1547 Algorithm 1 UF_7_18 0.36582900
## 1548 Algorithm 1 UF_7_18 0.65889623
## 1549 Algorithm 1 UF_7_18 0.60107017
## 1550 Algorithm 1 UF_7_18 0.30178980
## 1551 Algorithm 1 UF_7_18 0.33171650
## 1552 Algorithm 1 UF_7_18 0.33821842
## 1553 Algorithm 1 UF_7_18 0.35081516
## 1554 Algorithm 1 UF_7_18 0.36642865
## 1555 Algorithm 1 UF_7_18 0.70330062
## 1556 Algorithm 1 UF_7_18 0.31814677
## 1557 Algorithm 1 UF_7_18 0.46613831
## 1558 Algorithm 1 UF_7_18 0.32364889
## 1559 Algorithm 1 UF_7_18 0.54420201
## 1560 Algorithm 1 UF_7_18 0.48376391
## 1561 Algorithm 1 UF_7_18 0.46086328
## 1562 Algorithm 1 UF_7_18 0.34098773
## 1563 Algorithm 1 UF_7_18 0.40319898
## 1564 Algorithm 1 UF_7_18 0.65288318
## 1565 Algorithm 1 UF_7_18 0.35221818
## 1566 Algorithm 1 UF_7_18 0.34918949
## 1567 Algorithm 1 UF_7_18 0.70142017
## 1568 Algorithm 1 UF_7_18 0.35886332
## 1569 Algorithm 1 UF_7_18 0.34195115
## 1570 Algorithm 1 UF_7_18 0.35741759
## 1571 Algorithm 1 UF_7_18 0.35541632
## 1572 Algorithm 1 UF_7_18 0.40075442
## 1573 Algorithm 1 UF_7_18 0.34784322
## 1574 Algorithm 1 UF_7_18 0.36498111
## 1575 Algorithm 1 UF_7_18 0.46365932
## 1576 Algorithm 1 UF_7_18 0.34137416
## 1577 Algorithm 1 UF_7_18 0.43110866
## 1578 Algorithm 2 UF_7_18 0.01693527
## 1579 Algorithm 2 UF_7_18 0.02192156
## 1580 Algorithm 2 UF_7_18 0.01237511
## 1581 Algorithm 2 UF_7_18 0.02620278
## 1582 Algorithm 2 UF_7_18 0.01511154
## 1583 Algorithm 2 UF_7_18 0.02131654
## 1584 Algorithm 2 UF_7_18 0.01482729
## 1585 Algorithm 2 UF_7_18 0.65564927
## 1586 Algorithm 2 UF_7_18 0.01815887
## 1587 Algorithm 2 UF_7_18 0.02351001
## 1588 Algorithm 2 UF_7_18 0.24407903
## 1589 Algorithm 2 UF_7_18 0.01895075
## 1590 Algorithm 2 UF_7_18 0.02040084
## 1591 Algorithm 2 UF_7_18 0.02207076
## 1592 Algorithm 2 UF_7_18 0.01632826
## 1593 Algorithm 2 UF_7_18 0.01876780
## 1594 Algorithm 2 UF_7_18 0.01882200
## 1595 Algorithm 2 UF_7_18 0.02114886
## 1596 Algorithm 2 UF_7_18 0.02335623
## 1597 Algorithm 2 UF_7_18 0.02025934
## 1598 Algorithm 2 UF_7_18 0.01945582
## 1599 Algorithm 2 UF_7_18 0.02038049
## 1600 Algorithm 2 UF_7_18 0.02053908
## 1601 Algorithm 2 UF_7_18 0.01719338
## 1602 Algorithm 2 UF_7_18 0.01680179
## 1603 Algorithm 2 UF_7_18 0.01583491
## 1604 Algorithm 2 UF_7_18 0.01561060
## 1605 Algorithm 2 UF_7_18 0.01666466
## 1606 Algorithm 2 UF_7_18 0.01246764
## 1607 Algorithm 2 UF_7_18 0.01846354
## 1608 Algorithm 2 UF_7_18 0.02185068
## 1609 Algorithm 2 UF_7_18 0.01784678
## 1610 Algorithm 2 UF_7_18 0.01728164
## 1611 Algorithm 1 UF_7_38 0.34852456
## 1612 Algorithm 1 UF_7_38 0.34353379
## 1613 Algorithm 1 UF_7_38 0.69933073
## 1614 Algorithm 1 UF_7_38 0.40206265
## 1615 Algorithm 1 UF_7_38 0.35603370
## 1616 Algorithm 1 UF_7_38 0.37248876
## 1617 Algorithm 1 UF_7_38 0.35157148
## 1618 Algorithm 1 UF_7_38 0.40607183
## 1619 Algorithm 1 UF_7_38 0.69120471
## 1620 Algorithm 1 UF_7_38 0.58708779
## 1621 Algorithm 1 UF_7_38 0.54304058
## 1622 Algorithm 1 UF_7_38 0.34983240
## 1623 Algorithm 1 UF_7_38 0.35897428
## 1624 Algorithm 1 UF_7_38 0.35961617
## 1625 Algorithm 1 UF_7_38 0.40367518
## 1626 Algorithm 1 UF_7_38 0.33952968
## 1627 Algorithm 1 UF_7_38 0.36531221
## 1628 Algorithm 1 UF_7_38 0.34206102
## 1629 Algorithm 1 UF_7_38 0.03729959
## 1630 Algorithm 1 UF_7_38 0.34264656
## 1631 Algorithm 1 UF_7_38 0.36174276
## 1632 Algorithm 1 UF_7_38 0.36218052
## 1633 Algorithm 1 UF_7_38 0.36158240
## 1634 Algorithm 1 UF_7_38 0.36121486
## 1635 Algorithm 1 UF_7_38 0.35593765
## 1636 Algorithm 1 UF_7_38 0.36998243
## 1637 Algorithm 1 UF_7_38 0.68308205
## 1638 Algorithm 1 UF_7_38 0.33846636
## 1639 Algorithm 1 UF_7_38 0.39920599
## 1640 Algorithm 1 UF_7_38 0.35755613
## 1641 Algorithm 1 UF_7_38 0.60539157
## 1642 Algorithm 1 UF_7_38 0.35873246
## 1643 Algorithm 2 UF_7_38 0.01915522
## 1644 Algorithm 2 UF_7_38 0.02914570
## 1645 Algorithm 2 UF_7_38 0.31164578
## 1646 Algorithm 2 UF_7_38 0.02700643
## 1647 Algorithm 2 UF_7_38 0.21880636
## 1648 Algorithm 2 UF_7_38 0.02543032
## 1649 Algorithm 2 UF_7_38 0.01941986
## 1650 Algorithm 2 UF_7_38 0.02548521
## 1651 Algorithm 2 UF_7_38 0.02536312
## 1652 Algorithm 2 UF_7_38 0.02906629
## 1653 Algorithm 2 UF_7_38 0.01706825
## 1654 Algorithm 2 UF_7_38 0.01564606
## 1655 Algorithm 2 UF_7_38 0.03200816
## 1656 Algorithm 2 UF_7_38 0.04540685
## 1657 Algorithm 2 UF_7_38 0.02240327
## 1658 Algorithm 2 UF_7_38 0.02406361
## 1659 Algorithm 1 UF_4_14 0.07185440
## 1660 Algorithm 1 UF_4_14 0.06505940
## 1661 Algorithm 1 UF_4_14 0.07236999
## 1662 Algorithm 1 UF_4_14 0.08580576
## 1663 Algorithm 1 UF_4_14 0.07494096
## 1664 Algorithm 1 UF_4_14 0.07520456
## 1665 Algorithm 1 UF_4_14 0.07199709
## 1666 Algorithm 1 UF_4_14 0.07347395
## 1667 Algorithm 1 UF_4_14 0.06102935
## 1668 Algorithm 1 UF_4_14 0.07431553
## 1669 Algorithm 1 UF_4_14 0.05988419
## 1670 Algorithm 1 UF_4_14 0.06354947
## 1671 Algorithm 1 UF_4_14 0.06518621
## 1672 Algorithm 1 UF_4_14 0.06945230
## 1673 Algorithm 1 UF_4_14 0.07430802
## 1674 Algorithm 2 UF_4_14 0.05569611
## 1675 Algorithm 2 UF_4_14 0.05158953
## 1676 Algorithm 2 UF_4_14 0.05447310
## 1677 Algorithm 2 UF_4_14 0.05572043
## 1678 Algorithm 2 UF_4_14 0.04924262
## 1679 Algorithm 2 UF_4_14 0.05300738
## 1680 Algorithm 2 UF_4_14 0.06196498
## 1681 Algorithm 2 UF_4_14 0.06226014
## 1682 Algorithm 2 UF_4_14 0.05489685
## 1683 Algorithm 2 UF_4_14 0.05455697
## 1684 Algorithm 2 UF_4_14 0.05566547
## 1685 Algorithm 2 UF_4_14 0.05144929
## 1686 Algorithm 2 UF_4_14 0.05980390
## 1687 Algorithm 2 UF_4_14 0.05495355
## 1688 Algorithm 2 UF_4_14 0.06490967
## 1689 Algorithm 1 UF_1_11 0.26650253
## 1690 Algorithm 1 UF_1_11 0.10812059
## 1691 Algorithm 1 UF_1_11 0.11950407
## 1692 Algorithm 1 UF_1_11 0.16040014
## 1693 Algorithm 1 UF_1_11 0.15306183
## 1694 Algorithm 1 UF_1_11 0.19044697
## 1695 Algorithm 1 UF_1_11 0.15763980
## 1696 Algorithm 1 UF_1_11 0.10535335
## 1697 Algorithm 1 UF_1_11 0.23795922
## 1698 Algorithm 1 UF_1_11 0.13306989
## 1699 Algorithm 1 UF_1_11 0.33747227
## 1700 Algorithm 1 UF_1_11 0.09688814
## 1701 Algorithm 1 UF_1_11 0.08416188
## 1702 Algorithm 1 UF_1_11 0.14874590
## 1703 Algorithm 1 UF_1_11 0.16084223
## 1704 Algorithm 2 UF_1_11 0.02700769
## 1705 Algorithm 2 UF_1_11 0.02814077
## 1706 Algorithm 2 UF_1_11 0.03053129
## 1707 Algorithm 2 UF_1_11 0.02717723
## 1708 Algorithm 2 UF_1_11 0.03852262
## 1709 Algorithm 2 UF_1_11 0.02807750
## 1710 Algorithm 2 UF_1_11 0.02539741
## 1711 Algorithm 2 UF_1_11 0.02652545
## 1712 Algorithm 2 UF_1_11 0.02943445
## 1713 Algorithm 2 UF_1_11 0.03241197
## 1714 Algorithm 2 UF_1_11 0.03822682
## 1715 Algorithm 2 UF_1_11 0.02928790
## 1716 Algorithm 2 UF_1_11 0.02917528
## 1717 Algorithm 2 UF_1_11 0.02369976
## 1718 Algorithm 2 UF_1_11 0.02894602
## 1719 Algorithm 1 UF_1_16 0.22057914
## 1720 Algorithm 1 UF_1_16 0.17443781
## 1721 Algorithm 1 UF_1_16 0.14421278
## 1722 Algorithm 1 UF_1_16 0.10503528
## 1723 Algorithm 1 UF_1_16 0.12946121
## 1724 Algorithm 1 UF_1_16 0.14048116
## 1725 Algorithm 1 UF_1_16 0.06664685
## 1726 Algorithm 1 UF_1_16 0.19465441
## 1727 Algorithm 1 UF_1_16 0.09462311
## 1728 Algorithm 1 UF_1_16 0.11588488
## 1729 Algorithm 1 UF_1_16 0.09118281
## 1730 Algorithm 1 UF_1_16 0.18533341
## 1731 Algorithm 1 UF_1_16 0.15613686
## 1732 Algorithm 1 UF_1_16 0.13006203
## 1733 Algorithm 1 UF_1_16 0.17138465
## 1734 Algorithm 2 UF_1_16 0.03299933
## 1735 Algorithm 2 UF_1_16 0.03745205
## 1736 Algorithm 2 UF_1_16 0.03358959
## 1737 Algorithm 2 UF_1_16 0.02434512
## 1738 Algorithm 2 UF_1_16 0.03268770
## 1739 Algorithm 2 UF_1_16 0.03664486
## 1740 Algorithm 2 UF_1_16 0.02669603
## 1741 Algorithm 2 UF_1_16 0.03838134
## 1742 Algorithm 2 UF_1_16 0.05457198
## 1743 Algorithm 2 UF_1_16 0.03032361
## 1744 Algorithm 2 UF_1_16 0.03704150
## 1745 Algorithm 2 UF_1_16 0.04390376
## 1746 Algorithm 2 UF_1_16 0.03207142
## 1747 Algorithm 2 UF_1_16 0.03005495
## 1748 Algorithm 2 UF_1_16 0.03567334
## 1749 Algorithm 1 UF_2_32 0.06774802
## 1750 Algorithm 1 UF_2_32 0.03717321
## 1751 Algorithm 1 UF_2_32 0.08336262
## 1752 Algorithm 1 UF_2_32 0.05010000
## 1753 Algorithm 1 UF_2_32 0.03400893
## 1754 Algorithm 1 UF_2_32 0.10714931
## 1755 Algorithm 1 UF_2_32 0.08893593
## 1756 Algorithm 1 UF_2_32 0.02613952
## 1757 Algorithm 1 UF_2_32 0.03918550
## 1758 Algorithm 1 UF_2_32 0.04991091
## 1759 Algorithm 1 UF_2_32 0.03339389
## 1760 Algorithm 1 UF_2_32 0.03165187
## 1761 Algorithm 1 UF_2_32 0.03120470
## 1762 Algorithm 1 UF_2_32 0.09995471
## 1763 Algorithm 1 UF_2_32 0.08921339
## 1764 Algorithm 1 UF_2_32 0.03322310
## 1765 Algorithm 1 UF_2_32 0.04436443
## 1766 Algorithm 1 UF_2_32 0.10788865
## 1767 Algorithm 1 UF_2_32 0.03943491
## 1768 Algorithm 1 UF_2_32 0.09133607
## 1769 Algorithm 1 UF_2_32 0.04040033
## 1770 Algorithm 1 UF_2_32 0.08682982
## 1771 Algorithm 1 UF_2_32 0.04271256
## 1772 Algorithm 1 UF_2_32 0.05853770
## 1773 Algorithm 1 UF_2_32 0.04123578
## 1774 Algorithm 1 UF_2_32 0.07436007
## 1775 Algorithm 1 UF_2_32 0.04969498
## 1776 Algorithm 1 UF_2_32 0.03830173
## 1777 Algorithm 1 UF_2_32 0.08137475
## 1778 Algorithm 1 UF_2_32 0.08512850
## 1779 Algorithm 1 UF_2_32 0.03080766
## 1780 Algorithm 1 UF_2_32 0.05230546
## 1781 Algorithm 1 UF_2_32 0.08869262
## 1782 Algorithm 1 UF_2_32 0.05816919
## 1783 Algorithm 1 UF_2_32 0.04344546
## 1784 Algorithm 1 UF_2_32 0.04877102
## 1785 Algorithm 1 UF_2_32 0.03046607
## 1786 Algorithm 1 UF_2_32 0.10256112
## 1787 Algorithm 1 UF_2_32 0.02937215
## 1788 Algorithm 1 UF_2_32 0.03307258
## 1789 Algorithm 1 UF_2_32 0.03485604
## 1790 Algorithm 1 UF_2_32 0.04335289
## 1791 Algorithm 1 UF_2_32 0.02888661
## 1792 Algorithm 1 UF_2_32 0.03485709
## 1793 Algorithm 1 UF_2_32 0.07652189
## 1794 Algorithm 1 UF_2_32 0.03797834
## 1795 Algorithm 1 UF_2_32 0.03320024
## 1796 Algorithm 1 UF_2_32 0.08143253
## 1797 Algorithm 1 UF_2_32 0.05169338
## 1798 Algorithm 1 UF_2_32 0.09219034
## 1799 Algorithm 1 UF_2_32 0.07753612
## 1800 Algorithm 2 UF_2_32 0.03528807
## 1801 Algorithm 2 UF_2_32 0.04208163
## 1802 Algorithm 2 UF_2_32 0.03507537
## 1803 Algorithm 2 UF_2_32 0.03560949
## 1804 Algorithm 2 UF_2_32 0.03289879
## 1805 Algorithm 2 UF_2_32 0.05435531
## 1806 Algorithm 2 UF_2_32 0.03441163
## 1807 Algorithm 2 UF_2_32 0.03354939
## 1808 Algorithm 2 UF_2_32 0.03367490
## 1809 Algorithm 2 UF_2_32 0.04798833
## 1810 Algorithm 2 UF_2_32 0.03657164
## 1811 Algorithm 2 UF_2_32 0.03725882
## 1812 Algorithm 2 UF_2_32 0.03197220
## 1813 Algorithm 2 UF_2_32 0.03197075
## 1814 Algorithm 2 UF_2_32 0.03284690
## 1815 Algorithm 1 UF_3_24 0.18936345
## 1816 Algorithm 1 UF_3_24 0.15294819
## 1817 Algorithm 1 UF_3_24 0.12223744
## 1818 Algorithm 1 UF_3_24 0.17797057
## 1819 Algorithm 1 UF_3_24 0.24873908
## 1820 Algorithm 1 UF_3_24 0.17930078
## 1821 Algorithm 1 UF_3_24 0.16681832
## 1822 Algorithm 1 UF_3_24 0.11937914
## 1823 Algorithm 1 UF_3_24 0.19118439
## 1824 Algorithm 1 UF_3_24 0.16646918
## 1825 Algorithm 1 UF_3_24 0.14282842
## 1826 Algorithm 1 UF_3_24 0.13465299
## 1827 Algorithm 1 UF_3_24 0.17407880
## 1828 Algorithm 1 UF_3_24 0.36156100
## 1829 Algorithm 1 UF_3_24 0.18035367
## 1830 Algorithm 1 UF_3_24 0.15348957
## 1831 Algorithm 1 UF_3_24 0.20794366
## 1832 Algorithm 1 UF_3_24 0.12218537
## 1833 Algorithm 1 UF_3_24 0.18683504
## 1834 Algorithm 1 UF_3_24 0.19260175
## 1835 Algorithm 1 UF_3_24 0.16176352
## 1836 Algorithm 1 UF_3_24 0.15831605
## 1837 Algorithm 1 UF_3_24 0.18272553
## 1838 Algorithm 1 UF_3_24 0.16016214
## 1839 Algorithm 1 UF_3_24 0.11974160
## 1840 Algorithm 1 UF_3_24 0.20360774
## 1841 Algorithm 1 UF_3_24 0.15149624
## 1842 Algorithm 1 UF_3_24 0.15087901
## 1843 Algorithm 1 UF_3_24 0.16324122
## 1844 Algorithm 1 UF_3_24 0.17301754
## 1845 Algorithm 1 UF_3_24 0.20075482
## 1846 Algorithm 1 UF_3_24 0.19717688
## 1847 Algorithm 1 UF_3_24 0.25096687
## 1848 Algorithm 1 UF_3_24 0.16527747
## 1849 Algorithm 1 UF_3_24 0.17111440
## 1850 Algorithm 1 UF_3_24 0.17556232
## 1851 Algorithm 1 UF_3_24 0.17904961
## 1852 Algorithm 1 UF_3_24 0.18279726
## 1853 Algorithm 1 UF_3_24 0.12247645
## 1854 Algorithm 1 UF_3_24 0.12951807
## 1855 Algorithm 1 UF_3_24 0.21936787
## 1856 Algorithm 1 UF_3_24 0.13984526
## 1857 Algorithm 2 UF_3_24 0.15170889
## 1858 Algorithm 2 UF_3_24 0.18292617
## 1859 Algorithm 2 UF_3_24 0.14667867
## 1860 Algorithm 2 UF_3_24 0.20625284
## 1861 Algorithm 2 UF_3_24 0.13380133
## 1862 Algorithm 2 UF_3_24 0.19164266
## 1863 Algorithm 2 UF_3_24 0.08879042
## 1864 Algorithm 2 UF_3_24 0.16249278
## 1865 Algorithm 2 UF_3_24 0.06505074
## 1866 Algorithm 2 UF_3_24 0.09433747
## 1867 Algorithm 2 UF_3_24 0.14706641
## 1868 Algorithm 2 UF_3_24 0.22393959
## 1869 Algorithm 2 UF_3_24 0.14266127
## 1870 Algorithm 2 UF_3_24 0.04130638
## 1871 Algorithm 2 UF_3_24 0.25769199
## 1872 Algorithm 2 UF_3_24 0.07128074
## 1873 Algorithm 2 UF_3_24 0.14458483
## 1874 Algorithm 2 UF_3_24 0.11006956
## 1875 Algorithm 2 UF_3_24 0.22769087
## 1876 Algorithm 2 UF_3_24 0.15318049
## 1877 Algorithm 2 UF_3_24 0.16753929
## 1878 Algorithm 2 UF_3_24 0.15981896
## 1879 Algorithm 2 UF_3_24 0.13227531
## 1880 Algorithm 2 UF_3_24 0.11581989
## 1881 Algorithm 2 UF_3_24 0.12383583
## 1882 Algorithm 2 UF_3_24 0.18804829
## 1883 Algorithm 2 UF_3_24 0.09514209
## 1884 Algorithm 2 UF_3_24 0.21515447
## 1885 Algorithm 2 UF_3_24 0.11262531
## 1886 Algorithm 2 UF_3_24 0.08900236
## 1887 Algorithm 2 UF_3_24 0.07416887
## 1888 Algorithm 2 UF_3_24 0.13762733
## 1889 Algorithm 2 UF_3_24 0.17638186
## 1890 Algorithm 2 UF_3_24 0.23060900
## 1891 Algorithm 2 UF_3_24 0.12487329
## 1892 Algorithm 2 UF_3_24 0.04950580
## 1893 Algorithm 2 UF_3_24 0.14876443
## 1894 Algorithm 2 UF_3_24 0.14484876
## 1895 Algorithm 2 UF_3_24 0.17351649
## 1896 Algorithm 2 UF_3_24 0.13162563
## 1897 Algorithm 2 UF_3_24 0.07392650
## 1898 Algorithm 2 UF_3_24 0.09805138
## 1899 Algorithm 2 UF_3_24 0.16673588
## 1900 Algorithm 2 UF_3_24 0.17773109
## 1901 Algorithm 2 UF_3_24 0.11492746
## 1902 Algorithm 2 UF_3_24 0.18152154
## 1903 Algorithm 2 UF_3_24 0.10630532
## 1904 Algorithm 1 UF_6_34 0.31798621
## 1905 Algorithm 1 UF_6_34 0.31903518
## 1906 Algorithm 1 UF_6_34 0.18272759
## 1907 Algorithm 1 UF_6_34 0.34921571
## 1908 Algorithm 1 UF_6_34 0.31934885
## 1909 Algorithm 1 UF_6_34 0.16104220
## 1910 Algorithm 1 UF_6_34 0.29457158
## 1911 Algorithm 1 UF_6_34 0.18911404
## 1912 Algorithm 1 UF_6_34 0.19053688
## 1913 Algorithm 1 UF_6_34 0.21926039
## 1914 Algorithm 1 UF_6_34 0.31948751
## 1915 Algorithm 1 UF_6_34 0.18460403
## 1916 Algorithm 1 UF_6_34 0.15711069
## 1917 Algorithm 1 UF_6_34 0.58218139
## 1918 Algorithm 1 UF_6_34 0.18686945
## 1919 Algorithm 2 UF_6_34 0.03357852
## 1920 Algorithm 2 UF_6_34 0.14833575
## 1921 Algorithm 2 UF_6_34 0.04965231
## 1922 Algorithm 2 UF_6_34 0.03082528
## 1923 Algorithm 2 UF_6_34 0.07104525
## 1924 Algorithm 2 UF_6_34 0.06199547
## 1925 Algorithm 2 UF_6_34 0.05640778
## 1926 Algorithm 2 UF_6_34 0.03664978
## 1927 Algorithm 2 UF_6_34 0.05008014
## 1928 Algorithm 2 UF_6_34 0.05319856
## 1929 Algorithm 2 UF_6_34 0.16483762
## 1930 Algorithm 2 UF_6_34 0.03718492
## 1931 Algorithm 2 UF_6_34 0.05328763
## 1932 Algorithm 2 UF_6_34 0.16274610
## 1933 Algorithm 2 UF_6_34 0.03731301
## 1934 Algorithm 1 UF_4_32 0.07993465
## 1935 Algorithm 1 UF_4_32 0.07310928
## 1936 Algorithm 1 UF_4_32 0.07818879
## 1937 Algorithm 1 UF_4_32 0.07227283
## 1938 Algorithm 1 UF_4_32 0.08173018
## 1939 Algorithm 1 UF_4_32 0.07796214
## 1940 Algorithm 1 UF_4_32 0.07933505
## 1941 Algorithm 1 UF_4_32 0.07086909
## 1942 Algorithm 1 UF_4_32 0.08757509
## 1943 Algorithm 1 UF_4_32 0.07279727
## 1944 Algorithm 1 UF_4_32 0.06648456
## 1945 Algorithm 1 UF_4_32 0.07751133
## 1946 Algorithm 1 UF_4_32 0.07717086
## 1947 Algorithm 1 UF_4_32 0.06714934
## 1948 Algorithm 1 UF_4_32 0.06974507
## 1949 Algorithm 2 UF_4_32 0.07150581
## 1950 Algorithm 2 UF_4_32 0.07997446
## 1951 Algorithm 2 UF_4_32 0.08401103
## 1952 Algorithm 2 UF_4_32 0.07771901
## 1953 Algorithm 2 UF_4_32 0.08171862
## 1954 Algorithm 2 UF_4_32 0.07574977
## 1955 Algorithm 2 UF_4_32 0.07696594
## 1956 Algorithm 2 UF_4_32 0.06549513
## 1957 Algorithm 2 UF_4_32 0.07338036
## 1958 Algorithm 2 UF_4_32 0.07228396
## 1959 Algorithm 2 UF_4_32 0.07116104
## 1960 Algorithm 2 UF_4_32 0.06650342
## 1961 Algorithm 2 UF_4_32 0.07756846
## 1962 Algorithm 2 UF_4_32 0.07432470
## 1963 Algorithm 2 UF_4_32 0.07848214
## 1964 Algorithm 1 UF_2_11 0.02970006
## 1965 Algorithm 1 UF_2_11 0.02694752
## 1966 Algorithm 1 UF_2_11 0.02670063
## 1967 Algorithm 1 UF_2_11 0.06694157
## 1968 Algorithm 1 UF_2_11 0.03893101
## 1969 Algorithm 1 UF_2_11 0.02973091
## 1970 Algorithm 1 UF_2_11 0.06269185
## 1971 Algorithm 1 UF_2_11 0.12661527
## 1972 Algorithm 1 UF_2_11 0.05735948
## 1973 Algorithm 1 UF_2_11 0.08141940
## 1974 Algorithm 1 UF_2_11 0.04636835
## 1975 Algorithm 1 UF_2_11 0.02389078
## 1976 Algorithm 1 UF_2_11 0.02026786
## 1977 Algorithm 1 UF_2_11 0.02278117
## 1978 Algorithm 1 UF_2_11 0.03087219
## 1979 Algorithm 1 UF_2_11 0.02306465
## 1980 Algorithm 1 UF_2_11 0.02410220
## 1981 Algorithm 1 UF_2_11 0.02646633
## 1982 Algorithm 1 UF_2_11 0.02915197
## 1983 Algorithm 1 UF_2_11 0.02285612
## 1984 Algorithm 1 UF_2_11 0.08700133
## 1985 Algorithm 1 UF_2_11 0.03141637
## 1986 Algorithm 1 UF_2_11 0.03177810
## 1987 Algorithm 1 UF_2_11 0.02447761
## 1988 Algorithm 1 UF_2_11 0.02328748
## 1989 Algorithm 1 UF_2_11 0.02738428
## 1990 Algorithm 1 UF_2_11 0.09284998
## 1991 Algorithm 1 UF_2_11 0.08290730
## 1992 Algorithm 1 UF_2_11 0.02334707
## 1993 Algorithm 1 UF_2_11 0.02106947
## 1994 Algorithm 1 UF_2_11 0.02451959
## 1995 Algorithm 1 UF_2_11 0.09747840
## 1996 Algorithm 1 UF_2_11 0.03070217
## 1997 Algorithm 1 UF_2_11 0.03716631
## 1998 Algorithm 1 UF_2_11 0.03513670
## 1999 Algorithm 1 UF_2_11 0.07124948
## 2000 Algorithm 1 UF_2_11 0.02587610
## 2001 Algorithm 1 UF_2_11 0.02397752
## 2002 Algorithm 1 UF_2_11 0.02460819
## 2003 Algorithm 1 UF_2_11 0.03887568
## 2004 Algorithm 1 UF_2_11 0.02694919
## 2005 Algorithm 1 UF_2_11 0.03394983
## 2006 Algorithm 1 UF_2_11 0.03372086
## 2007 Algorithm 1 UF_2_11 0.04056791
## 2008 Algorithm 1 UF_2_11 0.02898277
## 2009 Algorithm 1 UF_2_11 0.03957239
## 2010 Algorithm 2 UF_2_11 0.02395845
## 2011 Algorithm 2 UF_2_11 0.02238487
## 2012 Algorithm 2 UF_2_11 0.02238412
## 2013 Algorithm 2 UF_2_11 0.02462377
## 2014 Algorithm 2 UF_2_11 0.02084492
## 2015 Algorithm 2 UF_2_11 0.02384229
## 2016 Algorithm 2 UF_2_11 0.01794329
## 2017 Algorithm 2 UF_2_11 0.01868283
## 2018 Algorithm 2 UF_2_11 0.02602986
## 2019 Algorithm 2 UF_2_11 0.01847829
## 2020 Algorithm 2 UF_2_11 0.02180715
## 2021 Algorithm 2 UF_2_11 0.02075790
## 2022 Algorithm 2 UF_2_11 0.02235055
## 2023 Algorithm 2 UF_2_11 0.02347349
## 2024 Algorithm 2 UF_2_11 0.01840677
## 2025 Algorithm 1 UF_2_22 0.04687716
## 2026 Algorithm 1 UF_2_22 0.05978902
## 2027 Algorithm 1 UF_2_22 0.03350498
## 2028 Algorithm 1 UF_2_22 0.02791371
## 2029 Algorithm 1 UF_2_22 0.09173168
## 2030 Algorithm 1 UF_2_22 0.03338613
## 2031 Algorithm 1 UF_2_22 0.05136548
## 2032 Algorithm 1 UF_2_22 0.03492631
## 2033 Algorithm 1 UF_2_22 0.02856083
## 2034 Algorithm 1 UF_2_22 0.07721396
## 2035 Algorithm 1 UF_2_22 0.21678092
## 2036 Algorithm 1 UF_2_22 0.02828499
## 2037 Algorithm 1 UF_2_22 0.04255131
## 2038 Algorithm 1 UF_2_22 0.02667376
## 2039 Algorithm 1 UF_2_22 0.08830552
## 2040 Algorithm 1 UF_2_22 0.03025670
## 2041 Algorithm 1 UF_2_22 0.08135058
## 2042 Algorithm 1 UF_2_22 0.03592255
## 2043 Algorithm 1 UF_2_22 0.07013544
## 2044 Algorithm 1 UF_2_22 0.02864841
## 2045 Algorithm 1 UF_2_22 0.09395718
## 2046 Algorithm 1 UF_2_22 0.05971615
## 2047 Algorithm 1 UF_2_22 0.03097521
## 2048 Algorithm 1 UF_2_22 0.03914360
## 2049 Algorithm 1 UF_2_22 0.03150270
## 2050 Algorithm 1 UF_2_22 0.22598213
## 2051 Algorithm 1 UF_2_22 0.07149465
## 2052 Algorithm 1 UF_2_22 0.02951162
## 2053 Algorithm 1 UF_2_22 0.08954708
## 2054 Algorithm 1 UF_2_22 0.10148721
## 2055 Algorithm 1 UF_2_22 0.02730899
## 2056 Algorithm 1 UF_2_22 0.09833251
## 2057 Algorithm 1 UF_2_22 0.10660501
## 2058 Algorithm 1 UF_2_22 0.04759199
## 2059 Algorithm 1 UF_2_22 0.07825080
## 2060 Algorithm 1 UF_2_22 0.03353387
## 2061 Algorithm 1 UF_2_22 0.08484702
## 2062 Algorithm 1 UF_2_22 0.02999330
## 2063 Algorithm 1 UF_2_22 0.08691252
## 2064 Algorithm 1 UF_2_22 0.03931096
## 2065 Algorithm 1 UF_2_22 0.07784196
## 2066 Algorithm 1 UF_2_22 0.03958675
## 2067 Algorithm 1 UF_2_22 0.08030694
## 2068 Algorithm 1 UF_2_22 0.09373298
## 2069 Algorithm 2 UF_2_22 0.02851019
## 2070 Algorithm 2 UF_2_22 0.02665587
## 2071 Algorithm 2 UF_2_22 0.02904327
## 2072 Algorithm 2 UF_2_22 0.03866564
## 2073 Algorithm 2 UF_2_22 0.02962962
## 2074 Algorithm 2 UF_2_22 0.03553411
## 2075 Algorithm 2 UF_2_22 0.02772292
## 2076 Algorithm 2 UF_2_22 0.02820782
## 2077 Algorithm 2 UF_2_22 0.02939777
## 2078 Algorithm 2 UF_2_22 0.03018175
## 2079 Algorithm 2 UF_2_22 0.02277412
## 2080 Algorithm 2 UF_2_22 0.02409353
## 2081 Algorithm 2 UF_2_22 0.02314675
## 2082 Algorithm 2 UF_2_22 0.03758412
## 2083 Algorithm 2 UF_2_22 0.03121549
## 2084 Algorithm 1 UF_1_17 0.18050074
## 2085 Algorithm 1 UF_1_17 0.16237024
## 2086 Algorithm 1 UF_1_17 0.13713107
## 2087 Algorithm 1 UF_1_17 0.11342100
## 2088 Algorithm 1 UF_1_17 0.08967701
## 2089 Algorithm 1 UF_1_17 0.13113710
## 2090 Algorithm 1 UF_1_17 0.13257657
## 2091 Algorithm 1 UF_1_17 0.21240270
## 2092 Algorithm 1 UF_1_17 0.09312394
## 2093 Algorithm 1 UF_1_17 0.16368360
## 2094 Algorithm 1 UF_1_17 0.14430066
## 2095 Algorithm 1 UF_1_17 0.15855083
## 2096 Algorithm 1 UF_1_17 0.07156048
## 2097 Algorithm 1 UF_1_17 0.10800398
## 2098 Algorithm 1 UF_1_17 0.17386612
## 2099 Algorithm 2 UF_1_17 0.02701273
## 2100 Algorithm 2 UF_1_17 0.05162414
## 2101 Algorithm 2 UF_1_17 0.03875826
## 2102 Algorithm 2 UF_1_17 0.03339056
## 2103 Algorithm 2 UF_1_17 0.03294722
## 2104 Algorithm 2 UF_1_17 0.07555167
## 2105 Algorithm 2 UF_1_17 0.04337048
## 2106 Algorithm 2 UF_1_17 0.04552125
## 2107 Algorithm 2 UF_1_17 0.03298608
## 2108 Algorithm 2 UF_1_17 0.03527235
## 2109 Algorithm 2 UF_1_17 0.03769468
## 2110 Algorithm 2 UF_1_17 0.03480704
## 2111 Algorithm 2 UF_1_17 0.03408000
## 2112 Algorithm 2 UF_1_17 0.02922823
## 2113 Algorithm 2 UF_1_17 0.03938640
## 2114 Algorithm 1 UF_1_18 0.20723284
## 2115 Algorithm 1 UF_1_18 0.17192208
## 2116 Algorithm 1 UF_1_18 0.08975677
## 2117 Algorithm 1 UF_1_18 0.13067803
## 2118 Algorithm 1 UF_1_18 0.20015283
## 2119 Algorithm 1 UF_1_18 0.13727666
## 2120 Algorithm 1 UF_1_18 0.16578073
## 2121 Algorithm 1 UF_1_18 0.13968145
## 2122 Algorithm 1 UF_1_18 0.15816050
## 2123 Algorithm 1 UF_1_18 0.07991706
## 2124 Algorithm 1 UF_1_18 0.07646092
## 2125 Algorithm 1 UF_1_18 0.08129121
## 2126 Algorithm 1 UF_1_18 0.20528810
## 2127 Algorithm 1 UF_1_18 0.09177844
## 2128 Algorithm 1 UF_1_18 0.09428341
## 2129 Algorithm 2 UF_1_18 0.04772118
## 2130 Algorithm 2 UF_1_18 0.03748537
## 2131 Algorithm 2 UF_1_18 0.04819580
## 2132 Algorithm 2 UF_1_18 0.02939061
## 2133 Algorithm 2 UF_1_18 0.04437567
## 2134 Algorithm 2 UF_1_18 0.04244938
## 2135 Algorithm 2 UF_1_18 0.03397885
## 2136 Algorithm 2 UF_1_18 0.04260431
## 2137 Algorithm 2 UF_1_18 0.04215961
## 2138 Algorithm 2 UF_1_18 0.03538750
## 2139 Algorithm 2 UF_1_18 0.03806308
## 2140 Algorithm 2 UF_1_18 0.04984098
## 2141 Algorithm 2 UF_1_18 0.05373220
## 2142 Algorithm 2 UF_1_18 0.03727865
## 2143 Algorithm 2 UF_1_18 0.04898188
## 2144 Algorithm 1 UF_3_23 0.17254052
## 2145 Algorithm 1 UF_3_23 0.14917832
## 2146 Algorithm 1 UF_3_23 0.20535996
## 2147 Algorithm 1 UF_3_23 0.18539838
## 2148 Algorithm 1 UF_3_23 0.13695726
## 2149 Algorithm 1 UF_3_23 0.18551667
## 2150 Algorithm 1 UF_3_23 0.20876919
## 2151 Algorithm 1 UF_3_23 0.18288555
## 2152 Algorithm 1 UF_3_23 0.20349347
## 2153 Algorithm 1 UF_3_23 0.27351131
## 2154 Algorithm 1 UF_3_23 0.22260575
## 2155 Algorithm 1 UF_3_23 0.16796494
## 2156 Algorithm 1 UF_3_23 0.15296183
## 2157 Algorithm 1 UF_3_23 0.18624877
## 2158 Algorithm 1 UF_3_23 0.15751989
## 2159 Algorithm 1 UF_3_23 0.23959994
## 2160 Algorithm 1 UF_3_23 0.21903606
## 2161 Algorithm 1 UF_3_23 0.20206172
## 2162 Algorithm 1 UF_3_23 0.23000011
## 2163 Algorithm 1 UF_3_23 0.17752137
## 2164 Algorithm 1 UF_3_23 0.12750401
## 2165 Algorithm 1 UF_3_23 0.16292583
## 2166 Algorithm 1 UF_3_23 0.17697100
## 2167 Algorithm 1 UF_3_23 0.17853810
## 2168 Algorithm 1 UF_3_23 0.17825094
## 2169 Algorithm 1 UF_3_23 0.17582031
## 2170 Algorithm 1 UF_3_23 0.20534143
## 2171 Algorithm 1 UF_3_23 0.26862070
## 2172 Algorithm 1 UF_3_23 0.15357743
## 2173 Algorithm 1 UF_3_23 0.12744153
## 2174 Algorithm 1 UF_3_23 0.22460286
## 2175 Algorithm 1 UF_3_23 0.19072299
## 2176 Algorithm 1 UF_3_23 0.18455831
## 2177 Algorithm 2 UF_3_23 0.14476837
## 2178 Algorithm 2 UF_3_23 0.11908844
## 2179 Algorithm 2 UF_3_23 0.32413524
## 2180 Algorithm 2 UF_3_23 0.11442373
## 2181 Algorithm 2 UF_3_23 0.11635878
## 2182 Algorithm 2 UF_3_23 0.15662261
## 2183 Algorithm 2 UF_3_23 0.22706824
## 2184 Algorithm 2 UF_3_23 0.28859693
## 2185 Algorithm 2 UF_3_23 0.08073338
## 2186 Algorithm 2 UF_3_23 0.24856070
## 2187 Algorithm 2 UF_3_23 0.14867209
## 2188 Algorithm 2 UF_3_23 0.16622054
## 2189 Algorithm 2 UF_3_23 0.08239823
## 2190 Algorithm 2 UF_3_23 0.20421840
## 2191 Algorithm 2 UF_3_23 0.21340642
## 2192 Algorithm 2 UF_3_23 0.07210873
## 2193 Algorithm 2 UF_3_23 0.17731140
## 2194 Algorithm 2 UF_3_23 0.25548736
## 2195 Algorithm 2 UF_3_23 0.14402585
## 2196 Algorithm 2 UF_3_23 0.19408905
## 2197 Algorithm 2 UF_3_23 0.13971992
## 2198 Algorithm 2 UF_3_23 0.13621560
## 2199 Algorithm 2 UF_3_23 0.09720724
## 2200 Algorithm 2 UF_3_23 0.13400297
## 2201 Algorithm 2 UF_3_23 0.13390058
## 2202 Algorithm 2 UF_3_23 0.10922962
## 2203 Algorithm 2 UF_3_23 0.22048604
## 2204 Algorithm 2 UF_3_23 0.11893266
## 2205 Algorithm 2 UF_3_23 0.06211160
## 2206 Algorithm 2 UF_3_23 0.23162837
## 2207 Algorithm 2 UF_3_23 0.14912236
## 2208 Algorithm 2 UF_3_23 0.14910503
## 2209 Algorithm 2 UF_3_23 0.15810634
## 2210 Algorithm 2 UF_3_23 0.10614790
## 2211 Algorithm 2 UF_3_23 0.06777581
## 2212 Algorithm 2 UF_3_23 0.09899449
## 2213 Algorithm 2 UF_3_23 0.14091183
## 2214 Algorithm 2 UF_3_23 0.21534429
## 2215 Algorithm 2 UF_3_23 0.13555046
## 2216 Algorithm 2 UF_3_23 0.05439559
## 2217 Algorithm 2 UF_3_23 0.19699857
## 2218 Algorithm 2 UF_3_23 0.06304065
## 2219 Algorithm 2 UF_3_23 0.04935538
## 2220 Algorithm 2 UF_3_23 0.15392999
## 2221 Algorithm 2 UF_3_23 0.15672519
## 2222 Algorithm 2 UF_3_23 0.13506642
## 2223 Algorithm 2 UF_3_23 0.11424355
## 2224 Algorithm 2 UF_3_23 0.08358825
## 2225 Algorithm 2 UF_3_23 0.31276332
## 2226 Algorithm 2 UF_3_23 0.17979631
## 2227 Algorithm 2 UF_3_23 0.15169587
## 2228 Algorithm 2 UF_3_23 0.16437242
## 2229 Algorithm 2 UF_3_23 0.16357566
## 2230 Algorithm 2 UF_3_23 0.15663369
## 2231 Algorithm 2 UF_3_23 0.13764472
## 2232 Algorithm 2 UF_3_23 0.26580363
## 2233 Algorithm 2 UF_3_23 0.16335892
## 2234 Algorithm 2 UF_3_23 0.16719870
##
## $data.summary
## Instance phi.j std.err n1j n2j
## 1 UF_4_13 -0.140520374 0.021244572 15 15
## 2 UF_2_29 -0.355067018 0.049778592 65 15
## 3 UF_5_28 0.687112139 0.051752761 80 120
## 4 UF_1_29 -0.632128519 0.047547812 25 15
## 5 UF_2_36 -0.294324240 0.049541869 71 16
## 6 UF_3_29 0.046833947 0.054367040 99 101
## 7 UF_3_10 0.067378637 0.048449127 57 58
## 8 UF_7_16 -0.947072631 0.002562324 15 15
## 9 UF_7_29 -0.899153444 0.041669953 15 15
## 10 UF_2_25 -0.377597096 0.047448660 66 15
## 11 UF_4_30 -0.041501786 0.023717906 15 15
## 12 UF_1_26 -0.648848834 0.046931423 15 15
## 13 UF_2_18 -0.462644651 0.047951855 40 15
## 14 UF_7_36 -0.923150755 0.021584219 15 15
## 15 UF_4_18 -0.165279882 0.023559291 15 15
## 16 UF_2_34 -0.397055947 0.047815242 44 15
## 17 UF_2_39 -0.293336878 0.049015022 71 15
## 18 UF_5_17 0.463440974 0.053598852 83 117
## 19 UF_3_15 -0.076297160 0.049925757 40 53
## 20 UF_4_16 -0.111094622 0.025666088 15 15
## 21 UF_7_18 -0.889747249 0.048849417 41 33
## 22 UF_7_38 -0.862621393 0.048313917 32 16
## 23 UF_4_14 -0.206193064 0.024435256 15 15
## 24 UF_1_11 -0.820109032 0.020082045 15 15
## 25 UF_1_16 -0.751694495 0.022388751 15 15
## 26 UF_2_32 -0.347339456 0.049116212 51 15
## 27 UF_3_24 -0.188829906 0.049475209 42 47
## 28 UF_6_34 -0.736442498 0.049411387 15 15
## 29 UF_4_32 -0.004410248 0.025967302 15 15
## 30 UF_2_11 -0.467062561 0.049853866 46 15
## 31 UF_2_22 -0.541752393 0.049869899 44 15
## 32 UF_1_17 -0.714505921 0.030266726 15 15
## 33 UF_1_18 -0.688792828 0.030398146 15 15
## 34 UF_3_23 -0.180249684 0.048622757 33 58
##
## $N
## [1] 34
##
## $N.star
## [1] 34
##
## $instances.sampled
## [1] "UF_4_13" "UF_2_29" "UF_5_28" "UF_1_29" "UF_2_36" "UF_3_29" "UF_3_10"
## [8] "UF_7_16" "UF_7_29" "UF_2_25" "UF_4_30" "UF_1_26" "UF_2_18" "UF_7_36"
## [15] "UF_4_18" "UF_2_34" "UF_2_39" "UF_5_17" "UF_3_15" "UF_4_16" "UF_7_18"
## [22] "UF_7_38" "UF_4_14" "UF_1_11" "UF_1_16" "UF_2_32" "UF_3_24" "UF_6_34"
## [29] "UF_4_32" "UF_2_11" "UF_2_22" "UF_1_17" "UF_1_18" "UF_3_23"
##
## $Underpowered
## [1] FALSE
##
## attr(,"class")
## [1] "CAISEr" "list"
suppressPackageStartupMessages(library(car))
car::qqPlot(my.results$data.summary$phi.j,
pch = 20, las = 1,
ylab = "observed results", xlab = "theoretical quantiles")
## [1] 3 18
The normal QQ plot indicates that no expressive deviations of normality are present, which gives us confidence in using the t test as our inferential procedure of choice (as the sampling distribution of the means will be even more “well-behaved” than the data distribution).
It is also interesting to observe a few things from the summary table. First, we observed negative values of phi.j
in the majority of instances tested, which suggests an advantage of the MOEA/D-DE over the original MOEA/D (remember, smaller = better for the quality indicator used). The MOEA/D-DE seems to require smaller sample sizes in most instances, suggesting a smaller variance of performance, which is also a desirable feature. Also, in three instances (UF_5_28, UF_3_29 and UF__7) the maximum number of runs/instance (nmax = 200
in the run_experiment()
call) was not enough to reduce the standard error (our “measurement error” on the values of phi.j
) below the predefined threshold of \(0.05\). There is no reason to worry in this particular case, however, since the resulting standard errors were not particularly high, and therefore their effect on the test power (resulting from the increased uncertainty in the estimation of these particular phi.j
values) will be insignificant.
Since our observations phi.j
already express paired differences per instance, we can compare the two algorithms using a simple, one-sample t.test:
t.test(my.results$data.summary$phi.j)
##
## One Sample t-test
##
## data: my.results$data.summary$phi.j
## t = -5.627, df = 33, p-value = 2.897e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.5165943 -0.2422327
## sample estimates:
## mean of x
## -0.3794135
which indicates a statistically significant advantage of the MOEA/D-DE over the original MOEA/D (\(p = 2.90\times10^{-6}, df=33\)), with estimated mean IGD gains of \(37.94\%\) (\(CI_{0.95} = [24.22\%,51.66\%]\)) over the original MOEA/D for instances belonging to the problem class of interest.
These results could also be used to motivate further analyses. For instance, we can observe in the summary table that the only two cases for which the MOEA/D was substantially better than the MOEA/D-DE were for different dimensions of problem UF_5, which could suggest that some specific feature of this problem jeopardizes the latter algorithm’s search mechanism. This could motivate research on which particular aspect of this problem results in this loss of performance, and on how to improve the MOEA/D-DE.
Finally, the full data of the experiment is contained in other fields of the output list my.results
, and the user is encouraged to explore these. As an example, we can generate box plots and confidence intervals on the mean performance of each algorithm on each sampled instance, which could inspire new questions for the researcher.
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(ggridges))
# Adjust instance names for plotting
mydata <- my.results$data.raw
mydata$Instance <- gsub(pattern = "UF\\_", replacement = "UF", mydata$Instance)
mydata$Instance <- gsub(pattern = "\\_", replacement = " (", mydata$Instance)
mydata$Instance <- sapply(mydata$Instance, FUN = function(x){paste0(x, ")")})
ggplot2::ggplot(mydata,
aes(x = Observation, y = Instance, fill = Algorithm)) +
ggridges::geom_density_ridges(alpha = 0.7) +
ggplot2::ggtitle("Estimated IGD distribution",
subtitle = "for each algorithm on each instance") +
ggplot2::theme(legend.position = "bottom")
## Picking joint bandwidth of 0.0132
# Calculate confidence intervals for each instance
algos <- unique(mydata$Algorithm)
ninstances <- length(my.results$instances.sampled)
CIs <- data.frame(instance = rep(unique(mydata$Instance, times = 2)),
algorithm = rep(algos, each = ninstances),
x.est = 0, CI.l = 0, CI.u = 0)
for (i in 1:ninstances){
tmpdata <- mydata %>%
filter(Instance == unique(mydata$Instance)[i])
myt1 <- t.test(tmpdata$Observation[tmpdata$Algorithm == algos[1]])
myt2 <- t.test(tmpdata$Observation[tmpdata$Algorithm == algos[2]])
CIs[i,3:5] <- c(myt1$estimate, as.numeric(myt1$conf.int))
CIs[i + ninstances,3:5] <- c(myt2$estimate, as.numeric(myt2$conf.int))
}
# Plot individual confidence intervals for each instance
myplot <- ggplot2::ggplot(CIs, aes(x = instance,
y = x.est, ymin = CI.l, ymax = CI.u,
group = algorithm, colour = algorithm,
fill = algorithm))
myplot +
ggplot2::geom_pointrange(position = position_dodge(width = 0.5), alpha = 0.7) +
ggplot2::xlab("Instance") + ggplot2::ylab("IGD") +
ggplot2::ggtitle("Estimated mean IGD",
subtitle = "for each algorithm on each instance") +
ggplot2::theme(legend.position = "bottom",
axis.text.x = element_text(angle = 55, hjust = 1, size = 6))
F. Campelo, F. Takahashi, “Sample size estimation for power and accuracy in the experimental comparison of algorithms”, under review.↩