CAGExploreR Vignette

Emmanuel Dimont

February 8, 2014

Contents
|1_Basic Workflow Example| 1
1.1 Hationl 1
(1.2 Loadmg thepackage| 1
3 Preparing Gene Annotations| L oo 2
Fl.4 Loading User Datal e 3
El.4.1 Obtaining tag counts from raw BAMfiles|. 3
4.2 Loading data included with CAGExploreR|. 5
1.5 Loading your own counts data - Creating a DGEList Objectf 5
F6 Handling Replicates| 7
1.7 Obtaining Promoter Composition Results| 10
iew: - isticsl. 10
172 A il iew: Promoter-level stics| 13
[1.8 Generating Plots|. 15
1.8.1 Visualizing DPCinageneofinterest| 15
1.8.2 Making multiple plotsin HIML| 17
1.8.3 Genome-wide DPC volcanoplot| 18

1 Basic Workflow Example

1.1 Installation

To install CAGExploreR, you need to have R version 3.0.2 or newer (http://www.r-project.org/). At
the R console, simply type the following code, it will automatically download all other dependencies
from CRAN and Bioconductor. When downloading from CRAN you may be asked to choose a mirror to
download from. Any selection is fine.

setRepositories(ind = 1:6)
install.packages ("CAGExploreR")

1.2 Loading the package
Once the package is installed, you can load it just like any other R package, simply type:

library (CAGExploreR)

Loading required package: edgeR

Loading required package: Llimma

Loading required package: data.table
Loading required package: AnnotationDbi

http://www.r-project.org/

Loading required package: BiocGenerics
Loading required package: parallel

##

Attaching package: ’BiocGenerics’

##

The following objects are masked from ’package:parallel’:
##t

clusterdpply, clusterdpplylB, clusterCall, clusterEvalf{, clusterEzport,
clusterMap, pardpply, parCapply, parlapply, parLapplyLB, parRapply,
parSapply, parSapplyLB

##

The following object ts masked from ’package:limma’:

##t

plotMA

##

The following object is masked from ’package:stats’:

##

ztabs

##

The following objects are masked from ’package:base’:

##

Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame,
as.vector, cbind, colnames, duplicated, eval, evalq, get, intersect,

i1s.unsorted, lapply, mapply, match, mget, order, paste, pmaxz, pmaz.int,
pmin, pmin.int, rank, rbind, rep.int, rownames, sapply, setdiff, sort,
table, tapply, union, unique, unlist

##

Loading required package: Biobase
Welcome to Bioconductor

##
Vignettes contain introductory material; view with ’browselignettes()’. To
cite Bioconductor, see ’citation("Biobase”)’, and for packages

’citation("pkgname”)’.

1.3 Preparing Gene Annotations

For CAGExploreR to be able to generate genomic plots, we need to download gene annotation data and
make it available to the package. Currently only gene annotation data from ENSEMBL is supported. The
package ships with an annotation file that covers only chromosome 22. If you do not have an internet
connection while running the example code in this vignette, you can simply load this file and it will be
sufficient to complete this vignette. Run the following code and you can skip the rest of this section. If you
want to proceed with the full download, skip to the next code block below this one.

data(EnsemblAnot_chr22) #loads an object EnsemblAnot
EnsemblAnot = prepEnsemblAnot(EnsemblAnot)
You now skip to the next section

To start the full download, run the following code, it will automatically get all the necessary data from
the ENSEMBL biomart:

EnsemblAnot = getEnsemblAnot()

Once the annotation data is downloaded, one more processing step is required before CAGExploreR
can use it properly.

EnsemblAnot = prepEnsemblAnot(EnsemblAnot)

This will create a list, that contains all of the data that the package will require for plotting. Due to the
size of the annotation data, the download step can take 10 minutes to complete. To avoid having to do this
every time, it is a good idea to complete the preparation process and save the resulting file so that it can
be easily loaded in the future. The code below will save the file in the local directory. Example code also
shows how to automatically append today’s date to the file name.

save (EnsemblAnot, file = "EnsemblAnot.RData'")

If such a file was previously saved, we can load it from the local directory as follows:

load("EnsemblAnot.RData")

This process of loading the annotation file has to be performed every time R is opened for the first
time.

1.4 Loading User Data

CAGExploreR comes pre-loaded with tables that consist of CAGE-Seq tag counts at promoter regions
from two samples: the MCF7 breast cancer and the A549 lung cancer cell lines. The example workflow
presented here will use this dataset to demonstrate the capabilities of CAGExploreR. For convenience, you
can choose to load this data directly from the package and skip the next section. However in practice when
analyzing your own personal datasets, you would need to complete the next section.

1.4.1 Obtaining tag counts from raw BAM files

For this example, the CAGE-Seq BAM files can be downloaded from the ENCODE website http://
hgdownload.cse.ucsc.edu/goldenPath/hgl9/encodeDCC/wgEncodeRikenCage/. In addition to the files
below you will also need to download the corresponding index files (*.bai).

¢ wgEncodeRikenCageA549CellPap AlnRepl.bam
* wgEncodeRikenCageA549CellPapAlnRep2.bam
* wgEncodeRikenCageMcf7CellPapAlnRepl.bam
* wgEncodeRikenCageMcf7CellPapAlnRep2.bam

Files 1-2 come from the A549 cell line and files 3-4 come from the MCEF7 cell line. You will notice that
these files were generated from RNA that was extracted from the whole cell with two replicates from each
condition.

Once we have these files in our local folder, we can load their names into R. It is important to provide
IDs to each file in the format "sample name.replicate number". Files that correspond to replicates from a
single condition should have the same prefix and different numbered suffix separated by a dot as shown
below. In the example code below, we assume that the BAM and BAI files are all saved in the D:/bam
directory.

setwd("D:/bam")

files = dir() [grep("bam", dir())]

my.bai.files = dir() [grep("bam.bai", dir())]
my.bam.files = setdiff(files, my.bai.files)

my.ids = c("ab49.1", "ab49.2", "mcf7.1", "mcf7.2")

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRikenCage/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRikenCage/

You can also manually enter the names of the files as follows:
my.bai.files = c("wgEncodeRikenCageA549CellPapAlnRepl.bam.bai"
,"wgEncodeRikenCageA549CellPapAlnRep2.bam.bai"
,"wgEncodeRikenCageMcf7CellPapAlnRepl.bam.bai"

, "wgEncodeRikenCageMcf7CellPapAlnRep2.bam.bai")
my.bam.files = c("wgEncodeRikenCageA549CellPapAlnRepl.bam"
,"wgEncodeRikenCageA549Cell1PapAlnRep2.bam"

, "wgEncodeRikenCageMcf7CellPapAlnRepl.bam"

, "wgEncodeRikenCageMcf7CellPapAlnRep2.bam")

my.ids = c("ab49.1","ab49.2","mcf7.1","mcf7.2")

The next step is to load promoter and gene region definitions. CAGExploreR provides both FAN-
TOMS5 and MPromDB promoter regions. In this example we shall be using the FANTOMS5 regions which
are more comprehensive. User-supplied regions can also be used as long as their structure and format
corresponds to the ones shown here. Let’s take a look at the promoters that we just loaded to see how the

file is structured.

data(F5.hgl9.promoters)
head (F5.hgl9.promoters)

chr strand start end gene
1 chril - 910579 917517 Clorf170@
2 chril - 917466 917485 Clorfl70
3 chril - 917507 917517 Clorfl70
4 chri - 934342 935552 HES4@
5 chril - 934985 934997 HES4
6 chril - 935277 935309 HES4

Each row corresponds to a promoter region that is assigned to a gene, usually by virtue of its genomic
vicinity. Coordinates are based on the hg19 genome build. Gene names are HGNC-approved names only.
You will notice that some gene names contain the character @ at the end. This corresponds to rows which
are "full-gene" regions that are calculated by taking the union of the whole gene plus all promoters defined
for that gene. These are used for calculating "coverage quality”" in downstream analysis. Whole gene
regions are obtained from the txdb.hsapiens.ucsc.hg19.knowngene Bioconductor package. NOTE: not all
genes have "full-gene" regions available, this will depend on the reference database used.

The FANTOMS5 promoter set contains a total of 77207 promoters across 14449 multi-promoter genes,
out of which 14253 genes have full gene regions available for "coverage quality" assessment. The average
number of promoters per gene is 5.3434 with an average promoter region length of 26 bases (sd=21).

For comparison, the MPromDB promoter set contains a total of 12200 promoters across 4436 multi-
promoter genes, out of which 4424 genes have full gene regions available for "coverage quality" assessment.
The average number of promoters per gene is 2.7502 with an average promoter region length of 784 bases
(sd=767).

Now that we have our input files and the promoter region definitions, we need to quantify the number
of CAGE-Seq tags that map to each of these regions.

my .promoters = definePromoters(F5.hgl9.promoters)
my.genes = defineGenes(F5.hgl9.promoters)

mcf7ab49.raw.counts.F5 = countTags(my.bam.files, my.bai.files, my.ids, my.genes, my.promoters)

1.4.2 Loading data included with CAGExploreR

For the purposes of this exercise to save time, we can load the tag counts table from within the package.
Let’s take a look at what this object looks like:

data(mcf7ab49.raw.counts.F5)
mcf7ab49.raw.counts.F5

$depth
ab45.1 ab45.2 mcf7.1 mcf7.2
28855537 18239960 52947757 36259720

$counts
region gene ab45.1 ab45.2 mcf7.1 mcf7.2
1: chr10:100143322..100174982,- PYROXD2Q 457 330 1154 3530
2: chr10:100174900..100174956,- PYROXD2 5 4 1 21
3: chr10:100174957..100174982,- PYROXD2 282 200 925 648
4: chr10:100216834..100995635,- HPSE2@ 27 33 185 54
5: chr10:100995440..100995474, - HPSE2 0 0 0 0
91456: chrY:7141999..7142040,+ PRKY 1 1 0 0
91457 : chrY:7142047..7142063,+ PRKY 0 0 0 0
91458: chrY:7142069..7142108,+ PRKY 1 2 0 0
91459: chrY:7142137..7142158,+ PRKY 0 0 0 0
91460: chrY:7142165..7142189,+ PRKY 0 0 0 0

The first element of this list depth, shows the total number of tags mapped in each library. The
second element counts is a data.frame showing the number of CAGE-Seq tags mapping to each library
and promoter or gene region. User-supplied count tables such as this one can also be provided directly
instead of counting from BAM files, as long as all of the necessary data is available (see next section).

For the purposes of this vignette, we will only use a subset of the data to make downstream calculations
run faster. Let’s subset our data to only those regions on chromosome 22:

get = which(osc2info(mcf7a549.raw.counts.F58counts$region)$chr == "chr22")
mcf7ab49.raw.counts.F5$counts = mcf7ab49.raw.counts.F5$counts[get]

1.5 Loading your own counts data - Creating a DGEList Object

Whether or not you already have your own CAGE tag count tables, you will need to perform this step. In
order to make downstream analysis more streamlined, we take advantage of the DGEList object from the
edgeR package that conveniently groups useful data together neatly. To convert the data we have already
to DGEList, we do the following. Similarly, if you already have your own count data, you can convert your
data into a DGEList object.

annotations = osc2info(mcf7a549.raw.counts.F5$counts$region)
my.ids = c("ab49.1","ab49.2","mcf7.1","mcf7.2")

my.data = DGEList(

counts = mcf7a549.raw.counts.F5$counts[,-c(1,2),with=FALSE],
lib.size = mcf7ab49.raw.counts.F5$depth,
group = my.ids,

genes = data.frame(
chr = annotations$chr,
strand = annotations$strand,
start = annotations$start,
end = annotations$end,
gene = mcf7ab49.raw.counts.F5$counts$gene

e

remove.zeros = FALSE

A DGEList object requires four main inputs that we provide here: the counts table, the total library
sizes (can be omitted but we discourage this), a grouping table that provides sample group annotation,
and a table of "gene" definitions. DGEList objects were originally developed for use in differential gene
expression data analysis, that is the reason why the word "gene" is used here, however in our case these are
both promoter regions and gene regions for coverage analysis. The last option should be used to specify
that we do not want to discard promoters or genes with all zero counts.

A crucial thing to mention here is that the way the group option is specified determines whether or
not, and how replicates are combined in downstream analysis. In the example here we specify my.ids
as the group identifiers, and because these are all unique, this implies that the replicates are not going
to be pooled, but kept separate in later steps. In the example, alternatives are provided that have been
commented out (using #) which would be used if pooling of replicates was desired. The first alternative
where we explicitly specify groups, means to say that those samples that share the same group id, will be
pooled, i.e. the first 2 and the last 2 replicates will be combined. The last alternative gives the same result
but demonstrates the use of the Select function which extracts the prefix of the sample id preceding the
period. This syntax may be useful when there are a large number of samples available.

Now let’s take a look at what this object looks like. This output should be familiar to edgeR users, but
it’s basically the same information in more compact form.

my.data

An object of class "DGEList"

$counts

ab45.1 ab45.2 mcf7.1 mcf7.2
1 44 30 262 232
2 98 61 576 3517
3 7 3 95 33
4 5 13 18 8
5 0 0 0 0

1885 more rows ...

$samples

group lib.size norm.factors

ab45.1 ab49.1 28855537 1
ab45.2 ab49.2 18239960 1
mcf7.1 mcf7.1 52947757 1
mcf7.2 mcf7.2 36259720 1
$genes

chr strand start end gene
1 chr22 + 17565841 17565896 IL17RA
2 chr22 + 17565841 17596584 IL17RA@
3 chr22 + 17565903 17565929 IL17RA
4 chr22 - 17597189 17602265 CECR6Q
5 chr22 - 17601758 17601792 CECR6

1885 more rows ...

There are two additional optional steps that can be performed on this object using edgeR functional-
ity. Samples can be normalized for RNA composition bias, and negative binomial dispersion coefficients
calculated. This will affect the statistical significance of downstream results. We find that this is generally
quite stringent and reduces the number of significant results obtained, and for exploratory analyses we
do not recommend doing this. This can be done as follows, however for our example, we will skip them.
Please refer to edgeR documentation for further details.

my.data = calcNormFactors(my.data)

my.data = estimateCommonDisp(my.data, verbose = T)
my.data = estimateTagwiseDisp(my.data)

1.6 Handling Replicates

The user has the choice whether or not to pool replicates. We recommend pooling if inference is directed
at genes with very low expression in which case pooling can increase their tag counts. However for most
cases we do not recommend to pool. Whether one pools or not, the output is affected mainly at the
visualization stage. The advantage of not pooling is that results can be filtered to contain only those in
which there is agreement between replicates.

As mentioned previously, sample IDs follow the "sample name.replicate number" format, where repli-
cates coming from the same sample have common sample name and different replicate number separated
by a period. In this example there will be no pooling performed because of the way we defined our groups
in the DGEList object in the previous step. NOTE: this step is required irrespective of whether one decides
to pool or not. In addition, here we use the term "replicates" loosely, allowing the user to decide which
samples to pool for analysis. In this example we are interested in comparing MCF7 and A549 cell lines
to one another, but another choice of pooling might involve comparing between cancer v.s. normal or
early-time point v.s. late-time point, etc. The user has the flexibility to pool samples any way they wish
and this is achieved by assigning the proper group ids in the DGEList object "samples" section after it is
created (previous section).

data.not.pooled = pool(my.data)
data.not.pooled

An object of class "DGEList"
$counts
ab45.1 ab45.2 mcf7.1 mcf7.2

1 44 3
2 98 6
3 7
4 5 1
5 0

0 262
1 576
3 95
3 18
0 0

1885 more rows ...

$samples
group
ab45.1 ab49.1
ab45.2 ab49.2
mcf7.1 mcf7.1
mcf7.2 mcf7.2

$genes

chr strand
chr22 it
chr22 ih
chr22 +
chr22 -
chr22 -

O WN -

lib.size
28855537
18239960
52947757
36259720

start
17565841
17565841
17565903
17597189
17601758

1885 more rows ...

$common .disper
(11 0

sion

$tagwise.dispersion

[1] 00 00O
1885 more elem

$sub.counts

ents ...

232
357
33

norm.factors effective.lib.size

end
17565896
17596584
17565929
17602265
17601792

ab45.1 ab45.2 mcf7.1 mcf7.2

[1,] 44
[2,1] 7
(3,1] 0
[4.] 0
(5,1 0

30 2

O O O Ww

1568 more rows ...

$super.counts

ab45.1 ab45.2 mcf7

[1,] 98
[2,1] b
(3,1 86
[4,] 14
(5,1 8

61 5
13
103 13
21

6

312 more rows ...

$pooled.sub.counts

chr22:17565841.
chr22:17565903.
chr22:17601758.
chr22:17602160.

.1756589
.1756592
.1760179
.1760217

62 232
95 33
0 0
3 0
1 0

.1 mcf7.2
76 357
18 8
35 438
57 21
24 227

ab49.1 ab49.2 mcf7.1 mcf7.2

6,+ 4
9,+
2,-
5,-

4

7
0
0

1

1
1
1

gene
IL17RA
IL17RAG@
IL17RA
CECR6@
CECR6

30

O O W

28855537
18239960
52947757
36259720

262 232 IL17RA

95 33 IL17RA
0 0 CECR6
3 0 CECR6

gene dispersion

0

0
0
0

chr22:17602200..17602265, - 0 0 1 0 CECR6 0
1568 more rows ...

$pooled.super.counts

ab49.1 ab49.2 mcf7.1 mcf7.2 gene dispersion
chr22:17565841..17596584,+ 98 61 576 357 IL17RA 0
chr22:17597189..17602265, - 5 13 18 8 CECR6 0
chr22:17618410..17646177 ,- 86 103 1335 438 CECR5 0
chr22:17660192..17739198, - 14 21 57 21 CECR1 0
chr22:18043133..18073647 ,+ 8 6 24 227 SLC25A18 0

312 more rows ...

$pooled.samples
lib.size effective.lib.size

ab49.1 288555637 28855537
ab49.2 18239960 18239960
mcf7.1 52947757 52947757
mcf7.2 36259720 36259720

The DGEList object is now augmented with additional data. Because we did not perform sample
normalization, the effective library size is equal to the original library size. Similarly, because we did not
calculate negative binomial dispersion coefficients, they are taken to be zero. We also see that we now have
sub.counts and super.counts. In CAGE, the "sub" (subset) counts correspond to promoter level counts, and
the "super" (superset) counts are the gene region counts. This terminology is used to allow more general
applications of CAGExploreR to other scenarios where counts are separated into subsets and supersets,
e.g. subsets could be exon regions, etc. We also have some additional "pooled" data elements that show
pooled counts across sample replicates: "pooled.sub.counts" are the pooled promoter-level counts, and
"pooled.super.counts” are the gene-level counts and in essence, the gene expression.

1.7

Obtaining Promoter Composition Results

Once we have a data object that contains the pooled CAGE-Seq tag counts for all samples across all genes
and promoters, we can now obtain differential promoter composition (DPC) statistics.

1.7.1

A broad view: Gene-level statistics

This step can take several minutes when working on the whole genome level. By default, this function call
will generate gene-level statistics, let’s take a look:

results = diffcomp(data.not.pooled)

head(results)
entropy.Reduction pvalue fdr geneHetero coverage
RASL10A 1.0000 0.000e+00 0.000e+00 0.07092 0.2794
CSF2RB 1.0000 1.000e+00 1.000e+00 0.02999 0.1274
NEFH 1.0000 1.000e+00 1.000e+00 0.12958 0.1214
MGAT3 0.4511 2.334e-03 3.412e-03 0.01650 0.1674
0SBP2 0.4447 2.114e-48 6.098e-48 0.03778 0.1270
RTDR1 0.3916 1.757e-08 2.850e-08 0.04126 0.2689
dominant.promoter.switch
RASL10A chr22:29711645..29711694, - | chr22:29711704..29711718, -

CSF2RB chr22:37309662..37309694,+|chr22:37318050..37318074,+|chr22:37318082. .37318109,+

NEFH

chr22:29876197..29876215,+| chr22:29884834. .29884866 ,+

MGAT3 chr22:39853258. .39853330,+|chr22:39868762. .39868785,+ | chr22:39868786. . 39868797 ,+
0SBP2 chr22:31090839..31090889,+|chr22:31199037..31199051,+
RTDR1 chr22:23484149..23484160, - | chr22:23484167..23484191, - | chr22:23484246 . .23484283, -

RepAgree
RASL10A 1
CSF2RB 2
NEFH 2
MGAT3 1
0SBP2 1
RTDR1 2

This is the main table showing DPC results. Remember that the motivation behind detecting DPC is to
determine if the set of promoters for a gene are being utilized differently across conditions.

entropy.Reduction is the main effect measure for DPC and the table is sorted by this value, with
genes with the highest DPC showing up first. A value of 0 corresponds to no DPC, i.e. the relative
transcription occurring at the different promoters is the same across conditions. Conversely, a value
of 1 would indicate maximal DPC and that each condition transcribes a gene from a unique promoter.

pvalue is the corresponding one-sided p-value testing the null hypothesis that the entropy reduction
is zero.

fdr The p-value is corrected for multiple comparisons using the Benjamini-Hochberg method by
default. The user can supply any correction method supported by the p.adjust function in R.

geneHetero is an entropy-based measure of gene expression heterogeneity across conditions. A value
of 0 corresponds to no differential gene expression between conditions, and a value of 1 means that
one or more particular conditions have non-zero gene expression while in another condition(s) the
gene is not expressed at all.

coverage compares the number of tags mapped to promoter regions to the total number of tags
mapped to the entire gene region. The value reported is the mean across conditions. Since CAGE-
Seq tags are strictly associated with the 5* mRNA cap, as long as the promoter regions are defined

10

correctly, we do not expect to see any tags aligning to other nearby non-promoter regions in theory.
A value of 1 would mean that the promoter regions defined capture all of the tags found in the
entire gene region. In practice however, there is noise present and we do expect some tags mapping
outside our known promoters. It should be noted that a significant deviation from 1 could point to
the existence of a novel promoter that is not accounted for by the current definitions. A value close to
0 would mean that for that particular gene, the promoter definitions are inadequate and the results
suspicious. This could also occur if the gene region was not defined correctly. Values greater than 1
are possible if the promoter definitions overlap one another. In either case, a value of greater than 1
or close to 0 imply that the results for that gene should be discarded and the promoter definitions
adjusted as they do not provide a complete and unequivocal view of DPC. We recommend to filter
results to values of coverage between 0.1 and 1. If a gene does not have a gene region defined in the
promoter definitions file (e.g. GENE@), then coverage cannot be calculated and NA will appear.

* dominant.promoter.switch shows whether the dominant promoter switches between conditions.
This is in the form of a pipe (|) delimited list of promoters if there is a switch in dominant pro-
moters and is empty otherwise. NOTE: We strongly recommend to focus analyses on dominant
promoter switches only since there is no guarantee that non-dominant promoter expression is not
confounded by changes in the dominant promoter. This is due to the fact that composition propor-
tions are negatively correlated with one another.

* RegApree is an integer indicating how well the replicates agree in terms of their promoter compo-
sition data. The PC data is clustered gene by gene and then the dendrogram cut into the number
of distinct conditions available (in our example, 2). RepAgree is the maximum number of different
conditions that appear in each arm of the cut tree. In essence, a value of 1 means that all replicates
cluster together perfectly.

Let’s subset our results to only those genes that pass the FDR-adjusted p-value cutoff of 0.001, have
coverage between 0.1 and 1 and whose replicates cluster according to their respective condition. Beneath
the output table are some examples of useful statistics of interest.

significant = subset(results, fdr < 0.001 & coverage >= 0.1 & coverage <= 1 & RepAgree == 1)
head(significant)
entropy.Reduction pvalue fdr geneHetero coverage
RASL10A 1.0000 0.000e+00 0.000e+00 0.070917 0.2794
0SBP2 0.4447 2.114e-48 6.098e-48 0.037783 0.1270
BCL2L13 0.3674 0.000e+00 0.000e+00 0.188325 0.7360
ZNF70 0.3028 1.555e-04 2.314e-04 0.003966 0.2240
MAFF 0.2700 1.723e-11 3.087e-11 0.090903 0.3087
MAPK1 0.2009 2.393e-100 9.629e-100 0.030322 0.2386

dominant.promoter.switch RepAgree
RASL10A chr22:29711645..29711694,-|chr22:29711704..29711718, -
0SBP2 chr22:31090839..31090889,+|chr22:31199037..31199051,+
BCL2L13 chr22:18121493..18121535,+|chr22:18189536. .18189560,+
ZNF70 chr22:24093154..24093183, - | chr22:24093267 . .24093327, -
MAFF chr22:38597987. .38598021,+ | chr22:38598086. .38598105, +
MAPK1 chr22:22221658..22221669,- | chr22:22221900..22221963, -

s

nrow(significant)

[1] 53

sum(significant$dominant.promoter.switch != "")

[1] 20

11

This 1s the number of genes that have differential promoter composition but very little
to no differential gene expression:
sum(significant$geneHetero < 0.01)

(11 5

Differences in gene expression and differences in promoter composition do mot appear to
be correlated:
cor(significant$entropy.Reduction, significant$geneHetero)

[1] -0.1005

12

1.7.2 A detailed view: Promoter-level statistics

Now that we’ve found which genes have DPC and to what extent, we may be interested in finding out
exactly which promoters are involved and the magnitude of their switching. To get such promoter-level
statistics we make use of the detailed option. By default, results for all genes are displayed. Because
up until now we did not pool our replicates, at this stage the analysis will make pairwise comparisons
between conditions at the replicate level. This may not be of interest for most cases and it is here that we
will perform pooling so that our results display pairwise comparisons between conditions are opposed to

replicates

my.data2

)

#will not pool replicates

mcf7ab49.raw.counts.F5$counts[,-c(1,2) ,with=FALSE], #remove columns 162

#pools replicates (alternative)

= DGEList(
counts =
lib.size = mcf7ab49.raw.counts.F5$depth,
#group = my.ids,
group = c("ab49","ab49","mcf7","mcf7"), #pools replicates
#group = Select(my.tds,"”.",1),
genes = data.frame(
chr = annotations$chr,

strand = annotations$strand,

start

annotations$start,

end = annotations$end,
gene = mcf7ab49.raw.counts.F5$counts$gene

e

remove.zero

s = FALSE

data.pooled = pool(my.data?2)

results.detailed = diffcomp(data.pooled,detailed=TRUE)
head(results.detailed, 15)

chr22
chr22
chr22
chr22
chr22
chr22
chr22
chr22
chr22
chr22
chr22
chr22
chr22
chr22
chr22

O© 00 ~NO U WN -

=
= O

e
g W N

0.007
0.021
0.021
0.021

B wWw N e

129711645,
129711645,
129711645.
129711645.
129711704
129711704
129711704
129711434.
129711434
129711476.
:37309662.
:37318050.
:37309662.
:37309662.
:37309662.
OR log20R
092 -7.140
277 -5.555
277 -5.555
277 -5.555

.29711694, - | chr22:
.29711694, - | chr22:
.29711694, - | chr22:
.29711694, - | chr22:
.29711718,- | chr22:
.29711718, - | chr22:
.29711718,- | chr22:
.29711441, - | chr22:
.29711441,- | chr22:
.29711484, - | chr22:
.37309694,+|chr22:
.37318074,+|chr22:
.37309694,+|chr22:
.37309694,+ | chr22:
.37309694,+ | chr22:

fdr
0.01328
0.17458
0.17458
0.17458

pvalue
0.001002
0.023843
0.023843
0.023843

29711704.
29711434.
290711476.
290711485.
290711434.
29711476.
29711485.
29711476.
290711485.
29711485.
37318082.
37318082.
37309631.
37317717 .
37317772.

13

comparison

.29711718, -#a549 |mcf7
.29711441, -#a549 |mcf7
.29711484 , -#a549 |mcf7
.29711500, -#a549 |mcf7
.29711441, -#ab549 |mcf7
.29711484 , -#a549 |mcf7
.29711500, -#a549 |mcf7
.29711484 , -#a549 |mcf7
.29711500, -#a549 |mcf7
.29711500, -#a549 |mcf7
.37318109,+#a549 |mcf7
.37318109,+#a549 |mcf7
.37309642,+#a549 |mcf7
.37317729,+#a549 |mcf7
.37317784 ,+#ab549 |mcf7

gene
RASL10A
RASL10A
RASL10A
RASL10A
RASL10A
RASL10A
RASL10A
RASL10A
RASL10A
RASL10A
CSF2RB
CSF2RB
CSF2RB
CSF2RB
CSF2RB

theilU
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.5794
.5794
.5794
.5794
.5794

O OO OO R RFPF REPRPREP P PR B B

5 3.000000 1.585 0.539312 0.93785
6 3.000000 1.585 0.539312 0.93785
7 3.000000 1.585 0.539312 0.93785
8 1.000000 0.000 1.000000 1.00000
9 1.000000 0.000 1.000000 1.00000
10 1.000000 0.000 1.000000 1.00000
11 0.111111 -3.170 0.169871 0.59593
12 0.111111 -3.170 0.169871 0.59593
13 0.333333 -1.585 0.539312 0.93785
14 0.333333 -1.585 0.539312 0.93785
15 0.333333 -1.585 0.539312 0.93785

In this example we have a total of 4862 comparisons made. NOTE: some values such as the entropy
reduction may change after pooling.

¢ Comparison specifies which pair of promoters and conditions are being compared.
* Gene specifies the gene.
¢ theilU is the entropy reduction.

* OR is the odds ratio and measures the strength of switching in promoter composition between the
two conditions and promoters being compared. This ratio shows how much larger (or smaller) the
odds of observing tags in the first v.s. the second promoter in the first condition are as compared to
the odds of observing tags in the first v.s. the second promoter in the second condition. A value of 1
means that the odds are the same in both conditions, and so promoter composition does not change
for this set of promoters when comparing these two conditions.

* 10g20R is the log-base-2 transformed odds ratio. This transformation is useful to make it clearer
which direction the odds ratio is in: if the OR is less than 1, the log will have a negative sign, and
if the OR is greater than 1, the log will be positive. The log odds ratio also makes the scale more
easily understood, varying from 0 (no switching) to infinity (maximum switching). You will notice
that all results are sorted within genes by decreasing log odds ratio (irrespective of sign) so that most
significant switches show up first within gene blocks.

* P-value corresponds to the odds ratio and tests whether it is significantly different from 1 and con-
versely whether the log odds ratio is significantly different from 0. Note that this is different from
the p-value that corresponds to the overall entropy reduction for a given gene.

* FDR is the Benjamini-Hochberg adjusted p-value. Just as before, the user can supply any method for
correcting for multiple comparisons as long as it is supported by the p.adjust function in R.

Now let’s subset these results to only those significant, high-coverage genes with replicate agreement
that we found in the previous section. In addition, let’s also just look at those genes in which the dominant
promoter switches.

significant.genes = rownames(subset(results, fdr < 0.001 & coverage >= 0.5 & coverage <= 1 &

RepAgree == 1 & dominant.promoter.switch != ""))
sig.results.detailed = subset(results.detailed, gene %in} significant.genes)

nrow(sig.results.detailed)
[1] 368

head(sig.results.detailed)

14

81
82
83
84
85
86

81
82
83
84
85
86

chr22:181
chr22:181
chr22:181
chr22:181
chr22:181
chr22:181
OR log20R

6
2
3
2
4
5

.426e+02
.133e-03
.233e+02
.378e+02
.240e-03
.764e-03

21541..18121552,+|chr22:
89536..18189560,+ | chr22:
21562..18121585,+ | chr22:
21493..18121535,+| chr22:
89536..18189560,+|chr22:
89536..18189560,+|chr22:

9.328
-8.873
8.337
7.894
-7.882
-7.439

4.288e-112

pvalue

1.8 Generating Plots

1.8.1 Visualizing DPC in a gene of interest

18189504 .
18121541.
18189504 .
18189504 .
18121562.
18121493.
fdr
2.117e-10 9.359e-09
2.606e-109
5.370e-09 2.072e-07
2.953e-08 1.040e-06
0.000e+00 0.000e+00
0.000e+00 0.000e+00

comparison gene theilU

.18189531, +#mcf7|ab49 BCL2L13 0.3623
.18121552, +#mcf7|ab49 BCL2L13 0.3623
.18189531, +#mcf7|ab49 BCL2L13 0.3623
.18189531, +#mcf7|ab49 BCL2L13 0.3623
.18121585, +#mcf7|ab49 BCL2L13 0.3623
.18121535, +#mcf7|ab49 BCL2L13 0.3623

In order to visualize differential promoter composition in a gene of interest, we need to specify the
(un)pooled data object, the gene we want to look at and the object that contains the gene annotation
data. Let’s see what happens in one of our top genes, GAL3ST1. Here we choose to use the non-pooled
data so that we could see what happens at the replicate level. You can try and see what happens if you
choose the pooled data version. NOTE: it can take a few seconds to generate the full figure when plotting
for the first time.

plotcomp(data.not.pooled, "GAL3ST1", EnsemblAnot)

[1]
[3]
[5]
(7]
9]
[11]
[13]
null

"chr22:
"chr22:
"chr22:
"chr22:
"chr22:
"chr22
"chr22:
device
1

location plots.

30960879.
30968839.
30970513.
30961419.
30970644 .
:30970560.
30953587.

.30960895, -"
.30968859, -"
.30970541,-"
.30961468, -"
.30970658, -"
.30970577,-"
.30963595, -"

The figure is composed of 3 parts:

"chr22:
"chr22:
"chr22:
"chr22:
"chr22:

"chr22

30970588.
30968813.
30956754.
30968796 .
30960863.
:30953574.

.30970622,-"
.30968829,-"
.30956769,-"
.30968805, -"
.30960867, -"
.30953584, -"

(a) promoter composition, (b) gene expression and (c) promoter

(a) is the main promoter composition plot and has the conditions in rows and promoters in columns,
each having a different color. The size of each colored bar specifies the extent to which transcription
occurs from that promoter (measured as a proportion of all tags mapping to all promoters) and the
number of CAGE-seq tags mapping to that promoter region is printed inside the bar. The number
for the promoter which has the largest expression is colored white to make it more clearly visible.
The conditions are clustered together by similarity in these composition profiles. In our example,
the clustering shows that replicates cluster together, and when comparing more than two conditions,
this can help identify samples that share similar promoter composition profiles. We can clearly see
in this example that MCF7 cells preferentially utilize the "orange" promoter, whereas A549 cells
preferentially utilize the "red" one in addition to a host of others, indicating a very strong switch in
promoter composition between the two conditions.

(b) has the same row structure as in (a) and shows the gene expression for the conditions and is measured
in tags per million (tpm). This is calculated by taking all of the CAGE-Seq tags mapping to the

15

GAL3ST1

Promoters Gene

a549.2

a549.1

‘ mcf7.2

‘ mcf7.1

0.0+
0.2

¥ & & & o c'v <'r b

=)
proportion tpm

GAL3ST1 on chr22,-
30,95|o,000 30,95|5,000 30,96|0,000 30,96|5,000 30,97|0,000

] 1 1 1 B |
GAL3ST1 | il i — i i
ENST00000453479 -—
ENST00000452827
ENST00000448604
ENST00000447224
ENST00000445645
ENST00000443136

ENST00000423299
ENST00000416358
ENST00000411821
ENST(
ENST(
ENST(
ENST(1
ENST(5
ENST 11

Promoters | | ok | IS

T T T T T
30,950,000 30,955,000 30,960,000 30,965,000 30,970,000

Figure 1: Differential promoter composition for GAL3ST1 gene with 13 promoters

16

entire gene region (if it is available) relative to all tags mapped in this condition, multiplied by a
million. If edgeR sample normalization was performed previously, then the effective library size is
used. If the gene region coordinates have not been specified in the promoter definitions, then the
total number of tags are taken by summing across all promoters available. Together with (a), these
plots simultaneously demonstrate the extent of DPC and differential gene expression for the gene of
interest.

(c) is a genomic region plot showing where the promoters are located relative to the gene model and
known transcript models from ENSEMBL. The gene model is shown in black on top (known CDS
are in red), the transcripts in blue in the middle, and the promoter regions in various colors at
the bottom, where the colors correspond to the same color-code used in panel (a) for clarity. Each
promoter region also has a colored vertical bar around it, the height of which gives a sense of the
relative amount of transcription occurring from the promoters when summing over all conditions.
NOTE: the coordinates for this plot are chosen in such a way as to fit all of the promoter regions
comfortably on the screen, and so this means that most of the time, only the 5 prime end of the gene
or another portion of it is visible. In this example we are on the negative strand and transcription
is going from right to left. We can see that MCF7 cells transcribe the full-length transcript, whereas
Ab549 cells have a more diverse collection, preferring a shorter transcript that skips 3 upstream exons.

After a call to plotcomp(), the coordinates of the promoter regions are displayed in the R console which
we can see above. The promoters are ordered in the same way as in the plot, left to right as displayed.

1.8.2 Making multiple plots in HTML

Instead of making plots for each gene one by one, we can perform batch generation into an HTML docu-
ment:

html.report(data.not.pooled, rownames(significant)[1:30], EnsemblAnot)

We once again have to specify the pooled data object, followed by the names of the genes we would like
the plots of. In this example we specify to make plots for the top 30 significant genes from the significant
subset our results table. Similarly we can specify any number of genes in any order that are of interest (e.g.
a list of transcription factors, etc.) This will create an HTML file called Switch Report.html in the current
directory, together with a folder called Figures that will contain individual plots inside. NOTE: if such a
file/directory exists already, all files will be overwritten. You can change the names of report files and
figure directory easily however:

html.report(data.not.pooled, my.genes, EnsemblAnot, fig.dir = "myFigures", report.name = "my.report")

17

1.8.3 Genome-wide DPC volcano plot

One possible way to visualize DPC on a genome-wide basis is to generate a volcano plot that displays the
effect measure on the x-axis and the statistical significance on the y-axis. Since the effect measured as an
odds ratio is one-sided, we can make it extend across the entire x-axis by taking its logarithm. Similarly
we can take the negative of the logarithm of the multiplicity corrected p-value for the y-axis. This way,
more statistically significant results are higher up, and larger effect measures are away from the origin.

plot(y=-log(results.detailed$fdr,base=10) ,x=results.detailed$log20R,
xlim=c(-10,10) ,ylim=c(0,50) ,col=rgb(0,100,0,60,maxColorValue=255),

pch=20,ylab="-1logl0(q-value)",xlab="1og2(odds ratio)",
main="MCF7 v.s. A549 cell lines")

abline(v=0,h=0)

MCF7 v.s. A549 cell lines

40

30

-log10(g-value)

10

log2(odds ratio)

Figure 2: Genome-wide volcano plot for comparing differential promoter composition between 2 cell lines

sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: x86_64-w64-mingw32/x64 (64-bit)

##

locale:

[1] LC_COLLATE=C LC_CTYPE=English_United Kingdom.1252
[3] LC_MONETARY=English_United Kingdom.1252 LC_NUMERIC=C

[5] LC_TIME=English_United Kingdom.1252

##

18

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods Dbase
#i#

other attached packages:

[1] CAGExploreR_1.0.2 AnnotationDbi_1.24.0 Biobase_2.22.0 BiocGenerics_0.8.0
[5] data.table_1.8.11 edgeR_3.4.0 limma_3.18.2 knitr_1.5
#i#

loaded via a namespace (and not attached):

[1] BSgenome_1.30.0 Biostrings_2.30.0 DBI_0.2-7

[4] GenomicFeatures_1.14.0 GenomicRanges_1.14.3 IRanges_1.20.5

[7] R2HTML_2.2.1 RCurl_1.95-4.1 RSQLite_0.11.4

[10] Rsamtools_1.14.1 XML_3.98-1.1 XVector_0.2.0

[13] biomaRt_2.18.0 bitops_1.0-6 codetools_0.2-8

[16] digest_0.6.3 evaluate_0.5.1 formatR_0.10

[19] highr_ 0.3 rbamtools_2.6.0 rtracklayer_1.22.0

[22] stats4_3.0.2 stringr_0.6.2 tools_3.0.2

[25] zlibbioc_1.8.0
date()

[1] "Sat Feb 08 03:18:37 2014"

19

	1 Basic Workflow Example
	1.1 Installation
	1.2 Loading the package
	1.3 Preparing Gene Annotations
	1.4 Loading User Data
	1.4.1 Obtaining tag counts from raw BAM files
	1.4.2 Loading data included with CAGExploreR

	1.5 Loading your own counts data - Creating a DGEList Object
	1.6 Handling Replicates
	1.7 Obtaining Promoter Composition Results
	1.7.1 A broad view: Gene-level statistics
	1.7.2 A detailed view: Promoter-level statistics

	1.8 Generating Plots
	1.8.1 Visualizing DPC in a gene of interest
	1.8.2 Making multiple plots in HTML
	1.8.3 Genome-wide DPC volcano plot

