BeviMed Guide

Daniel Greene

1 Introduction

BeviMed is a procedure for evaluating the evidence of association between allele configurations across rare variants
within a genomic locus and a case/control label. It is capable of inferring the probability of association, and
conditional on association, the probability of each mode of inheritance and probability of involvement of each
variant. It works by applying Bayesian inference to two models indexed by . Under the model labelled v = 0, the
probability of the case label is independent of allele configuration at the given rare variant sites. Under the model
labelled v = 1, the probability of the case label is linked to the configuration of alleles, a mode of inheritance and
a latent partition of variants into pathogenic and non-pathogenic groups.

The aim of the package is to facilitate prioritisation of large numbers of loci and variants therein by rapid
inference of the posterior distributions of v, mode of inheritance parameter m, and indicator of pathogenicity across
variants, z. Unless otherwise stated, N refers to the number of individuals, k refers to the number of rare variants,
m refers to the mode of inheritance (either mqom or myec), and ‘evidence’ refers to the integrated likelihood of the
data under a given model. The acronym ‘MOI” will often be used to refer to mode of inheritance.

2 Functions and classes

bevimed is the key function in the package: it evaluates models v = 0 and v = 1 with respect to the input data, a
logical length N vector of case/control labels y, and an N x k integer matrix of allele counts G. It evaluates model
~v = 0 by computing the log evidence directly using the function gamma0O_evidence. It performs inference on model
~ = 1 conditional on each mode of inheritance separately by calling the function bevimed m (where the ‘_m’ is to be
understood as ‘conditional upon a given mode of inheritance’). The output of the function gives you the posterior
distributions of interest:

e model indicator v, i.e. P(y = 1y, G),
e mode of inheritance m given association, i.e. P(m|y = 1,y, G),

e indicators of variant pathogenicity z; for j = 1,. .., k given mode of inheritance and association, i.e. P(z;|m,vy =

Ly, G).

bevimed is simple to apply:
> obj <- bevimed(y=y, G=G)

It returns an object of class BeviMed, which contains the whole output of the inference. A summary of the
inference can be printed by evaluating the object in an interactive session:

> obj

-
Posterior prob. of association: 0.038 [prior: 0.01]
Posterior prob. of dominance given association: 0.798 [prior: 0.5]

- -
#it dominant recessive
Expected explained cases 4.557 1.107
Expected explaining variants 2.438 2.437

-
Estimated probabilities of pathogenicity for individual variants

##

Var Ctrls Cases Prob. dom pathogenic Prob. rec pathogenic

1 0 3 [0.82 ===========] [0.57 =======]

2 0 1 [0.59 ========] [0.67 =========]

3 0 2 [0.69 =========] [0.59 ========]

#it 4 1 0 [0.06 1 [0.56 =======]

5 0 1 [0.34 ====] [0.61 ========]
-

It is a list containing slots:
e "parameters", a list of parameter values used to call the function.

e "moi", a list of BeviMed m objects returned by the bevimed m function, one for each mode of inheritance (i.e.
dominant and recessive). The BeviMed m class is a list containing samples from the posterior distributions of
model parameters conditional on a given mode of inheritance (see help page ?bevimed.m for more details).
As a list, the MOI specific results can be looked up by MOI using the $ operator, e.g. xmoidominant.

The function bevimed m is an MCMC procedure which samples from the posterior distribution of parameters in
model v = 1. Each individual has an associated ‘minimum number of alleles at pathogenic variant sites’ required
to have a pathogenic configuration of alleles. This is determined by the min_ac argument (defaulting to 1), and can
be set to reflect the desired mode of inheritance. For example, in dominant inheritance, at least one pathogenic
allele would render an allele configuration pathogenic, whilst for X-linked recessive inheritance, at least 1 and 2
pathogenic alleles would be required for a pathogenic configuration respectively for males and females. bevimed
accepts a ploidy argument: an integer vector the same length as y which specifies the ploidy of each individual in
the locus (defaulting to 2). Internally, it uses this argument to set min_ac automatically when it calls bevimed m
based on mode of inheritance.

Objects of class BeviMed typically take a large quantity of memory, so summarising with summary — which
retains important summary statistics as a list — may be useful when performing multiple applications. Specific
summary statistics can be obtained by looking them up in these summary lists (see help page ?summary.BeviMed
for names used for each statistic), or by calling an ‘extract_’ function on a BeviMed/BeviMed m object:

e extract_prob_association: get the probability of association from a BeviMed object, optionally broken down
by mode of inheritance by specifying by _MOI=TRUE,

> extract_prob_association(obj)
[1] 0.0382511
> extract_prob_association(obj, by_MOI=TRUE)

dominant recessive
0.030520093 0.007731005

e extract_prob_pathogenic: get marginal probabilities of pathogenicity for each variant from a BeviMed object,

e extract_gammal_evidence: get the log evidence of model v =1 for a mode of inheritance from a BeviMed_m
object,

e extract_conditional prob_pathogenic: get a vector of probabilities of pathogenicity individual variants
from a BeviMed_m object.

> extract_conditional_prob_pathogenic(objmoidominant)

[1] 0.82000000 0.58777778 0.69444444 0.05888889 0.33555556

e extract_expected_explained: get the expected number of cases with a pathogenic configuration of alleles
from a BeviMed_m object,

e extract_explaining variants: get the expected number of pathogenic variants for which cases harbour rare
alleles from a BeviMed m object.

Each of these functions has an equivalent one by the same name without the ‘extract_’ prefix which can be called
with the same raw arguments as bevimed/bevimed m: y, G, ..., etc.

> prob_association(y=y, G=G)
[1] 0.03760044

Note that the result of calling prob_association is slightly different due to Monte Carlo error as the inference
procedure has been repeated.

)

bevimed passes arguments to bevimed m through the ‘. ..” argument. However, sometimes it is preferable to pass
different arguments to bevimed m depending on mode of inheritance. bevimed therefore allows mode of inheritance
specific arguments to be passed through dominant_args and recessive_args, which should be named lists of
arguments then only used in the corresponding calls to bevimed m. For example, it might be thought that fewer
variants would be linked to disease given a dominant mode of inheritance than would given recessive inheritance,
in which case dominant_args could be used to pass a prior with a lower mean to the dominant application of
bevimed. m.

3 Priors on model parameters

The user can control the prior distributions of the model parameters when applying the inference functions bevimed,
bevimed m and gammaO_evidence as listed below.

e The probability of association, P(y = 1|y), with argument prior_prob_association in the bevimed function
(defaults to 0.01).

e The probability of dominant inheritance given association, P(m = mqom), with the prior_prob_dominant in
the bevimed function (defaults to 0.5).

e The hyper parameters of the Beta prior for the probability 7y of observing the case label under model v =
0. Values for the hyper parameters can be passed to the bevimed and gammaO_evidence functions as the
tauO_shape argument (defaults to a vague parameterisation of o« = 8 = 1).

e The hyper parameters of the Beta prior for 7 and 7, respectively the probabilities of observing the case label
for individuals with non-pathogenic and pathogenic allele configurations under model v = 1. The default for
T is the same as for 7y, but the default for = has a mean close to 1, as typically for rare diseases the variants
are high penetrance, i.e. have a high probability of causing the disease phenotype. Values for these hyper
parameters can be passed as arguments tau_shape and pi_shape to the bevimed and bevimed m functions.

e The prior on the indicators of variant pathogenicity, z. By default, all variants have a shared prior on their
probability of pathogenicity, z; ~ Bernoulli(w) with w ~ Beta(a = 2,8 = 8). The hyper parameters for w
can be specified by the user using the parameter omega_shape. However the user can also control the prior on
pathogenicity for individual variants. This is done using the variant_weights parameter, a numeric vector
of length k labelled ¢ in the model specification. The effect of the ¢ values is given by the logistic equation:

zj ~ Bernoulli(p;),
logit p; = w + ¢c¢;,
log ¢ ~ N(ug,03),
where ¢ is the scaling factor for c¢. By default, ¢ is centralised on 0 so that w is interpretable as the global
rate of pathogenicity in the locus, and ¢ has a mean of 1, so ¢; is interpretable as a shift in the log odds on

the prior probability of variant j being pathogenic. The raw values of ¢ as given in the variant_weights
arguments will be used if the parameter standardise_weights is set to FALSE. The hyper parameters p4 and

o for the prior distribution of log ¢ are respectively represented by arguments log_phi_mean and log_phi_sd.
Hyper parameters for w and ¢ and the values for ¢ can be passed to functions bevimed and bevimed_m.

Estimating the scaling factor ¢ in this way has the advantage of maintaining power even when the weights
are counter-productive, as ¢ can take values close to 0 making the weights redundant. However, it is possible
to make the effect of variant weights ¢ fixed by setting the parameter estimate_phi to FALSE, in which case
¢ is fixed at 1.

4 Application to real data

It is an assumption of model v = 1 that alleles are identitical by state rather than by descent. This would typically
be the case if only unrelated individuals are included in the analysis, and variants are filtered for low allele frequency
across all ethnic groups. It is therefore recommend to take these steps in order to set G. Various software is available
for performing these tasks: as an example ‘SAMtools” and ‘KING’ can be used for variant filtering and inferring
relatedness respectively. There is also various software for reading VCF files into R. The ‘BeviMed with VCFs’
vignette contains instructions on how to read allele counts across variants in a given locus into R from a VCF file
directly as a matrix using simple functions depending on the program ‘tabix’. However, although this method could
be effective for testing a single locus, typically testing association between a disease and multiple loci is required,
in which case reading variants belonging to multiple loci at the same time is likely to be more efficient. Often, it
will be most effective to read data for as many variants as possible into memory (e.g. breaking up the VCF by
chromosome), and looping through loci one at a time, applying bevimed the allele count matrix of its variants.
Typically loci would correspond to genes, but it is also applicable to non-coding loci, for example, transcription
factor binding sites. In order to increase power, variants which are unlikely to be involved in disease can be filtered
out, or have their probability of pathogenicity down-weighted using the variant_weights parameter. For example,
synonymous variants could be removed, and loss-of-function variants could be up-weighted. One could also create
multiple sets of variants corresponding to a single locus: for example, a set containing only loss-of-function variants
and a set containing all loss-of-function, missense and UTR variants. One could then assign a prior probability
of association to each set, and the posterior probability of association with each set could then be inferred by
computing the evidence for each one in turn and combining with the prior probabilities.

Although typically testing association between a disease and multiple loci is required, BeviMed only provides
procedures for dealing with a single locus. This is because most of the time such an analysis is computationally
expensive due to the large number of applications required or large quantity of genetic data which must be loaded,
and full control is required in order to best exploit the resources available. Here we provide a simple example
script which applies the inference to multiple loci and tabulates the results with columns for gene name, posterior
probability of association and probability of dominant inheritance given the association. Let chrigenes be a
data.frame of chromosome 1 genes with columns for name, start position and end positon (the ‘biomaRt’ package
could be used to obtain such a table), and y be a logical vector indicating disease status, the same length as the
number of samples in the VCF.

source (pasteO(system.file(package="BeviMed", "/scripts/vcf.R")))
all_variants <- vcf2matrix("my-vcf.vcf.gz", chr="1", from=1, to=1e9, include_variant_info=TRUE)
row_indices_per_gene <- lapply(l:nrow(chrigenes), function(i) {

which(all_variants$info$P0S >= chrigenes$start[i] & all_variants$info$P0S <= chrigenes$end[i])
19

names (row_indices_per_gene) <- chrigenes$gene

results <- mclapply(
mc.cores=16L,
X=chrigenes$gene,
FUN=function(gene) {
G <- all_variants$G[variant_inds[[gene]], ,drop=FALSE]
c(
list (gene=gene),
summary (bevimed (y=y, G=G))) })

VV A+ 4+ 4+ 4+ +++VVV++VVYV

results_table <- do.call(what=rbind, lapply(results, function(x) data.frame(

Gene=x[["gene"]],

“Prob. assoc =sum(x[["prob_association"]]),

“Prob. dominance =x[["prob_association"]]["dominant"]/sum(x[["prob_association"]]),
check.names=FALSE,

stringsAsFactors=FALSE

+ 4+ 4+ + + o+

)

5 Performance and tuning

As an MCMC based procedure, statistics produced by bevimed have Monte Carlo error. In the implementation
in the BeviMed package, z is the only parameter which is sampled and is updated using Gibbs sampling of each
component z; in turn. If variant weights are included, w and ¢ are also sampled using Metropolis-Hastings within
Gibbs steps, causing estimates of the evidence to have higher variance for the same number of samples. By default,
bevimed draws 1,000 samples from each of 7 tempered chains in the MCMC algorithm, running at temperatures
t= (%)2 for 1 € {0,1,...,6}. We have found that this parameterisation leads to quick execution and stable results
for sample sizes up to 5,000 and loci containing over 2, 000 variants, also allowing for the inclusion of variant weights.
However, if much larger sample sizes or larger numbers of variants are used — particularly if variant weights are
included — it may become necessary to modify the parameters controlling the sampling routine in order to improve
the accuracy of the results. Strategies for doing this include:

e increase the number of samples drawn per tempered chain using the samples_per_chain argument,

e increase the number tempered chains or change the distribution of temperatures using the temperatures
argument,

e pass the tune_temps argument to bevimed, specifying the number of temperatures to select by interval
bisection for use in the final application,

e if estimating ¢ and w, set tune_omega_and phi_proposal_sd=TRUE in the call to bevimed in order to adaptively
tune the standard deviations of the Metropolis-Hastings proposal distributions so that the acceptance rate
falls within a given range, defaulting to [0.3,0.7]. If this option is used, a tuning run of the MCMC algorithm
is applied, which estimates a proposal standard deviation for each temperature using successive blocks of
tune_block_size samples until the desired acceptance rate is obtained.

It is also possible to instruct bevimed m to halt sampling once the estimated evidence lies within a given confidence
interval, or once there is sufficient confidence that the evidence is greater than some threshold. The latter might
be useful, for instance, if many regions were being tested for association and only those with very strong evidence
for association were of interest). By default, bevimed m does not attempt to stop sampling, and always draws
samples_per_chain samples for each tempered chain. In terms of the argument names, by setting stop_early=TRUE,
bevimed m draws up to blocks batches of samples_per_chain samples, stopping as soon as the estimated log
evidence lies within a confidence interval of width tolerance (defaults to 1) with confidence of confidence (defaults
to 0.95) based on simulations simulations (defaults to 1,000), or as soon as there is confidence confidence that
it is below log_evidence_threshold.

	Introduction
	Functions and classes
	Priors on model parameters
	Application to real data
	Performance and tuning

