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Editorial
by Torsten Hothorn

Welcome to the October 2007 issue of R News,
the second issue for this year! Last week, R 2.6.0
was released with many new useful features:
dev2bitmap allows semi-transparent colours to be
used, plotmath offers access to all characters in
the Adobe Symbol encoding, and three higher-order
functions Reduce, Filter, and Map are now available.
In addition, the startup time has been substantially
reduced when starting without the methods pack-
age. All the details about changes in R 2.6.0 are given
on pages 54 ff.

The Comprehensive R Archive Network contin-
ues to reflect a very active R user and developer com-
munity. Since April, 187 new packages have been
uploaded, ranging from ADaCGH, providing facili-
ties to deal with array CGH data, to yest for model
selection and variance estimation in Gaussian inde-
pendence models. Kurt Hornik presents this impres-
sive list starting on page 61.

The first North American R user conference took
place in Ames Iowa last August and many colleagues
and friends from all over the world enjoyed a well-
organized and interesting conference. Duncan Mur-
doch and Martin Maechler report on useR! 2007 on

page 74. As I’m writing this, Uwe Ligges and his
team at Dortmund university are working hard to
organize next year’s useR! 2008; Uwe’s invitation to
Dortmund Germany appears on the last page of this
issue.

Three of the nine papers contained in this issue
were presented at useR! 2006 in Vienna: Peter Dal-
gaard reports on new functions for multivariate anal-
ysis, Heather Turner and David Firth describe their
new package gnm for fitting generalized nonlinear
models, and Olivia Lau and colleagues use ecologi-
cal inference models to infer individual-level behav-
ior from aggregate data.

Further topics are the analysis of functional mag-
netic resonance imaging and environmental data,
matching for observational studies, and machine
learning methods for survival analysis as well as for
categorical and continuous data. In addition, an ap-
plication to create web interfaces for R scripts is de-
scribed, and Fritz Leisch completes this issue with a
review of Michael J. Crawley’s The R Book.

Torsten Hothorn
Ludwig–Maximilians–Universität München, Germany
Torsten.Hothorn@R-project.org
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New Functions for Multivariate Analysis
Peter Dalgaard

R (and S-PLUS) used to have limited support for
multivariate tests. We had the manova function,
which extended the features of aov to multivariate
responses, but like aov, this effectively assumed a
balanced design, and was not capable of dealing with
the within-subject transformations that are com-
monly used in repeated measurement modelling.

Although the methods encoded in procedures
available in SAS and SPSS can seem somewhat old-
fashioned, they do have some added value relative
to analysis by mixed model methodology, and they
have a strong tradition in several applied areas. It
was thus worthwhile to extend R’s capabilities to
handle contrast tests, as well as Greenhouse-Geisser
and Huynh-Feldt epsilons. The extensions also pro-
vide flexible ways of dealing with linear models with
a multivariate response.

Theoretical setting

The general setup is given by

Y ∼ N(ΞB, I ⊗ Σ)

Here, Y is N × p matrix and Σ is a p × p covari-
ance matrix. The rows yi of Y are independent with
the same covariance Σ.

Ξ is a N× k design matrix (the reader will have to
apologise that I am not using the traditional X, but
that symbol is reserved for other purposes later on)
and B is a k× p matrix of regression coefficients.

Thus, we have the same linear model for all p
response coordinates, with separate parameters con-
tained in the columns of B.

Standard test procedures

From classical univariate and multivariate theory, a
number of standard tests are available. We shall fo-
cus on three of them:

1. Testing hypotheses of simplified mean value
structure: This reduction is required to be the
same for all coordinates, effectively replacing
the design matrix Ξ with one spanning a sub-
space. Such tests take the form of generalized
F tests, replacing the variance ratio by

R = MS−1
resMSeff

in which the MS terms are matrices which gen-
eralize the mean square terms from analysis of
variance. Under the hypothesis, R should be
distributed around the unit matrix (in the sense

that the two MS matrices both have mean Σ;
notice, however, that MSeff will be rank defi-
cient whenever the degrees of freedom for the
effect is less than p), but for a test statistic we
need to reduce R to a scalar measure. Four such
measures are cited in the literature, namely
Wilks’s Λ, the Pillai trace, the Hotelling-Lawley
trace, and Roy’s greatest root. These are all
based on combinations of the eigenvalues of R.
Details can be found in, e.g., Hand and Taylor
(1987).

Wilks’s Λ is equivalent to the likelihood ra-
tio test, but R and S-PLUS have traditionally
favoured the Pillai trace based on the (rather
vague) recommendations cited in Hand and
Taylor (1987). Each test can be converted to
an approximately F distributed statistic. If
the tests are for a single-degree-of-freedom hy-
pothesis, the matrix R has only one non-zero
eigenvalue and all four tests are equivalent.

2. Testing whether Σ is proportional to a given
matrix, say Σ0 (which is usually the unit matrix
I): This is known as Mauchly’s test of spheric-
ity. It is based on a comparison of the de-
terminant and the trace of U = Σ−1

0 S where
S is the SSD (deviation sum-of-squares-and-
products) matrix (MSres instead of S is equiv-
alent). Specifically

W = det(U)/tr(U/p)p

is close to 1 if U is close to a diagonal matrix of
dimension p with a constant value along the di-
agonal. The test statistic− f log W is an asymp-
totic χ2 on p(p + 1)/2 − 1 degrees of freedom
(where f is the degrees of freedom for the co-
variance matrix. An improved approximation
is found in Anderson (1958).

3. Testing linear hypotheses as in point 1 above,
but assuming that sphericity holds. In this
case, we are assuming that the covariance is
known up to a constant, and thus are effec-
tively in a univariate setting of (weighted) least
squares theory. The relevant F statistic will
have (p f1, p f2) degrees of freedom if the coor-
dinatewise tests have ( f1, f2) degrees of free-
dom.

Within-subject transformations

It is often necessary to consider a transformation of
responses: If, for instance, coordinates are repeated
measures, we might wish to test for “no change
over time” or “same changes over time in different
groups” (profile analysis). This leads to analysis of
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within-subjects contrasts, rather than of the observa-
tions themselves.

If we assume a covariance structure with random
effects both between and within subject, the contrasts
will cancel out the between-subject variation. They
will effectively behave as if the between-subject term
wasn’t there and satisfy a sphericity condition.

Hence we consider the transformed response YT′

(which has rows Tyi). In many cases T is chosen to
annihilate another matrix X, i.e. it satisfies TX = 0;
by rotation invariance, different such choices of T
will lead to the same inference as long as they have
maximal rank. In such cases it may well be more con-
venient to specify X rather than T.

For profile analysis, X could be a p-vector of ones.
In that case, the hypothesis of compound symmetry
implies sphericity of TΣT′ w.r.t. TT′ (but sphericity
does not imply compound symmetry), and the hy-
pothesis EYT′ = 0 is equivalent to a flat (constant
level) profile.

More elaborate within-subject designs exist. As
an example, consider a a complete two-way layout,
in which case we might want to look at the sets of (a)
Contrasts between row means, (b) Contrasts between
column means, and (c) Interaction contrasts,

These contrasts connect to the theory of balanced
mixed-effects analysis of variance. A model with “all
interactions with subject are considered random”, i.e.
random effects of subjects, as well as random inter-
action between subject and rows and between sub-
jects and columns, implies sphericity of each of the
above contrasts. The proportionality constants will
be different linear combinations of the random effect
variances.

A common pattern for such sets of contrasts is as
follows: Define two subspaces of Rp, defined by ma-
trices X and M, such that span(X) ⊂ span(M). The
transformation is calculated as T = PM − PX where
P denotes orthogonal projection. Actually, T defined
like this would be singular and therefore T is thinned
by deletion of linearly dependent rows (it can fairly
easily be seen that it does not matter exactly how this
is done). Putting M = I (the identity matrix) will
make T satisfy TX = 0 which is consistent with the
situation described earlier.

The choice of X and M is most easily done by
viewing them as design matrices for linear models in
p-dimensional space. Consider again a two-way in-
trasubject design. To make T a transformation which
calculates contrasts between column means, choose
M to describe a model with different means in each
column and X to describe a single mean for all data.
Preferably, but equivalently for a balanced design, let
M describe an additive model in rows and columns
and let X be a model in which there is only a row
effect.

There is a hidden assumption involved in the
choice of the orthogonal projection onto span(M).
This calculates (for each subject) an ordinary least

squares (OLS) fit and for some covariance structures,
a weighted fit may be more appropriate. However,
OLS is not actually biased, and the efficiency that
we might gain is offset by the need to estimate a
rather large number of parameters to find the opti-
mal weights.

The epsilons

Assume that the conditions for a balanced analysis of
variance are roughly valid. We may decide to com-
pute, say, column means for each subject and test
whether the contrasts are zero on average. There
could be a loss of efficiency in the use of unweighted
means, but the critical issue for an F test is whether
the sphericity condition holds for the contrasts be-
tween column means.

If the sphericity condition is not valid, then the
F test is in principle wrong. Instead, we could use
one of the multivariate tests, but they will often have
low power due to the estimation of a large number
of parameters in the empirical covariance matrix.

For this reason, a methodology has evolved in
which “near-sphericity” data are analyzed by F tests,
but applying the so-called epsilon corrections to the
degrees of freedom. The theory originates in Box
(1954a) in which it is shown that F is approximately
distributed as F(ε f1,ε f2), where

ε =
∑ λ2

i /p
(∑ λi/p)2

and the λi are the eigenvalues of the true covari-
ance matrix (after contrast transformation, and with
respect to a similarly transformed identity matrix).
One may notice that 1/p ≤ ε ≤ 1; the upper limit
corresponds to sphericity (all eigenvalues equal) and
the lower limit corresponds to the case where there
is one dominating eigenvalue, so that data are effec-
tively one-dimensional. Box (1954b) details the result
as a function of the elements of the covariance matrix
in the two-way layout.

The Box correction requires knowledge of the
true covariance matrix. Greenhouse and Geisser
(1959) suggest the use of εGG, which is simply the
empirical verson of ε, inserting the empirical covari-
ance matrix for the true one. However, it is easily
seen that this estimator is biased, at least when the
true epsilon is close to 1, since εGG < 1 almost surely
when p > 1.

The Huynh-Feldt correction (Huynh and Feldt,
1976) is

εHF =
( f + 1)pεGG − 2

p( f − pεGG)

where f is the number of degrees of freedom for the
empirical covariance matrix. (The original paper has
N instead of f + 1 in the numerator for the split-plot
design. A correction was published 15 years later
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(Lecoutre, 1991), but another 15 years later, this er-
ror is still present in SAS and SPSS.)

Notice that εHF can be larger than one, in which
case you should use the uncorrected F test. Also,
εHF is obtained by bias-correcting the numerator and
denominator of εGG, which is not guaranteed to be
helpful, and simulation studies in (Huynh and Feldt,
1976) indicate that it actually makes the approxima-
tions worse when εGG < 0.7 or so.

Implementation in R

Basics

Quite a lot of the calculations could be copied from
the existing manova and summary.manova code for
balanced designs. Also, objects of class mlm, inherit-
ing from lm, were already defined as the output from
lm(Y~....) when Y is a matrix.

It was necessary to add the following new func-
tions

• SSD creates an object of (S3) class SSD which is
the sums of squares and products matrix aug-
mented by degrees of freedom and information
about the call. This is a generic function with a
method for mlm objects.

• estVar calculates the estimated variance-
covariance matrix. It has methods for SSD and
mlm objects. In the former case, it just normal-
izes the SSD by the degrees of freedom, and
in the latter case it calculates SSD(object) and
then applies the SSD method.

• anova.mlm is used to compare two multivariate
linear models or partition a single model in the
usual cumulative way. The various multivari-
ate tests can be specified using test="Pillai",
etc., just as in summary.manova. In addition, it
is possible to specify test="Spherical" which
gives the F test under assumption of sphericity.

• mauchly.test tests for sphericity of a covari-
ance matrix with respect to another.

• sphericity calculates the εGG and εHF based
on the SSD matrix and its degrees of freedom.
This function is private to the stats namespace
(at least currently, as of R version 2.6.0) and
used to generate the headings and adjusted p-
values in anova.mlm.

Representing transformations

As previously described, sphericity tests and tests of
linear hypotheses may make sense only for a trans-
formed response. Hence we need to be able to spec-
ify transformations in anova.mlm and mauchly.test.
The code has several ways to deal with this:

• The transformation matrix can be given di-
rectly using the argument T.

• It is possible to specify the arguments X and M
as the matrices described previously. The de-
faults are set so that the default transformation
is the identity.

• It is also possible to specify X and/or M us-
ing model formulas. In that case, they usually
need to refer to a data frame which describes
the intra-subject design. This can be given in
the idata argument. The default for idata is
a data frame consisting of the single variable
index=1:p which may be used to specify, e.g.,
a polynomial response for equispaced data.

Example

These data from the book by Maxwell and Delaney
(1990) are also used by Baron and Li (2006). They
show reaction times where ten subjects respond to
stimuli in the absence and presence of ambient noise,
and using stimuli tilted at three different angles.

> reacttime <- matrix(c(

+ 420, 420, 480, 480, 600, 780,

+ 420, 480, 480, 360, 480, 600,

+ 480, 480, 540, 660, 780, 780,

+ 420, 540, 540, 480, 780, 900,

+ 540, 660, 540, 480, 660, 720,

+ 360, 420, 360, 360, 480, 540,

+ 480, 480, 600, 540, 720, 840,

+ 480, 600, 660, 540, 720, 900,

+ 540, 600, 540, 480, 720, 780,

+ 480, 420, 540, 540, 660, 780),

+ ncol = 6, byrow = TRUE,

+ dimnames=list(subj=1:10,

+ cond=c("deg0NA", "deg4NA", "deg8NA",

+ "deg0NP", "deg4NP", "deg8NP")))

The same data are used by example(estVar) and
example(anova.mlm), so you can load the reacttime
matrix just by running the examples. The following
is mainly an expanded explanation of those exam-
ples.

First let us calculate the estimated covariance ma-
trix:

> mlmfit <- lm(reacttime~1)

> estVar(mlmfit)

cond

cond deg0NA deg4NA deg8NA deg0NP deg4NP deg8NP

deg0NA 3240 3400 2960 2640 3600 2840

deg4NA 3400 7400 3600 800 4000 3400

deg8NA 2960 3600 6240 4560 6400 7760

deg0NP 2640 800 4560 7840 8000 7040

deg4NP 3600 4000 6400 8000 12000 11200

deg8NP 2840 3400 7760 7040 11200 13640
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In this case there is no between-subjects structure,
except for a common mean, so the result is equivalent
to var(reacttime).

Next we consider tests for whether the response
depends on the design at all. We generate a contrast
transformation which is orthogonal to an intercept-
only within-subject model; this is equivalent to any
full-rank set of within-subject contrasts. A test based
on multivariate normal theory is performed as fol-
lows.

> mlmfit0 <- update(mlmfit, ~0)

> anova(mlmfit, mlmfit0, X=~1)

Analysis of Variance Table

Model 1: reacttime ~ 1

Model 2: reacttime ~ 1 - 1

Contrasts orthogonal to

~1

Res.Df Df Gen.var. Pillai approx F

1 9 1249.57

2 10 1 2013.16 0.95 17.38

num Df den Df Pr(>F)

1

2 5 5 0.003534 **

This gives the default Pillai test, but actually, you
get the same result with the other multivariate tests
since the degrees of freedom (per coordinate) only
changes by one.

To perform the same test, but assuming spheric-
ity of the covariance matrix, just add an argument to
the anova call:

> anova(mlmfit, mlmfit0, X=~1, test="Spherical")

Analysis of Variance Table

Model 1: reacttime ~ 1

Model 2: reacttime ~ 1 - 1

Contrasts orthogonal to

~1

Greenhouse-Geisser epsilon: 0.4855

Huynh-Feldt epsilon: 0.6778

Res.Df Df Gen.var. F num Df

1 9 1249.6

2 10 1 2013.2 38.028 5

den Df Pr(>F) G-G Pr H-F Pr

1

2 45 4.471e-15 2.532e-08 7.393e-11

It can be noticed that the epsilon corrections in
this case are rather strong, but that the corrected
p-values nevertheless are considerably more signif-
icant with this approach, reflecting the low power
of the multivariate test. This is commonly the case
when the number of replications is low.

To test the hypothesis of sphericity, we employ
Mauchly’s criterion:

> mauchly.test(mlmfit, X=~1)

Mauchly's test of sphericity

Contrasts orthogonal to

~1

data: SSD matrix from lm(formula = reacttime ~ 1)

W = 0.0311, p-value = 0.04765

Accordingly, the hypothesis of sphericity is re-
jected at the 0.05 significance level.

However, the analysis of contrasts completely
disregards the two-way intrasubject design. To gen-
erate tests for overall effects of deg and noise, as well
as interaction between the two, we do as follows:
First we need to set up the idata data frame to de-
scribe the design.

> idata <- expand.grid(

+ deg=c("0", "4", "8"),

+ noise=c("A", "P"))

> idata

deg noise

1 0 A

2 4 A

3 8 A

4 0 P

5 4 P

6 8 P

Then we can specify the tests using model formu-
las to specify the X and M matrices. To test for an ef-
fect of deg we let M specify an additive model in deg
and noise and let X be the model with noise alone.

> anova(mlmfit, mlmfit0, M = ~ deg + noise,

+ X = ~ noise,

+ idata = idata, test="Spherical")

Analysis of Variance Table

Model 1: reacttime ~ 1

Model 2: reacttime ~ 1 - 1

Contrasts orthogonal to

~noise

Contrasts spanned by

~deg + noise

Greenhouse-Geisser epsilon: 0.9616

Huynh-Feldt epsilon: 1.2176

Res.Df Df Gen.var. F num Df

1 9 1007.0

2 10 1 2703.2 40.719 2

den Df Pr(>F) G-G Pr H-F Pr

1

2 18 2.087e-07 3.402e-07 2.087e-07

It might at this point be helpful to explain the
roles of X and M a bit further. To do this, we need
to access an internal function in the stats names-
pace, namely proj.matrix. This function calculates
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the projection matrix for a given design matrix, i.e.
PX = X(X′X)−1X′. In the above context, we have

M <- model.matrix(~deg+noise, data=idata)

P1 <- stats:::proj.matrix(M)

X <- model.matrix(~noise, data=idata)

P2 <- stats:::proj.matrix(X)

The two design matrices are (eliminating at-
tributes)

> M

(Intercept) deg4 deg8 noiseP

1 1 0 0 0

2 1 1 0 0

3 1 0 1 0

4 1 0 0 1

5 1 1 0 1

6 1 0 1 1

> X

(Intercept) noiseP

1 1 0

2 1 0

3 1 0

4 1 1

5 1 1

6 1 1

For printing the projection matrices, it is useful to
include the fractions function from MASS.

> library("MASS")

> fractions(P1)

1 2 3 4 5 6

1 2/3 1/6 1/6 1/3 -1/6 -1/6

2 1/6 2/3 1/6 -1/6 1/3 -1/6

3 1/6 1/6 2/3 -1/6 -1/6 1/3

4 1/3 -1/6 -1/6 2/3 1/6 1/6

5 -1/6 1/3 -1/6 1/6 2/3 1/6

6 -1/6 -1/6 1/3 1/6 1/6 2/3

> fractions(P2)

1 2 3 4 5 6

1 1/3 1/3 1/3 0 0 0

2 1/3 1/3 1/3 0 0 0

3 1/3 1/3 1/3 0 0 0

4 0 0 0 1/3 1/3 1/3

5 0 0 0 1/3 1/3 1/3

6 0 0 0 1/3 1/3 1/3

Here, P2 is readily recognized as the operator that
replaces each of the first three values by their aver-
age, and similarly the last three. The other one, P1,
is a little harder, but if you look long enough, you
will recognize the formula x̂i j = x̄i· + x̄· j − x̄·· from
two-way ANOVA.

The transformation T is the difference between P1
and P2

> fractions(P1-P2)

1 2 3 4 5 6

1 1/3 -1/6 -1/6 1/3 -1/6 -1/6

2 -1/6 1/3 -1/6 -1/6 1/3 -1/6

3 -1/6 -1/6 1/3 -1/6 -1/6 1/3

4 1/3 -1/6 -1/6 1/3 -1/6 -1/6

5 -1/6 1/3 -1/6 -1/6 1/3 -1/6

6 -1/6 -1/6 1/3 -1/6 -1/6 1/3

This is the representation of x̄i· − x̄·· where i and
j index levels of deg and noise, respectively. The
matrix has (row) rank 2; for the actual computations,
only the first two rows are used.

The important aspect of this matrix is that it as-
signs equal weights to observations at different lev-
els of noise and that it constructs a maximal set of
within-deg differences. Any other such choice of
transformation leads to equivalent results, since it
will be a full-rank transformation of T. For instance:

> T1 <- rbind(c(1,-1,0,1,-1,0),c(1,0,-1,1,0,-1))

> anova(mlmfit, mlmfit0, T=T1,

+ idata = idata, test = "Spherical")

Analysis of Variance Table

Model 1: reacttime ~ 1

Model 2: reacttime ~ 1 - 1

Contrast matrix

1 -1 0 1 -1 0

1 0 -1 1 0 -1

Greenhouse-Geisser epsilon: 0.9616

Huynh-Feldt epsilon: 1.2176

Res.Df Df Gen.var. F num Df

1 9 12084

2 10 1 32438 40.719 2

1 den Df Pr(>F) G-G Pr H-F Pr

2 18 2.087e-07 3.402e-07 2.087e-07

This differs from the previous analysis only in the
Gen.var. column, which is not invariant to scaling
and transformation of data.

Returning to the interpretation of the results, no-
tice that the epsilons are much closer to one than be-
fore. This is consistent with a covariance structure
induced by a mixed model containing a random in-
teraction between subject and deg. If we perform the
similar procedure for noise we get epsilons of ex-
actly 1, because we are dealing with a single-df con-
trast.

> anova(mlmfit, mlmfit0, M = ~ deg + noise,

+ X = ~ deg,

+ idata = idata, test="Spherical")

Analysis of Variance Table

Model 1: reacttime ~ 1

Model 2: reacttime ~ 1 - 1

Contrasts orthogonal to

~deg

Contrasts spanned by

~deg + noise

Greenhouse-Geisser epsilon: 1

Huynh-Feldt epsilon: 1

Res.Df Df Gen.var. F num Df

1 9 1410
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2 10 1 6030 33.766 1

den Df Pr(>F) G-G Pr H-F Pr

1

2 9 0.0002560 0.0002560 0.0002560

However, we really shouldn’t be doing these tests
on individual effects of deg and noise if there is in-
teraction between the two, and as the following out-
put shows, there is:

> anova(mlmfit, mlmfit0, X = ~ deg + noise,

+ idata = idata, test = "Spherical")

Analysis of Variance Table

Model 1: reacttime ~ 1

Model 2: reacttime ~ 1 - 1

Contrasts orthogonal to

~deg + noise

Greenhouse-Geisser epsilon: 0.904

Huynh-Feldt epsilon: 1.118

Res.Df Df Gen.var. F num Df

1 9 316.58

2 10 1 996.34 45.31 2

den Df Pr(>F) G-G Pr H-F Pr

1

2 18 9.424e-08 3.454e-07 9.424e-08

Finally, to test between-within interactions,
rephrase them as effects of between-factors on
within-contrasts. To illustrate this, we introduce
a fake grouping f of the reacttime data into two
groups. The interaction between f and the (implied)
column factor is obtained by testing whether the con-
trasts orthogonal to ~1 depend on f.

> f <- factor(rep(1:2, 5))

> mlmfit2 <- update(mlmfit, ~f)

> anova(mlmfit2, X = ~1, test = "Spherical")

Analysis of Variance Table

Contrasts orthogonal to

~1

Greenhouse-Geisser epsilon: 0.4691

Huynh-Feldt epsilon: 0.6758

Df F num Df den Df

(Intercept) 1 34.9615 5 40

f 1 0.2743 5 40

Residuals 8

Pr(>F) G-G Pr H-F Pr

(Intercept) 1.382e-13 2.207e-07 8.254e-10

f 0.92452 0.79608 0.86456

Residuals

More detailed tests of interactions between f and
deg, f and noise, and the three-way interaction can
be constructed using M and X settings as described
previously.
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gnm: A Package for Generalized
Nonlinear Models
by Heather Turner and David Firth

In a generalized nonlinear model, the expectation of
a response variable Y is related to a predictor η —
a possibly nonlinear function of parameters — via a
link function g:

g[E(Y)] = η(β)

and the variance of Y is equal to, or proportional
to, a known function v[E(Y)]. This class of models
may be thought of as extending the class of gener-
alized linear models by allowing nonlinear terms in
the predictor, or extending the class of nonlinear least
squares models by allowing the variance of the re-
sponse to depend on the mean.

The gnm package provides facilities for the spec-
ification, estimation and inspection of generalized
nonlinear models. Models are specified via symbolic
formulae, with nonlinear terms specified by func-
tions of class "nonlin". The fitting procedure uses an
iterative weighted least squares algorithm, adapted
to work with over-parameterized models. Identifi-
ability constraints are not essential for model speci-
fication and estimation, and so the difficulty of au-
tomatically defining such constraints for the entire
family of generalized nonlinear models is avoided.
Constraints may be pre-specified, if desired; other-
wise, functions are provided in the package for con-
ducting inference on identifiable parameter combi-
nations after a model in an over-parameterized rep-
resentation has been fitted.

Specific models which the package may be
used to fit include models with multiplicative in-
teractions, such as row-column association mod-
els (Goodman, 1979), UNIDIFF (uniform difference)
models for social mobility (Xie, 1992; Erikson and
Goldthorpe, 1992), GAMMI (generalized additive
main effects and multiplicative interaction) mod-
els (e.g. van Eeuwijk, 1995), and Lee-Carter mod-
els for trends in age-specific mortality (Lee and
Carter, 1992); diagonal-reference models for depen-
dence on a square or hyper-square classification (So-
bel, 1981, 1985); Rasch-type logit or probit mod-
els for legislative voting (e.g. de Leeuw, 2006); and
stereotype multinomial regression models for or-
dinal response (Anderson, 1984). A comprehen-
sive manual is distributed with the package (see
vignette("gnmOverview", package = "gnm")) and
this manual may also be downloaded from http:
//go.warwick.ac.uk/gnm. Here we give an intro-
duction to the key functions and provide some illus-
trative applications.

Key Functions

The primary function defined in package gnm is the
model-fitting function of the same name. This func-
tion is patterned after glm (the function included in
the standard stats package for fitting generalized lin-
ear models), taking similar arguments and returning
an object of class c("gnm", "glm", "lm").

A model formula is specified to gnm as the first ar-
gument. The conventional symbolic form is used to
specify linear terms, whilst nonlinear terms are spec-
ified using functions of class "nonlin". The nonlin
functions currently exported in gnm are summarized
in Figure 1. These functions enable the specification
of basic mathematical functions of predictors (Exp,
Inv and Mult) and some more specialized nonlinear
terms (MultHomog, Dref). Often arguments of nonlin
functions may themselves be parametric functions
described in symbolic form. For example, an expo-
nential decay model with additive errors

y = α + exp(β + γx) + e (1)

is specified using the Exp function as

gnm(y ~ Exp(1 + x))

These “sub-formulae” (to which intercepts are not
added by default) can include other nonlin func-
tions, allowing more complex nonlinear terms to be
built up. Users may also define custom nonlin func-
tions, as we shall illustrate later.

Dref to specify a diagonal reference term
Exp to specify the exponential of a predictor
Inv to specify the reciprocal of a predictor
Mult to specify a product of predictors
MultHomog to specify a multiplicative interaction

with homogeneous effects

Figure 1: "nonlin" functions in the gnm package.

The remaining arguments to gnm are mainly con-
trol parameters and are of secondary importance.
However, the eliminate argument — which imple-
ments a feature seen previously in the GLIM 4 sta-
tistical modelling system — can be extremely useful
when a model contains the additive effect of a (typi-
cally ‘nuisance’) factor with a large number of levels;
in such circumstances the use of eliminate can sub-
stantially improve computational efficiency, as well
as allowing more convenient model summaries with
the ‘nuisance’ factor omitted.

Most of the methods and accessor functions im-
plemented for "glm" or "lm" objects are also imple-
mented for "gnm" objects, such as print, summary,
plot, coef, and so on. Since "gnm" models may be
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over-parameterized, care is needed when interpret-
ing the output of some of these functions. In partic-
ular, for parameters that are not identified, an arbi-
trary parameterization will be returned and the stan-
dard error will be displayed as NA.

For estimable parameters, methods for profile
and confint enable inference based on the profile
likelihood. These methods are designed to handle
the asymmetric behaviour of the log-likelihood func-
tion that is a well-known feature of many nonlinear
models.

Estimates and standard errors of simple "sum-to-
zero" contrasts can be obtained using getContrasts,
if such contrasts are estimable. For more general lin-
ear combinations of parameters, the lower-level se
function may be used instead.

Example

We illustrate here the use of some of the key
functions in gnm through the analysis of a con-
tingency table from Goodman (1979). The data
are a cross-classification of a sample of British
males according to each subject’s occupational sta-
tus and his father’s occupational status. The contin-
gency table is distributed with gnm as the data set
occupationalStatus.

Goodman (1979) analysed these data using row-
column association models, in which the interaction
between the row and column factors is represented
by components of a multiplicative interaction. The
log-multiplicative form of the RC(1) model — the
row-column association model with one component
of the multiplicative interaction — is given by

log µrc = αr + βc + γrδc, (2)

where µrc is the cell mean for row r and column c.
Before modelling the occupational status data, Good-
man (1979) first deleted cells on the main diagonal.
Equivalently we can separate out the diagonal effects
as follows:

log µrc = αr + βc +θrc + γrδc (3)

where

θrc =
{

φr if r = c
0 otherwise.

In addition to the "nonlin" functions provided by
gnm, the package includes a number of functions for
specifying structured linear interactions. The diago-
nal effects in model 3 can be specified using the gnm
function Diag. Thus we can fit model 3 as follows:

> set.seed(1)
> RC <- gnm(Freq ~ origin + destination +
+ Diag(origin, destination) +
+ Mult(origin, destination),
+ family = poisson,
+ data = occupationalStatus)

An abbreviated version of the output given by
summary(RC) is shown in Figure 2. Default con-
straints (as specified by options("contrasts")) are
applied to linear terms: in this case the first level of
the origin and destination factors have been set to
zero. However the “main effects” are not estimable,
since they are aliased with the unconstrained multi-
plicative interaction. If the gnm call were re-evaluated
from a different random seed, the parameterization
for the main effects and multiplicative interaction
would differ from that shown in Figure 2. On the
other hand the diagonal effects, which are essentially
contrasts with the off-diagonal elements, are identi-
fied here. This is immediately apparent from Figure
2, since standard errors are available for these param-
eters.

One could consider extending the model by
adding a further component of the multiplicative in-
teraction, giving an RC(2) model:

log µrc = αr + βc +θrc + γrδc +θrφc. (4)

Most of the "nonlin" functions, including Mult, have
an inst argument to allow the specification of multi-
ple instances of a term, as here:

Freq ~ origin + destination +
Diag(origin, destination) +
Mult(origin, destination, inst = 1) +
Mult(origin, destination, inst = 2)

Multiple instances of a term with an inst argument
may be specified in shorthand using the instances
function provided in the package:

Freq ~ origin + destination +
Diag(origin, destination) +
instances(Mult(origin, destination), 2)

The formula is then expanded by gnm before the
model is fitted.

In the case of the occupational status data how-
ever, the RC(1) model is a good fit (a residual de-
viance of 29.149 on 28 degrees of freedom). So rather
than extending the model, we shall see if it can be
simplified by using homogeneous scores in the mul-
tiplicative interaction:

log µrc = αr + βc +θrc + γrγc (5)

This model can be obtained by updating RC using
update:

> RChomog <- update(RC, . ~ .
+ - Mult(origin, destination)
+ + MultHomog(origin, destination))

We can compare the two models using anova, which
shows that there is little gained by allowing hetero-
geneous row and column scores in the association of
the fathers’ occupational status and the sons’ occu-
pational status:
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Call:

gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +

Mult(origin, destination), family = poisson, data = occupationalStatus)

Deviance Residuals: ...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.11881 NA NA NA

origin2 0.49005 NA NA NA

...

origin8 1.60214 NA NA NA

destination2 0.95334 NA NA NA

...

destination8 1.42813 NA NA NA

Diag(origin, destination)1 1.47923 0.45401 3.258 0.00112

...

Diag(origin, destination)8 0.40731 0.21930 1.857 0.06327

Mult(., destination).origin1 -1.74022 NA NA NA

...

Mult(., destination).origin8 1.65900 NA NA NA

Mult(origin, .).destination1 -1.32971 NA NA NA

...

Mult(origin, .).destination8 0.66730 NA NA NA

...

Residual deviance: 29.149 on 28 degrees of freedom

...

Figure 2: Abbreviated summary of model RC.

> anova(RChomog, RC)
Analysis of Deviance Table

Model 1: Freq ~ origin + destination +
Diag(origin, destination) +
MultHomog(origin, destination)

Model 2: Freq ~ origin + destination +
Diag(origin, destination) +
Mult(origin, destination)

Resid. Df Resid. Dev Df Deviance
1 34 32.561
2 28 29.149 6 3.412

All of the parameters in model 5 can be made
identifiable by constraining one level of the homo-
geneous multiplicative factor to zero. This can be
achieved by using the constrain argument to gnm,
but this would require re-fitting the model. As we are
only really interested in the parameters of the multi-
plicative interaction, we investigate simple contrasts
of these parameters using getContrasts. The gnm
function pickCoef enables us to select the parame-
ters of interest using a regular expression to match
against the parameter names:

> contr <- getContrasts(RChomog,
+ pickCoef(RChomog, "MultHomog"))

A summary of contr is shown in Figure 3. By de-
fault, getContrasts sets the first level of the homo-

geneous multiplicative factor to zero. The quasi stan-
dard errors and quasi variances are independent of
parameterization; see Firth (2003) and Firth and de
Menezes (2004) for more detail. In this example the
reported relative-error diagnostics indicate that the
quasi-variance approximation is rather inaccurate —
in contrast to the high accuracy found in many other
situations by Firth and de Menezes (2004).

Users may run through the example covered in
this section by calling demo(gnm).

Custom "nonlin" functions

The small number of "nonlin" functions currently
distributed with gnm allow a large class of gener-
alized nonlinear models to be specified, as exempli-
fied through the package documentation. Neverthe-
less, for some models a custom "nonlin" function
may be necessary or desirable. As an illustration, we
shall consider a logistic predictor of the form given
by SSlogis (a selfStart model for use with the stats
function nls),

Asym
1 + exp((xmid− x)/scal)

. (6)

This predictor could be specified to gnm as

~ -1 + Mult(1, Inv(Const(1) +
Exp(Mult(1 + offset(-x), Inv(1)))))
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Model call: gnm(formula = Freq ~ origin + destination + Diag(origin, destination)

+ MultHomog(origin, destination), family = poisson, data = occupationalStatus)

estimate SE quasiSE quasiVar

MultHomog(origin, destination)1 0.000 0.000 0.1573 0.02473

MultHomog(origin, destination)2 0.218 0.235 0.1190 0.01416

MultHomog(origin, destination)3 0.816 0.167 0.0611 0.00374

MultHomog(origin, destination)4 1.400 0.160 0.0518 0.00269

MultHomog(origin, destination)5 1.418 0.172 0.0798 0.00637

MultHomog(origin, destination)6 1.929 0.157 0.0360 0.00129

MultHomog(origin, destination)7 2.345 0.173 0.0796 0.00634

MultHomog(origin, destination)8 2.589 0.189 0.1095 0.01200

Worst relative errors in SEs of simple contrasts (%): -19 4.4

Worst relative errors over *all* contrasts (%): -17.2 51.8

Figure 3: Simple contrasts of homogeneous row and column scores in model RChomog.

where Mult, Inv and Exp are "nonlin" functions,
offset is the usual stats function and Const is a gnm
function specifying a constant offset. However, this
specification is rather convoluted and it would be
preferable to define a single "nonlin" function that
could specify a logistic term.

Our custom "nonlin" function only needs a sin-
gle argument, to specify the variable x, so the skele-
ton of our definition might be as follows:

Logistic <- function(x){
}

class(Logistic) <- "nonlin"

Now we need to fill in the body of the func-
tion. The purpose of a "nonlin" function is to con-
vert its arguments into a list of arguments for the in-
ternal function nonlinTerms. This function consid-
ers a nonlinear term as a mathematical function of
predictors, the parameters of which need to be esti-
mated, and possibly also variables, which have a co-
efficient of 1. In this terminology, Asym, xmid and
scal in Equation 6 are parameters of intercept-only
predictors, whilst x is a variable. Our Logistic func-
tion must specify the corresponding predictors and
variables arguments of nonlinTerms. We can de-
fine the predictors argument as a named list of
symbolic expressions

predictors = list(Asym = 1, xmid = 1,
scal = 1)

and pass the user-specified variable x as the
variables argument:

variables = list(substitute(x))

We must then define the term argument of
nonlinTerms, which is a function that creates a de-
parsed mathematical expression of the nonlinear
term from labels for the predictors and variables.
These labels should be passed through arguments
predLabels and varLabels respectively, so we can
specify the term argument as

term = function(predLabels, varLabels){
paste(predLabels[1], "/(1 + exp((",
predLabels[2], "-", varLabels[1], ")/",
predLabels[3], "))")
}

Our Logistic function need not specify any further
arguments of nonlinTerms. However, we do have
an idea of useful starting values, so we can also spec-
ify the start argument. This should be a function
which takes a named vector of the parameters in the
term and returns a vector of starting values for these
parameters. The following function will set the ini-
tial scale parameter to one:

start = function(theta){
theta[3] <- 1
theta
}

Putting these components together, we have:

Logistic <- function(x){
list(predictors =

list(Asym = 1, xmid = 1, scal = 1),
variables = list(substitute(x)),
term =
function(predLabels, varLabels){

paste(predLabels[1],
"/(1 + exp((", predLabels[2],
"-", varLabels[1], ")/",
predLabels[3], "))")

},
start = function(theta){

theta[3] <- 1
theta

})
}
class(Logistic) <- "nonlin"

Having defined this function, we can reproduce
the example from ?SSlogis as shown below

> Chick.1 <-
+ ChickWeight[ChickWeight$Chick == 1, ]
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> fm1gnm <- gnm(weight ~ Logistic(Time) - 1,
+ data = Chick.1, trace = FALSE)
> summary(fm1gnm)

Call:
gnm(formula = weight ~ Logistic(Time) - 1,

data = Chick.1)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.154 -2.359 0.825 2.146 3.745

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Asym 937.0205 465.8569 2.011 0.07516
xmid 35.2228 8.3119 4.238 0.00218
scal 11.4052 0.9052 12.599 5.08e-07

(Dispersion parameter for gaussian family
taken to be 8.51804)

Residual deviance: 76.662 on 9 degrees of
freedom

AIC: 64.309

Number of iterations: 14

In general, whenever a nonlinear term can be rep-
resented as an expression that is differentiable us-
ing deriv, it should be possible to define a "nonlin"
function to specify the term. Additional arguments
of nonlinTerms allow for the specification of factors
with homologous effects and control over the way in
which parameters are automatically labelled.

Summary

The functions distributed in the gnm package enable
a wide range of generalized nonlinear models to be
estimated. Nonlinear terms that are not (easily) rep-
resented by the "nonlin" functions provided may be
implemented as custom "nonlin" functions, under
fairly weak conditions.

There are several features of gnm that we have
not covered in this paper. Some facilitate model in-
spection, such as the ofInterest argument to gnm
which allows the user to customize model sum-
maries and simplify parameter selection. Other fea-
tures are designed for particular models, such as
the residSVD function for generating good starting
values for a multiplicative interaction. Still oth-
ers relate to particular types of data, such as the
expandCategorical function for expressing categor-
ical data as counts. These features complement the
facilities we have already described, to produce a
substantial and flexible package for working with
generalized nonlinear models.
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fmri: A Package for Analyzing fmri Data
by J. Polzehl and K. Tabelow

This article describes the usage of the R pack-
age fmri to analyze single time series BOLD fMRI
(blood-oxygen-level dependent functional magnetic
resonance imaging) data using structure adaptive
smoothing procedures (Propagation- Separation ap-
proach) as described in (Tabelow et al., 2006). See
(J. Polzehl and K. Tabelow, 2006) for an extended
documentation.

Analysing fMRI data with the fmri
package

The approach implemented in the fmri package is
based on a linear model for the hemodynamic re-
sponse and structural adaptive spatial smoothing of
the resulting Statistical Parametric Map (SPM). The
package requires R (version ≥ 2.2). 3D visualization
needs the R package tkrplot.

The statistical modeling implemented with this
software is described in (Tabelow et al., 2006).

NOTE! This software comes with abso-
lutely no warranty! It is not intended for
clinical use, but for evaluation purposes
only. Absence of bugs can not be guaran-
teed!

We first start with a basic script for using the fmri
package in a typical fmri analysis. In the follow-
ing sections we describe the consecutive steps of the
analysis.

# read the data

data <- read.AFNI("afnifile")

# or read sequence of ANALYZE files

# analyze031file.hdr ... analyze137file.hdr

# data <- read.ANALYZE("analyze",

# numbered = TRUE, "file", 31, 107)

# create expected BOLD signal and design matrix

hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)

x <- fmri.design(hrf)

# generate parametric map from linear model

spm <- fmri.lm(data, x)

# adaptive smoothing with maximum bandwith hmax

spmsmooth <- fmri.smooth(spm, hmax = 4)

# calculate p-values for smoothed parametric map

pvalue <- fmri.pvalue(spmsmooth)

# write slicewise results into a file or ...

plot(pvalue, maxpvalue = 0.01, device = "jpeg",

file = "result.jpeg")

# ... use interactive 3D visualization

plot(pvalue, maxpvalue = 0.01, type = "3d")

Reading the data

The fmri package can read ANALYZE (Mayo Foun-
dation, 2001), AFNI- HEAD/BRIK (Cox, 1996),
NIFTI and DICOM files. Use

data <- read.AFNI(<filename>)

data <- read.ANALYZE(<filename>)

to create the object data from the data in file
‘filename’. Drop the extension in ‘filename’. While
AFNI data is generally given as a four dimensional
datacube in one file, ANALYZE format data often
comes in a series of numbered files. A sequence of
images in ANALYZE format can be imported by

data <- read.ANALYZE(prefix = "", numbered = TRUE,

postfix = "", picstart = 1,

numbpic = 1)

Setting the argument numbered to TRUE allows to
read a list of image files. The image files are as-
sumed to be ordered by a number, contained in
the filename. picstart is the number of the first
file, and numbpic the number of files to be read.
The increment between consecutive numbers is as-
sumed to be 1. prefix specifies a string preceed-
ing the number, whereas postfix identifies a string
following the number in the filename. Note, that
read.ANALYZE() requires the file names in the form:
‘<prefix>number<postfix>.hdr/img’.

Figure 1: View of a typical fMRI dataset. Data di-
mension is 64x64x26 with a total of 107 scans. A high
noise level is typical. The time series is described by
a linear model containing the experimental stimulus
(red) and quadratic drift. Data: courtesy of H. Voss,
Weill Medical College of Cornell University.

Both functions return lists of class ”fmridata”
with components containing the datacube (’ttt’). See
figure 1 for an illustration. The data cube is stored
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in (’raw’) format to save memory. The data can
be extracted from the list using extract.data().
Additionally the list contains basic information like
the size of the data cube (’dim’) and the voxel size
(’delta’), as well as the complete header information
(’header’), which is itself a list with components de-
pending to the data format read. A head mask is de-
fined by simply using a 75% quantile of the data grey
levels as cut- off. This is only be used to provide im-
proved spatial correlation estimates for the head in
fmri.lm().

Expected BOLD response

In voxel affected by the experiment the observed sig-
nal is assumed to follow the expected Blood Oxy-
genation Level Dependent (BOLD) signal. This sig-
nal depends on both the experimental stimulus, de-
scribed by a task indicator function and a hemody-
namic response function h(t). We define h(t) as the
difference of two gamma functions

h(t) =
(

t
d1

)a1

exp
(
− t− d1

b1

)
−c
(

t
d2

)a2

exp
(
− t− d2

b2

)
with a1 = 6, a2 = 12, b1 = 0.9, b2 = 0.9, and
di = aibi(i = 1, 2), c = 0.35 where t is the time in
seconds, see (Glover, 1999). The expected BOLD re-
sponse is given as a discrete convolution of this func-
tion with the task indicator function. Use

hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)

to create the expected BOLD response for a stimulus
with 107 scans, onset times at the 18th, 48th, and 78th
scan with a duration of the stimulus of 15 scans, and
a time TR = 2s between two scans. In case of mul-
tiple stimuli the results of fmri.stimulus() for the
different stimuli should be arranged as columns of a
matrix hrf using cbind().

The hemodynamic response function may have
an unknown latency (Worsley and Taylor, 2005). This
can be modeled creating an additional explanatory
variable as the first numerical derivative of any ex-
perimental stimulus:

dhrf <- (c(0,diff(hrf)) + c(diff(hrf),0))/2

See the next section for how to include this into the
linear model.

Construction of the SPM

We adopt the common view of a linear model for the
time series Yi = (Yit) in each voxel i after reconstruc-
tion of the raw data and motion correction.

Yi = Xβi +εi , (1)

where X denotes the design matrix. The design ma-
trix is created by

x <- fmri.design(hrf) .

This will include polynomial drift terms up to
quadratic order. To deviate from this default, the
order of the polynomial drift can be specified by a
second argument. Use cbind() to combine several
stimulus vectors into a matrix of stimuli before call-
ing fmri.design().

The first q columns of X contain values of the ex-
pected BOLD response for the different stimuli eval-
uated at scan acquisition times. The other p − q
columns are chosen to be orthogonal to the expected
BOLD responses and to account for a slowly vary-
ing drift and possible other external effects. The er-
ror vector εi has zero expectation and is assumed to
be correlated in time. In order to access the variabil-
ity of the estimates of βi correctly we have to take
the correlation structure of the error vector εi into ac-
count. We assume an AR(1) model to be sufficient for
commonly used MRI scanners. The autocorrelation
coefficients ρi are estimated from the residual vector
ri = (ri1, . . . , riT) of the fitted model (1) as

ρ̄i =
T

∑
t=2

ritri(t−1)/
T

∑
t=1

r2
it.

This estimate of the correlation coefficient is biased
due to fitting the linear model (1). We therefore ap-
ply the bias correction given by (Worsley et al., 2002)
leading to an estimate ρ̃i.

We then use prewhitening to transform model (1)
into a linear model with approximately uncorrelated
errors. The prewhitened linear model is obtained by
multiplying the terms in (1) with some matrix Ai de-
pending on ρ̃i. The prewhitening procedure thus re-
sults in a new linear model

Ỹi = X̃iβi + ε̃i (2)

with Ỹi = AiYi, X̃i = AiX, and ε̃i = Aiεi. In the new
model the errors ε̃i = (ε̃it) are approximately uncor-
related in time t, such that var ε̃i = σ2

i IT . Finally least
squares estimates β̃i are obtained from model (2) as

β̃i = (X̃T
i X̃i)−1X̃T

i Ỹi .

The error variance σ2
i is estimated from the residu-

als r̃i of the linear model (2) as σ̃2
i = ∑

T
1 r̃2

it/(T − p)
leading to estimated covariance matrices

var β̃i = σ̃2
i (X̃T

i X̃i)−1.

Estimates β̃i and their estimated covariance ma-
trices are, in the simplest case, obtained by

spm <- fmri.lm(data, x)
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where data is the data object read by read.AFNI() or
read.ANALYZE(), and x is the design matrix created
with fmri.design().

See figure 1 for an example of a typical fMRI
dataset together with the result of the fit of the lin-
ear model to a time series.

To consider more than one stimulus and to esti-
mate an effect

γ̃ = cTβ̃ (3)

defined by a vector of contrasts c set the argument
contrast of the function fmri.lm() correspondingly

hrf1 <- fmri.stimulus(214, c(18, 78, 138), 15, 2)

hrf2 <- fmri.stimulus(214, c(48, 108, 168), 15, 2)

x <- fmri.design(cbind(hrf1, hrf2))

# stimulus 1 only

spm1 <- fmri.lm(data, x, contrast = c(1,0))

# stimulus 2 only

spm2 <- fmri.lm(data, x, contrast = c(0,1))

# contrast between both

spm3 <- fmri.lm(data, x, contrast = c(1,-1))

If the argument vvector is set, the component
”cbeta” of the object returned by fmri.lm() con-
tains a vector with the parameters corresponding to
the non- zero elements in vvector in each voxel.
This may be used to include unknown latency of
the hemodynamic response function in the analysis.
First define the expected BOLD response for a given
stimulus and its derivative and then combine them
into the design matrix

hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)

dhrf <- (c(0,diff(hrf)) + c(diff(hrf),0))/2

x <- fmri.design(cbind(hrf, dhrf))

spm <- fmri.lm(data, x, vvector = c(1,1)) .

The specification of vvector in the last statement re-
sults in a vector of length 2 containing the two pa-
rameter estimates for the expected BOLD response
and its derivative in each voxel. Furthermore the ra-
tio of the variance estimates for these parameters is
calculated as a prerequisite for the smoothing proce-
dure. See fmri.smooth() for details about smooth-
ing this parametric map.

The function returns an object with class at-
tributes ”fmridata” and ”fmrispm”. This is again a
list with components containing the estimated pa-
rameter contrast (’cbeta’), and its estimated variance
(’var’), as well as estimated spatial correlations in all
directions.

Structure Adaptive Smoothing (PS)

Smoothing of SPM’s is applied in this context to im-
prove the sensitivity of signal detection. This is ex-
pected to work since neural activations extends over

regions of adjacent voxels. Averaging over such re-
gions allows us to reduce the variance of the param-
eter estimates without compromising their mean. In-
troducing a spatial correlation structure also reduces
the number of independent decisions made for sig-
nal detection and therefore eases the multiple test
problem. Adaptive smoothing as implemented in
this package also allows to improve the specificity of
signal detection, see figure 2 for an illustration.

The parameter map is smoothed with

spmsmooth <- fmri.smooth(spm, hmax = hmax)

where spm is the result of the function fmri.lm().
hmax is the maximum bandwidth for the smoothing
algorithm. For lkern="Gaussian" the bandwidth is
given in units of FWHM, for any other localization
kernel the unit is voxel. hmax should be chosen as
the expected maximum size of the activation areas.
As adaptive smoothing automatically adapts to dif-
ferent sizes and shapes of the activation areas, over-
smoothing is not to be expected.

In (Tabelow et al., 2006) the use of a spa-
tial adaptive smoothing procedure derived from
the Propagation- Separation approach (Polzehl and
Spokoiny, 2006) has been proposed in this context.
The approach focuses, for each voxel i, on simultane-
ously identifying a region where the unknown pa-
rameter γ is approximately constant and to obtain
an optimal estimate γ̂i employing this structural in-
formation. This is achieved by an iterative proce-
dure. Local smoothing is restricted to local vicini-
ties of each voxel, that are characterized by a weight-
ing scheme. Smoothing and characterization of local
vicinities are alternated. Weights for a pair of voxels
i and j are constructed as a product of kernel weights
Kloc(δ(i, j)/h), depending on the distance δ(i, j) be-
tween the two voxels and a bandwidth h, and a factor
reflecting the difference of the estimates γ̂i and γ̂ j ob-
tained within the last iteration. The bandwidth h is
increased with iterations up to a maximal bandwidth
hmax.

The name Propagation- Separation is a synonym
for the two main properties of this algorithm. In
case of a completely homogeneous array Γ̃ , that is
IE γ̃ ≡ Const., the algorithm delivers essentially the
same result as a nonadaptive kernel smoother em-
ploying the bandwidth hmax. In this case the pro-
cedure selects the best of a sequence of almost non-
adaptive estimates, that is, it propagates to the one
with maximum bandwidth. Separation means that
as soon as within one iteration step significant dif-
ferences of γ̂i and γ̂ j are observed the correspond-
ing weight is decreased to zero and the information
from voxel j is no longer used to estimate γi. Voxels i
and j belong to different regions of homogeneity and
are therefore separated. As a consequence smooth-
ing is restricted to regions with approximately con-
stant values of γ, bias at the border of such regions is
avoided and the spatial structure of activated regions
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Figure 2: A numerical phantom for studying the performance of PS vs. Gaussian smoothing. (a) Signal loca-
tions within one slices. Eight different signal- to- noise ratios, increasing clockwise, are coded by gray values.
The spatial extent of activations varies in the radial direction. The data cube contains 15 slices with activation
alternated with 9 empty slices. (b) Smoothing with a conventional Gaussian filter. (c) Smoothing with PS. In
both (b) and (c), the bandwidth is 3 voxels which corresponds to FWHM = 10 mm for typical voxel size. In
(b) and (c) the proportion, over slices containing activations, of voxels that are detected in a given position is
rendered by gray values. Black corresponds to the absence of a detection.

is preserved.
For a formal description of this algorithm, a dis-

cussion of its properties and theoretical results we re-
fer to (Polzehl and Spokoiny, 2006) and (Tabelow et
al., 2006). Numerical complexity, as well as smooth-
ness within homogeneous regions is controlled by
the maximum bandwidth hmax.

If the argument object contains a parameter vec-
tor for each voxel (for example to include latency, see
section 4) these will be smoothed according to their
estimated variance ratio, see (Tabelow et al., 2006) for
details on the smoothing procedure.

Figure 2 provides a comparison of signal detec-
tion employing a Gaussian filter and structural adap-
tive smoothing.

Signal detection

Smoothing leads to variance reduction and thus sig-
nal enhancement. It leaves us with three dimen-
sional arrays Γ̂ , Ŝ containing the estimated effects
γ̂i = cTβ̂i and their estimated standard deviations
ŝi = (cT var β̂ic)1/2, obtained from time series of
smoothed residuals. The voxelwise quotient θ̂i =
γ̂i/ŝi of both arrays forms a statistical parametric
map (SPM) Θ̂. The SPM as well as a map of p-values
are generated by

pvalue <- fmri.pvalue(spmsmooth)

Under the hypothesis, that is, in absence of activa-
tion this SPM behaves approximately like a Gaussian
Random Field, see (Tabelow et al., 2006). We there-
fore use the theory of Gaussian Random Fields to as-
sign appropriate p-values as a prerequisite for signal

detection. Such p-values can be defined (Worsley et
al., 1996) as

pi =
3

∑
d=0

Rd(V(rx, ry, rz))ρd(θ̂i) (4)

where Rd(V) is the resel count of the search vol-
ume V and ρd(θ̂i) is the EC density depending only
on the parameter θ̂i. rx, ry, rz denotes the effective
FWHM bandwidths that measure the smoothness (in
resel space see (Worsley et al., 1996)) of the random
field generated by a Gaussian filter that employs the
bandwidth from the last iteration of the PS proce-
dure (Tabelow et al., 2006). Rd(V) and ρd are given
in (Worsley et al., 1996). A signal will be detected in
all voxels where the observed p-value is less or equal
to a specified threshold.

Finally we provide a statistical analysis includ-
ing unknown latency of the hemodynamic response
function. If spmsmooth contains a vector (see
fmri.lm() and fmri.smooth()), a χ2 statistic is cal-
culated from the first two parameters and used for
p-value calculation. If delta is given, a cone statis-
tics is used (Worsley and Taylor, 2005).

The parameter mode allows for different kinds
of p-value calculation. ”basic” corresponds to a
global definition based on the amount of smoothness
achieved by an equivalent Gaussian filter. The prop-
agation condition ensures, that under the hypothesis
Θ̂ = 0 the adaptive smoothing perform like a non
adaptive filter with the same kernel function. ”local”
corresponds to a more conservative setting, where
the p-values are derived from the estimated local re-
sel counts that has been achieved by the adaptive
smoothing. ”global” takes a global median of these
resel counts for calculation.
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Figure 3 provides the results of signal detection
for an experimental fMRI data set.

Viewing results

Results can be displayed by a generic plot function

plot(object, anatomic,

device="jpeg", file="result.jpeg")

object is an object of class ”fmridata” (and
”fmrispm” or ”fmripvalue”) as returned by
fmri.pvalue(), fmri.smooth(), fmri.lm(),
read.ANALYZE() or read.AFNI(). anatomic is an
anatomic underlay of the same dimension as the
functional data. The argument type="3d" provides
an interactive display to produce 3 dimensional illus-
trations (requires R- package tkrplot) on the screen.
The default for type is ”slice”, which can create out-
put to the screen and image files.

We also provide generic functions summary() and
print() for objects with class attribute ”fmridata”.

Figure 3: Signal detection in 4 consecutive slices us-
ing adaptive smoothing procedure. The shape and
extent of the activation areas are conserved much
better than with traditional Gaussian filtering. Data:
courtesy of H. Voss, Weill Medical College of Cornell
University.

Writing the results to files

Finally we provide functions to write data in stan-
dard medical image formats such as HEAD/BRIK,
ANALYZE, and NIFTI.

write.AFNI("afnitest", data, c("signal"),

note="random data", origin=c(0,0,0),

delta=c(4,4,5), idcode="unique ID")

write.ANALYZE(data, list(pixdim=c(4,4,4,5)),

file="analyzetest")

Some basic header information can be provided,
in case of ANALYZE files as a list with several ele-
ments (see documentation for syntax). Any datacube
created during the analysis can be written.

Bibliography

Biomedical Imaging Resource. Analyze Program.
Mayo Foundation, 2001.

R. W. Cox. Afni: Software for analysis and visual-
ization of functional magnetic resonance neuroim-
ages. Computers and Biomed. Res., 29:162- 173, 1996.

G. H. Glover. Deconvolution of impulse response in
event- related BOLD fMRI. NeuroImage, 9:416- 429,
1999.

J. Polzehl and V. Spokoiny. Propagation- separation
approach for local likelihood estimation. Probab.
Theory and Relat. Fields, 135:335- 362, 2006.

R Development Core Team. R: A Language and Envi-
ronment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2007. ISBN
3- 900051- 07- 0.

K. Tabelow, J. Polzehl, H. U. Voss, and V. Spokoiny.
Analyzing fMRI experiments with structural
adaptive smoothing procedures. NeuroImage,
33:55- 62, 2006.

J. Polzehl and K. Tabelow. Analysing fMRI experi-
ments with the fmri package in R. Version 1.0 - A
users guide. WIAS Technical Report No. 10, 2006.

K. J. Worsley. Spatial smoothing of autocorrelations
to control the degrees of freedom in fMRI analysis.
NeuroImage, 26:635- 641, 2005.

K. J. Worsley, C. Liao, J. A. D. Aston, V. Petre, G. H.
Duncan, F. Morales, and A. C. Evans. A general
statistical analysis for fMRI data. NeuroImage, 15:1-
15, 2002.

K. J. Worsley, S. Marrett, P. Neelin, K. J. Friston, and
A. C. Evans. A unified statistical approach for de-
terming significant signals in images of cerebral
activation. Human Brain Mapping, 4:58- 73, 1996.

K. J. Worsley and J. E. Taylor. Detecting fMRI activa-
tion allowing for unknown latency of the hemody-
namic response. Neuroimage, 29:649- 654, 2006.

Jörg Polzehl & Karsten Tabelow
Weierstrass Institute for Applied Analysis
and Stochastics, Berlin, Germany
polzehl@wias-berlin.de
tabelow@wias-berlin.de

R News ISSN 1609-3631

mailto:polzehl@wias-berlin.de
mailto:tabelow@wias-berlin.de


Vol. 7/2, October 2007 18

Optmatch: Flexible, Optimal Matching for
Observational Studies
Ben B. Hansen

Observational studies compare subjects who re-
ceived a specified treatment to others who did not,
without controlling assignment to treatment and
comparison groups. When the groups differ at base-
line in ways that are relevant to the outcome, the
study has to adjust for the differences. An old and
particularly direct method of making these adjust-
ments is to match treated subjects to controls who
are similar in terms of their pretreatment charac-
teristics, then conduct an outcome analysis condi-
tioning upon the matched sets. Adjustments of this
type enjoy properties of robustness (Rubin, 1979) and
transparency not shared with purely model-based
adjustments, such as covariance adjustment without
matching or stratification; and with the introduction
of propensity scores to matching (Rosenbaum and
Rubin, 1985), the approach was shown to be more
broadly applicable than was previously thought. Ar-
guably, the reach of techniques based on matching
now exceeds that of purely model-based adjustment
(Hansen, 2004).

To achieve these benefits, matched adjustment re-
quires the analyst to articulate a distinction between
desirable and undesirable potential matches, and
then to match treated and control subjects in such a
way as to favor the more desirable pairings. Propen-
sity scoring fits under the first of these tasks, as do
the construction of Mahalanobis matching metrics
(Rosenbaum and Rubin, 1985), prognostic scoring
(Hansen, 2006b), and the distance metric optimiza-
tion of Diamond and Sekhon (2006). The second task,
matching itself, is less statistical in nature, but doing
it well can substantially improve the power and ro-
bustness of matched inference (Hansen and Klopfer,
2006; Hansen, 2004). The main purpose of optmatch
is to relieve the analyst of responsibility for this im-
portant, if potentially tedious, undertaking, freeing
attention for other aspects of the analysis. Given
discrepancies between each treatment and control
subject that might potentially be matched, optmatch
places them into non-overlapping matched sets, in
the process solving the discrete optimization prob-
lems needed to make sums of matched discrepancies
as small as possible; after this, the analysis can pro-
ceed using permutation inference (Rosenbaum, 2002;
Hothorn et al., 2006; Bowers and Hansen, 2006), con-
ditional inference (Breslow and Day, 1980; Cox and
Snell, 1989; Hansen, 2004; Lumley and Therneau,
2006), approximately conditional inference (Pierce
and Peters, 1992; Brazzale, 2005; Brazzale et al., 2006),
or multilevel models (Smith, 1997; Raudenbush and
Bryk, 2002; Gelman and Hill, 2006).

Optimal matching of two groups

To illustrate the meaning of optimal matching, con-
sider Cox and Snell’s (1981, p.81) study of costs of
nuclear power. Of 26 light water reactor plants con-
structed in the U.S. between 1967 and 1972, seven
had been built on the site of existing plants. The
problem is to estimate the cost benefit (or penalty)
of building on an existing site as opposed to a new
one. A matched analysis seeks to adjust for back-
ground characteristics determinative of cost, such as
the date of construction and the capacity of the plant,
by linking similar refurbished and new plants: plants
of about the same capacity and constructed at about
the same time, for example. To highlight the anal-
ogy with intervention studies, I refer to existing-site
plants as “treatments” and new-site plants as “con-
trols.”

Consider the problem of arranging the plants
in disjoint triples, each containing one treatment
and two controls, placing each treatment and 14
of the 19 controls into some matched triple or an-
other. A straightforward way to create such a
match is to move down the list of treatments, pair-
ing each to the two most similar controls that have
not yet been matched; this is nearest-available match-
ing. Figure 1 shows the 26 plants, their capaci-
ties and dates of construction, and a 1 : 2 match-
ing constructed in this way. First A was matched
to I and J, then B to L and N, and so forth. This
example is discussed by Rosenbaum (2002, ch.10).

Existing site
date capacity

A 2.3 660
B 3.0 660
C 3.4 420
D 3.4 130
E 3.9 650
F 5.9 430
G 5.1 420

“date” is date of construc-
tion, in years after 1965;
“capacity” is net capac-
ity of the power plant, in
MWe above 400.

New site
date capacity

H 3.6 290
I 2.3 660
J 3.0 660
K 2.9 110
L 3.2 420
M 3.4 60
N 3.3 390
O 3.6 160
P 3.8 390
Q 3.4 130
R 3.9 650
S 3.9 450
T 3.4 380
U 4.5 440
V 4.2 690
W 3.8 510
X 4.7 390
Y 5.4 140
Z 6.1 730

Figure 1: 1:2 matching by a nearest-available algo-
rithm.

How might this process be improved? To com-
plete step i, the nearest-available algorithm requires
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a ranking of potential matches for treatment unit i,
an ordering of available controls accounting for their
differences with plant i in generating capacity and in
year of construction. Typically controls j are ordered
in terms of a numeric discrepancy, d[i, j], from i; Fig-
ure 1’s match follows Rosenbaum (2002, ch.10) in us-
ing the sum of rank differences on the two covariates
(after restricting to a subset of the plants, pt!=1):

> data("nuclear", package="boot")
> attach(nuclear[nuclear$pt!=1,])
> drk <- rank(date)
> d <- outer(drk[pr==1], drk[pr!=1], "-")
> d <- abs(d)
> crk <- rank(cap)
> d <- d +

abs(outer(crk[pr==1], crk[pr!=1], "-"))

(where pr==1 indicates the treatment group). The
d that results from these operations is shown (after
rounding) in Figure 3. Having calculated this d, one
can pose the task of matching as a discrete optimiza-
tion problem: find the match M = {(i, j)} minimiz-
ing ∑M d(i, j) among all sets of pairs (i, j) in which
each treatment i appears twice and each control j ap-
pears at most once.

Optimal matching refers to algorithms guaran-
teed to find matches attaining this minimum, or
falling within a specified tolerance of it, given a
nt × nc discrepancy matrix M. Optimal matching’s
performance advantage over heuristic, non-optimal
algorithms can be striking. For example, in the prob-
lem of Figure 1 optimal matching reduces nearest-
available’s sum of discrepancies by 23%. This opti-
mal solution, found by optmatch’s pairmatch func-
tion, is shown in Figure 2.

Existing site
date capacity

A 2.3 660
B 3.0 660
C 3.4 420
D 3.4 130
E 3.9 650
F 5.9 430
G 5.1 420

By evaluating potential
matches all together rather
than sequentially, optimal
matching (blue lines) reduces
the sum of distances by 23%.

New site
date capacity

H 3.6 290
I 2.3 660
J 3.0 660
K 2.9 110
L 3.2 420
M 3.4 60
N 3.3 390
O 3.6 160
P 3.8 390
Q 3.4 130
R 3.9 650
S 3.9 450
T 3.4 380
U 4.5 440
V 4.2 690
W 3.8 510
X 4.7 390
Y 5.4 140
Z 6.1 730

Figure 2: Optimal vs. greedy 1:2 matching.

An optimal match is optimal relative to given
structural requirements, here that all treatments and
a corresponding number of controls be arranged in
1 : 2 matched sets, and a given distance, here d. It
is best-possible for the purposes of the analyst only

insofar as the given distance and structural stipula-
tions best represent the analyst’s goals; in this sense
“optimal” in “optimal matching” is analogous to
the “maximum” of “maximum likelihood,” which is
never better than the chosen likelihood model it max-
imizes.

For example, in the problem just discussed the
structural stipulation that the matched sets all be 1:2
triples may be poorly tailored to the goal of reduc-
ing baseline differences between the groups. It is
appropriate if these differences stem entirely from a
small minority of controls being too unlike any treat-
ment subjects to bear comparison to them, since it
does exclude 5/19 of potential controls from the fi-
nal match; but differences on a larger number of con-
trols, even small differences, require the techniques
to be described under Generalizations of pair match-
ing, below, which may also give similar or better bias
reduction without excluding as many control obser-
vations. (See also Discussion, below.)

Growing your own discrepancy matrix

Figures 1 and 2 both illustrate multivariate distance
matching , aligning units so as to minimize a sum
of rank discrepancies. Optmatch is entirely flexi-
ble about the form of the distance on which matches
are to be made. To propensity-score match nuclear
plants, for example, one would prepare a propensity
distance using

> pscr <- glm(pr ~ . -(pr+cost),
family = binomial,
data = nuclear)$linear.predictors

> PR <- nuclear$pr==1
> pdist <- outer(pscr[PR], pscr[PR], "-")

> pscr.v <- (var(pscr[PR])*(sum(PR)-1)+
var(pscr[!PR])*(sum(!PR)-1))/
(length(PR)-2)

> pdist <- abs(pdist)/sqrt(pscr.v)

or, more simply and reliably,

> pmodel <- glm(pr ~ . -(pr+cost),
family = binomial, data = nuclear)

> pdist <- pscore.dist(pmodel)

Then pdist is passed to pairmatch or fullmatch as
its first argument. Other discrepancies on which one
might match include Mahalanobis distances (which
can be produced using mahal.dist) and combina-
tions of Mahalanobis and propensity-based distances
(Rosenbaum and Rubin, 1985; Gu and Rosenbaum,
1993; Rubin and Thomas, 2000). Many special re-
quirements, such as that matches be made only
within given subclasses, or that specific matches be
avoided, are also introduced through the discrep-
ancy matrix.

First consider the case the matches are to be made
within subclasses only. In the nuclear dataset, plants
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with and without partial turnkey (pt) guarantees
should be compared separately, since the meaning of
the outcome variable, cost, changes with pt. Figure
2 shows only the pt!=1 plants, and its match is gener-
ated with the command pairmatch(d,controls=2),
where d is the matrix in Figure 3. To match also par-
tial turnkey plants to each other, one gathers into
a list, dl, both d and a distance matrix dpt com-
paring new- and existing-site partial turnkey plants,
then feeds dl to pairmatch as its first argument. For
propensity or Mahalanobis matching, pscore.dist
or mahal.dist would do this if given the formula
pr~pt as their optional arguments ‘structure.fmla’.

More generally, the helper function makedist
(which is called by pscore.dist and mahal.dist)
eases the application of a (user-defined) discrepancy
matrix-producing function to each of a sequence of
strata in order to generate a list of distance matri-
ces. For separate summed-rank distances by pt sub-
class, one would write a function that extracts por-
tions of relevant variables from a given data frame,
looking to a treatment-group variable to decide what
portions to take, as in

> capdatediffs <- function(trt, dat) {
crk <- rank(dat[names(trt),"cap"])
names(crk) <- names(trt)
dmt <- outer(crk[trt], crk[!trt],"-")
dmt <- abs(dmt)

drk <- rank(dat[names(trt),"date"])
dmt <- dmt +
abs(outer(drk[trt], drk[!trt],"-"))
dmt
}

Then one would use makedist to apply the function
separately within levels of pr:

> dl <- makedist(pr ~ pt, nuclear,
capdatediffs)

The result of this is a list of two distance matrices,
both submatrices of d created above, one comparing
pt!=1 treatments and controls and a smaller one for
pt==1 plants.

In larger problems, matching can be substantially
faster if preceded by a division of the sample into
subclasses; see Under the hood, below. The use
of pscore.dist, mahal.dist, and makedist carry
another advantage, that the lists of distances they
generate carry metadata to prevent fullmatch or
pairmatch from getting confused about the order of
observations in the data frame from which the dis-
tances were generated.

Another common aim is to forbid unwanted
matches. With optmatch, this is done by placing
NA’s, NaN’s or Inf’s at the relevant places in a distance
matrix. Consider matching nuclear plants within
calipers of three years on date of construction. Pair-
ings of plants that would violate this requirement are

indicated in red in Figure 3. To enforce the caliper,
one could generate a matrix of discrepancies dy on
year of construction, then replace the distance ma-
trix of Figure 3, d, with d/(dy<=3); this new matrix
has an Inf at each entry in Figure 3 currently shown
in red, and otherwise is the same as in Figure 3.

Operations of these types, division and logical
comparison, are compatible with subclassification
prior to matching, despite the fact that the operations
seem to require matrices while subclassification de-
mands lists of matrices. Assuming one has defined a
function datediffs as

> datediffs <- function(trt,data){
sclr <- data[names(trt), 'date']
names(sclr) <- names(trt)
abs(outer(sclr[trt], sclr[!trt], '-'))
}

then the command

> dly <- makedist(pr ~ pt, nuclear,
datediffs)

tabulates absolute differences on date of construc-
tion, separately for pr==1 and pr!=1 strata. With
optmatch, the expression dly<=3 returns a list
of indicators of whether potential matches were
built within three years of one another. Further-
more, dl/(dly<=3) is a list imposing the three-
year caliper upon distances coded in dl . To
pair match on propensity scores, but with a 3-
year date-of-construction caliper, one would use
pairmatch(dl/(dly<=3)).

Generalizations of pair matching

Matching with a varying number of con-
trols

In Figures 1 and 2, both non-optimal and optimal
matches insist on precisely two controls per treat-
ment. If one’s aim is to match as closely as possible,
this is a limitation. To optimally match 14 of the 19
controls, as Figure 2 does, but without requiring that
they always be matched two-to-one to treatments,
one would use the command fullmatch, with op-
tions ‘min.controls=1’ and ‘omit.fraction=5/19’.
The flexibility this adds improves matching even
more than the switch from greedy to optimal match-
ing did; while optimal pair matching reduced greedy
pair matching’s net discrepancy from 82 to 63, op-
timal matching with a varying number of controls
brings it to 44, just over half its original value.

If mvnc is the match created in this way, then the
structure of mvnc is returned by

> stratumStructure(mvnc)
stratum treatment:control ratios
1:1 1:2 1:3 1:5
4 1 1 1

R News ISSN 1609-3631



Vol. 7/2, October 2007 21

Exist- New sites
ing H I J K L M N O P Q R S T U V W X Y Z

A 28 0 3 22 14 30 17 28 26 28 20 22 23 26 21 18 34 40 28
B 24 3 0 22 10 27 14 26 24 24 16 19 20 23 18 16 31 37 25
C 10 18 14 18 4 12 6 11 9 10 14 12 6 14 22 10 16 22 28
D 7 28 24 8 14 2 10 6 12 0 24 22 4 24 32 20 18 16 38
E 17 20 16 32 18 26 20 18 12 24 0 2 20 6 8 4 14 20 14
F 20 31 28 35 20 29 22 20 14 26 12 9 22 5 15 12 9 11 12
G 14 32 29 30 18 24 17 16 10 22 12 10 17 6 16 14 4 8 17

Figure 3: Rank discrepancies of new- and existing-site nuclear plants without partial turnkey guarantees. New-
and existing-site plants which differ by more than 3 years in date of construction are indicated in red.

This means it consists of four matched pairs and a
matched triple, quadruple, and sextuple, all contain-
ing precisely one treatment. Ming and Rosenbaum
(2000) discuss matching with a varying number of
controls, implementing it in their example with a
somewhat different algorithm.

Full matching

A propensity score is the conditional probability,
p(x), of falling in the treatment group given covari-
ates x (or an increasing transformation of it, such
as its logit). Because subjects with large propensity
scores more frequently fall in the treatment group,
and subjects with low propensity scores are more fre-
quently controls, propensity score matching is fun-
damentally at odds with matching treatments and
controls in fixed ratios, such as 1 : 1 or 1 : k. These
ratios must be allowed to adapt, so that 1:1 matches
can be made where p(x)/(1 − p(x)) ≈ 1 while 1 : k
matches are made where p(x)/(1 − p(x)) ≈ 1/k;
otherwise either some subjects will have to go un-
matched or some subjects are bound to be poorly
matched on their propensity scores. Matching with
multiple controls addresses part of this problem, but
only full matching (Rosenbaum, 1991) addresses it in
its entirety, by also permitting l:1 matches, for when
p(x)/(1− p(x)) ≈ l ≥ 2.

In general, full matching is useful when there
are some regions of covariate space in which con-
trols outnumber treatments but others in which treat-
ments outnumber controls. This pattern emerges
most clearly when matching on a propensity score,
but they influence the quality of matches even with-
out propensity scores. The rank discrepancies of
new- and existing-site pt==1 plants, shown in Fig-
ure 4, show it; earlier dates of construction, and
smaller capacities, are more common among controls
(d and e) than treatments (b only), and this is re-
flected in Figure 4’s sums of discrepancies on rank.
As a consequence, full matching achieves a net rank
discrepancy (3) that is half of the minimum possible
(6) with techniques that don’t permit both 1:2 and 2:1
matched sets.

Exist- New sites
ing d e f

a 6 6 0
b 0 3 6
c 6 6 0

Figure 4: Rank discrepancies of new- and existing-
site nuclear plants with partial turnkey guarantees.
Boxes indicate the optimal full matching of these
plants.

Gu and Rosenbaum (1993) compare full and other
forms of matching in an extensive simulation study,
while Hansen (2004) and Hansen and Klopfer (2006)
present applications. This literature emphasizes the
importance of using structural restrictions , upper
limits on K in K : 1 matched sets and on L in 1 :
L matched sets, when full matching, in order to
control the variance of matched estimation. With
fullmatch, an upper limit K :1 on treatment:control
ratios is conveyed using ‘min.controls=1/K’, while
a lower limit of 1 : L on the treatment : control ra-
tio would be given with ‘max.controls=L’. Hansen
(2004) and Hansen and Klopfer (2006) give strate-
gies to optimize these tuning parameters. In the
context of a specific application, Hansen (2004) finds
(min.controls, max.controls) = (1/2, 2) · (1 − p̂)/ p̂
to work best, where p̂ represent the proportion
treated in the stratum being matched. In an unre-
lated application, Stuart and Green (2006) find these
values to work well; they may be a good starting
point for general use.

A somewhat related technique is matching “with
replacement,” in which overlap between matched
sets is permitted in the interests of achieving closer
matches. Because of the overlap, methods appropri-
ate to stratified data are not generally appropriate for
samples matched with replacement. The technique
forces one to resort to specialized techniques, such
as those of Abadie and Imbens (2006). On the other
hand, with-replacement matching would appear to
offer the possibility of closer matches, since its pair-
ing of one treatment unit in no way limits its pairing
of the next treatment unit.

However, it is a surprising, and evidently
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little-known, fact that with-replacement matching
achieves no closer matches than full matching, a
without-replacement matching technique. As dis-
cussed by Rosenbaum (1991) and (more explicitly)
by Hansen and Klopfer (2006), given any criterion
for a potential pairing of subjects to be acceptable,
full matching matches all subjects with at least one
suitable match in their comparison group, match-
ing them only to acceptable counterparts. So one
might insist, in particular, that each treatment unit be
matched only to one of its nearest neighbors; by shar-
ing controls among treated units where necessary,
omitting controls who are not the nearest neighbor of
some treatment, and matching to multiple controls
where that can be done, full matching finds a way
to honor this requirement. Since the matched sets
produced by full matching never overlap, it has the
advantage over with-replacement matching of com-
bining with any method of estimation appropriate to
finely stratified data.

Under the hood

Hansen and Klopfer (2006) describe the network-
flows algorithm on which optmatch relies in some
detail, establishing its optimality for full matching
and matching with a fixed or varying number of con-
trols. They also give upper bounds for the time com-
plexity of the algorithm: roughly, O(n3 log(nC)),
where n is the size of the sample and C is the quo-
tient of largest discrepancy in the distance matrix
and the matching tolerance. This is comparable to
the time complexity of squaring a n× n matrix. More
precisely, the algorithm requires O(nntnc log(nC))
floating-point operations, where nt and nc are the
sizes of the treatment and control groups.

These bounds have two practical consequences
for optmatch. First, computational costs grow
steeply with the size of the discrepancy matrix. Just
as squaring two (n/2) × (n/2) submatrices of an
n× n matrix is about four times faster than squaring
the full n× n matrix, matching is made much faster
by subdividing large matching problems into smaller
ones. For this reason makedist is written so as to fa-
cilitate subclassification prior to matching, the effect
of which is to split larger matching problems into a
sequence of smaller ones. Second, the C-factor con-
tributes secondarily to computational cost; its contri-
bution is reduced by increasing the value of the ‘tol’
argument to fullmatch or pairmatch.

Discussion

When and how matching reduces system-
atic differences between groups

Matching can address bias in observational studies
in either of two ways. In matched sampling, it is used

to select a subset of control subjects most like treat-
ments, with the remainder of subjects excluded from
analysis; in matched adjustment, it is used to force
treatment control comparisons to be based on indi-
vidualized comparisons made within matched sets,
which will have been so engineered that matched
counterparts are more like one another than are treat-
ments and controls on the whole. Matched sam-
pling is typically followed by matched adjustment,
but matched adjustment can be useful even when not
preceded by matched sampling.

Because it excludes some five control subjects, the
match depicted in Figures 1 and 2 might be used in
a context of matched sampling, although it differs in
important respects from typical matched samples. In
archetypal cases, matched sampling is used when for
cost reasons the number of controls to be followed
up for outcome data has to be reduced anyway, not
when outcome data is already available for the entire
sample already; and in archetypal cases, the reservoir
of potential controls is many times larger than the
size of the desired control group. See, e.g., Althauser
and Rubin (1970) or Rosenbaum and Rubin (1985).
The matches in Figures 1 and 2 are typical of matched
sampling in matching a fixed number of controls to
each treatment subject. When bias can be addressed
by being very selective in the choice of controls, flex-
ibility in the structure of matched sets becomes less
important.

When there is no additional data to be collected,
there may be little use for matched sampling per se,
while matched adjustment may still be attractive. In
these cases, it is important to recognize that match-
ing, even optimal matching, does not in itself reduce
systematic differences between treatment and con-
trol groups unless it is specifically given the flexi-
bility to do so. Suppose, for instance, that adjust-
ment for the variable t2 is needed in the compari-
son of new- and existing site-plants. This variable,
which represents the time between the issue of an
operating permit and a construction permit, differs
markedly in its distribution among “treatments” and
“controls,” as seen in Figure 5: treatments have sys-
tematically larger values of it, although the two dis-
tributions well overlap. When two groups compare
in this way, no fixed-ratio matching of them can re-
duce their overall discrepancy. Some of the observa-
tions will have to be set aside — or, better yet, one
could match the two groups in varying ratios, us-
ing matching with multiple controls or full match-
ing. These techniques have surprising power to rec-
oncile differences between treatments and controls
while setting aside few or even no subjects because
they lack suitable counterparts; the reader is referred
to Hansen (2004, § 2) for general discussion and a
case study.
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Figure 5: New and existing sites’ differences on the
variable t2. To reduce these differences, one has ei-
ther to drop observations or to use flexible matching
techniques.

In practice, one should look critically at an opti-
mal match before moving ahead with it toward out-
come analysis, refining its generating distance and
structural requirements as appropriate, just as a care-
ful analyst deploys various diagnostics in the pro-
cess of developing and refining a likelihood-based
analysis. Diagnostics for matching are discussed in
various methodological papers, many of them recent
(Rosenbaum and Rubin, 1985; Rubin, 2001; Lee, 2006;
Hansen, 2006a; Sekhon, 2007).

optmatch output

Matched pairs are often analyzed by methods partic-
ular to that structure, for example the paired t-test.
However, matching with multiple controls and full
matching require methods that treat the matched sets
as strata. With these uses in mind, matching func-
tions in optmatch give factor objects as their output,
creating unique identifiers for each matched set and
tagging them as such in the factor. (Strictly speaking,
the value of a call to fullmatch or pairmatch is of
the class c("optmatch", "factor"), but it is safe to

treat it as a factor.) If one in fact has produced a pair
match, then one can recover the paired differences
using the split command:

> pm <- pairmatch(dl)
> attach(nuclear)
> unlist(split(cost[PR],pm[PR])) -

unlist(split(cost[!PR],pm[!PR]))

— the result of which is the vector of differences

0.1 0.2 0.3 ... 1.2 1.3
-9.77 -10.09 184.75 ... -17.77 -4.52

For matched comparisons after full matching or
matching with a varying number of controls, one
uses such commands as

> fm <- fullmatch(dl)
> tapply(cost[PR], fm[PR], mean) -

tapply(cost[!PR], fm[!PR], mean)

to return differences of treatment and control means
by matched set. The sizes of the matched sets, in
terms of treatment units, controls, or both, can be tab-
ulated by

> tapply(PR, fm, sum)
> tapply(!PR, fm, sum)
> tapply(fm,fm,length)

respectively. Unmatched units are automatically
dropped, and split and tapply return matched-set
specific results in a common ordering (that of the lev-
els of the match object, e.g. pm or fm.)

Summary

Optmatch offers a comprehensive implementation of
matching of two groups, such as treatments and con-
trols or cases and controls, including optimal pair
matching, optimal matching with k controls, optimal
matching with a varying number of controls, and full
matching, with and without structural restrictions.
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Random Survival Forests for R
Hemant Ishwaran and Udaya B. Kogalur

Introduction

In this article we introduce Random Survival Forests,
an ensemble tree method for the analysis of right
censored survival data. As is well known, con-
structing ensembles from base learners, such as trees,
can significantly improve learning performance. Re-
cently, Breiman showed that ensemble learning can
be further improved by injecting randomization into
the base learning process, a method called Random
Forests (Breiman, 2001). Random Survival Forests is
closely modeled after Breiman’s approach. In Ran-
dom Forests, randomization is introduced in two
forms. First, a randomly drawn bootstrap sample of
the data is used for growing the tree. Second, the tree
learner is grown by splitting nodes on randomly se-
lected predictors. While at first glance Random For-
est might seem an unusual procedure, considerable
empirical evidence has shown it to be highly effec-
tive. Extensive experimentation, for example, has
shown it compares favorably to state of the art en-
sembles methods such as bagging (Breiman, 1996)
and boosting (Schapire et al., 1998).

Random Survival Forests being closely patterned
after Random Forests naturally inherits many of its
good properties. Two features especially worth em-
phasizing are: (1) It is user-friendly in that only three,
fairly robust, parameters need to be set (the number
of randomly selected predictors, the number of trees
grown in the forest, and the splitting rule to be used).
(2) It is highly data adaptive and virtually model as-
sumption free. This last property is especially help-
ful in survival analysis. Standard analyses often
rely on restrictive assumptions such as proportional
hazards. Also, with such methods there is always
the concern whether associations between predictors
and hazards have been modeled appropriately, and
whether or not non-linear effects or higher order in-
teractions for predictors should be included. In con-
trast, such problems are handled seamlessly and au-
tomatically within a Random Forests approach.

While R currently has a Random Forests pack-
age for classification and regression problems (the
randomForest() package ported by Andy Liaw and
Matthew Wiener), there is currently no version avail-
able for analyzing survival data1. The need for a
Random Forests procedure separate from one that
handles classification and regression problems is
well motivated as survival data possesses unique
features not handled within a CART (Classification
and Regression Tree) paradigm. In particular, the no-

tion of what constitutes a good node split for grow-
ing a tree, what prediction means, and how to mea-
sure prediction performance, pose unique problems
in survival analysis.

Moreover, while a survival tree can in some
instances be reformulated as a classification tree,
thereby making it possible to use CART software
for a Random Forests analysis, we believe such ap-
proaches are merely stop-gap measures that will be
difficult for the average user to implement. For ex-
ample, Ishwaran et al. (2004) show under a propor-
tional hazards assumption that one can grow sur-
vival trees using the splitting rule of LeBlanc and
Crowley (1992) using the rpart() algorithm (Ther-
neau and Atkinson, 1997), hence making it possi-
ble to implement a relative risk forests analysis in R.
However, this requires extensive coding on the users
part, is limited to proportional hazard settings, and
the splitting rule used is only approximate.

The algorithm

It is clear that a comprehensive method with accom-
panying software is needed. To fill this need we in-
troduce randomSurvivalForest, an R software pack-
age for implementing Random Survival Forests. The
algorithm used by randomSurvivalForest is broadly
described as follows:

1. Draw ntree bootstrap samples from the origi-
nal data.

2. Grow a tree for each bootstrapped data set. At
each node of the tree randomly select mtry pre-
dictors (covariates) for splitting on. Split on a
predictor using a survival splitting criterion. A
node is split on that predictor which maximizes
survival differences across daughter nodes.

3. Grow the tree to full size under the constraint
that a terminal node should have no less than
nodesize unique deaths.

4. Calculate an ensemble cumulative hazard esti-
mate by combining information from the ntree
trees. One estimate for each individual in the
data is calculated.

5. Compute an out-of-bag (OOB) error rate for the
ensemble derived using the first b trees, where
b = 1, . . . , ntree.

Splitting rules

Node splits are a crucial ingredient to the algo-
rithm. The randomSurvivalForest package pro-

1We are careful to distinguish Random Forests procedures following Breiman’s methodology from other approaches. Readers, for
example, should be aware of the R party() package, which implements a random forests style analysis using conditional tree base learn-
ers (Hothorn et al., 2006).
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vides four different survival splitting rules for the
user. These are: (i) a log-rank splitting rule,
the default splitting rule, invoked by the option
splitrule="logrank"; (ii) a conservation of events
splitting rule, splitrule="conserve"; (iii) a logrank
score rule, splitrule="logrankscore"; (iv) and a
fast approximation to the logrank splitting rule,
splitrule="logrankapprox".

Notation

Assume we are at node h of a tree during its growth
and that we seek to split h into two daughter nodes.
We introduce some notation to help discuss how the
the various splitting rules work to determine the best
split. Assume that within h are n individuals. Denote
their survival times and 0-1 censoring information by
(T1, δ1), . . . , (Tn, δn). An individual l will be said to
be right censored at time Tl if δl = 0, otherwise the
individual is said to have died at Tl if δl = 1. In the
case of death, Tl will be refered to as an event time,
and the death as an event. An individual l who is
right censored at Tl simply means the individual is
known to have been alive at Tl , but the exact time of
death is unknown.

A proposed split at node h on a given predictor x
is always of the form x ≤ c and x > c. Such a split
forms two daughter nodes (a left and right daugh-
ter) and two new sets of survival data. A good split
maximizes survival differences across the two sets of
data. Let t1 < t2 < · · · < tN be the distinct death
times in the parent node h, and let di, j and Yi, j equal
the number of deaths and individuals at risk at time
ti in the daughter nodes j = 1, 2. Note that Yi, j is the
number of individuals in daughter j who are alive at
time ti, or who have an event (death) at time ti. More
precisely,

Yi,1 = #{Tl ≥ ti , xl ≤ c}, Yi,2 = #{Tl ≥ ti , xl > c},

where xl is the value of x for individual l = 1, . . . , n.
Finally, define Yi = Yi,1 + Yi,2 and di = di,1 + di,2. Let
n j be the total number of observations in daughter j.
Thus, n = n1 + n2. Note that n1 = #{l : xl ≤ c} and
n2 = #{l : xl > c}.

Log-rank splitting

The log-rank test for a split at the value c for predic-
tor x is

L(x, c) =

N

∑
i=1

(
di,1 −Yi,1

di
Yi

)
√

N

∑
i=1

Yi,1

Yi

(
1− Yi,1

Yi

)(
Yi − di
Yi − 1

)
di

.

The value |L(x, c)| is the measure of node separation.
The larger the value for |L(x, c)|, the greater the dif-
ference between the two groups, and the better the

split is. In particular, the best split at node h is deter-
mined by finding the predictor x∗ and split value c∗

such that |L(x∗, c∗)| ≥ |L(x, c)| for all x and c.

Conservation of events splitting

The log-rank test for splitting survival trees is a
well established concept (Segal, 1988), having been
shown to be robust in both proportional and non-
proportional hazard settings (LeBlanc and Crowley,
1993). However, one criticism often heard is that it
tends to favor continuous predictors and often suf-
fers from an end-cut preference (favoring uneven
splits). However, in our experience with Random
Survival Forests we have not found this to be a seri-
ous deficiency. Nevertheless, to address this poten-
tial problem we introduce another important class
of test statistics for splitting that are related to con-
servation of events; a concept introduced in Naftel
et al. (1985) (our simulations have indicated these
tests may be much less susceptible to the aforemen-
tioned problems).

Under fairly general conditions, conservation of
events asserts that the sum of the estimated cumula-
tive hazard function over the observed time points
(deaths and censored values) must equal the total
number of deaths. This applies to a wide collection
of estimates including the the Nelson-Aalen estima-
tor. The Nelson-Aalen cumulative hazard estimator
for daughter j is

Ĥ j(t) = ∑
ti, j≤t

di, j

Yi, j

where ti, j are the ordered death times for daughter j
(note: we define 0/0 = 0).

Let (Tl, j, δl, j), for l = 1, . . . , n j, denote all survival
times and censoring indicator pairs for daughter j.
Conservation of events asserts that

n j

∑
l=1

Ĥ j(Tl, j) =
n j

∑
l=1

δl, j. (1)

In other words, the total number of deaths is con-
served in each daughter.

The conservation of events splitting rule is moti-
vated by (1). First, order the time points within each
daughter node such that

T(1), j ≤ T(2), j ≤ · · · ≤ T(n j), j.

Let δ(l), j be the censoring indicator function for the
ordered value T(l), j. Define

Mk, j =
k

∑
l=1

Ĥ j(T(l), j)−
k

∑
l=1

δ(l), j, k = 1, . . . , n j.

One can think of Mk, j as “residuals” that measure ac-
curacy of conservation of events. The proposed test
statistic takes the sum of the absolute values of Mk, j
for k = 1, . . . , n j for each daughter j, and weights
these values by the number of individuals at risk
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within each group. Observe that Mn j , j = 0, but noth-
ing can be said about Mk, j for k < n j. Thus, by
considering Mk, j for each k, the proposed test mea-
sures how evenly distributed conservation of events
is over all deaths. The measure of conservation of
events for the split on x at the value c is

Conserve(x, c) =
1

Y1,1 + Y1,2

2

∑
j=1

Y1, j

n j−1

∑
k=1

|Mk, j|.

This value is small if the two groups are well sepa-
rated. Because we want to maximize survival differ-
ences due to a split, we use the transformed value
1/(1 + Conserve(x, c)) as our measure of node sep-
aration.

The preceding expression for Conserve(x, c) can
be quite expensive to compute as it involves sum-
ming over all survival times within the daughter
nodes. However, we can greatly reduce the amount
of work by compressing the sums to involve only
event times. With some work, one can show that
Conserve(x, c) is equivalent to:

1
Y1,1 + Y1,2

2

∑
j=1

Y1, j

N−1

∑
k=1

{
Nk, jYk+1, j

k

∑
l=1

dl, j

Yl, j

}
,

where Ni, j = Yi, j − Yi+1, j equals the number of ob-
servations in daughter j with observed time falling
within the interval [ti , ti+1) for i = 1, . . . , N where
tN+1 = ∞.

Log-rank score splitting

Another useful splitting rule available within the
randomSurvivalForest package is the log-rank
score test of Hothorn and Lausen (2003). To describe
this rule, assume the predictor x has been ordered so
that x1 ≤ x2 ≤ · · · ≤ xn. Now, compute the “ranks”
for each survival time Tl ,

al = δl −
Γl

∑
k=1

δk
n− Γk + 1

where Γk = #{t : Tt ≤ Tk}. The log-rank score test is
defined as

S(x, c) =
∑xl≤c al − n1a√
n1

(
1− n1

n

)
s2

a

where a and s2
a are the sample mean and sample vari-

ance of {al : l = 1, . . . , n}. Log-rank score splitting
defines the measure of node separation by |S(x, c)|.
Maximizing this value over x and c yields the best
split.

Approximate logrank splitting

An approximate log-rank test can be used in place of
L(x, c) to greatly reduce computations. To derive the

approximation, first rewrite the numerator of L(x, c)
in a form that uses the Nelson-Aalen estimator for
the parent node. The Nelson-Aalen estimator is

Ĥ(t) = ∑
ti≤t

di
Yi

.

As shown in LeBlanc and Crowley (1993) one can
write

N

∑
i=1

(
di,1 −Yi,1

di
Yi

)
= D1 −

n

∑
l=1

I{xl ≤ c}Ĥ(Tl),

where D j = ∑
N
i=1 di, j for j = 1, 2. Because the

Nelson-Aalen estimator is computed on the parent
node, and not daughter nodes, this yields an efficient
way to compute the numerator of L(x, c).

Now to simplify the denominator, we approxi-
mate the variance of the numerator of L(x, c) as in
Section 7.7 of Cox and Oakes (1988) (this approxi-
mation was suggested to us by Michael LeBlanc in
personal communication). Setting D = ∑

N
i=1 di, we

get the following approximation to the log-rank test
L(x, c):

D1/2

(
D1 −

n

∑
l=1

I{xl ≤ c}Ĥ(Tl)

)
√√√√{ n

∑
l=1

I{xl ≤ c}Ĥ(Tl)

}{
D−

n

∑
l=1

I{xl ≤ c}Ĥ(Tl)

} .

Ensemble estimation

The randomSurvivalForest package produces an
ensemble estimate for the cumulative hazard func-
tion. This is our predictor and key deliverable. Error
rate performance is calculated based on this value.
The ensemble is derived as follows. First, for each
tree grown from a bootstrap data set we estimate the
cumulative hazard function for the tree. This is ac-
complished by grouping hazard estimates by termi-
nal nodes. Consider a specific node h. Let {tl,h} be
the distinct death times in h and let dl,h and Yl,h equal
the number of deaths and individuals at risk at time
tl,h. The cumulative hazard estimate for node h is de-
fined as

Ĥh(t) = ∑
tl,h≤t

dl,h

Yl,h
.

Each tree provides a sequence of such estimates,
Ĥh(t). If there are M terminal nodes in the tree,
then there are M such estimates. To compute Ĥ(t|xi)
for an individual i with predictor xi, simply drop xi
down the tree. The terminal node for i yields the de-
sired estimator. More precisely,

Ĥ(t|xi) = Ĥh(t), if xi ∈ h. (2)

Note this value is computed for all individuals i in the
data.
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The estimate (2) is based on one tree. To produce
our ensemble we average (2) over all ntree trees. Let
Ĥb(t|x) denote the cumulative hazard estimate (2)
for tree b = 1, . . . , ntree. Define Ii,b = 1 if i is an
OOB point for b, otherwise set Ii,b = 0. The OOB
ensemble cumulative hazard estimator for i is

Ĥ∗
e (t|xi) =

∑
ntree
b=1 Ii,bĤb(t|xi)

∑
ntree
b=1 Ii,b

.

Observe that the estimator is obtained by averag-
ing over only those bootstrap samples in which i is
excluded (i.e., those datasets in which i is an OOB
value). The OOB estimator is in contrast to the
ensemble cumulative hazard estimator that uses all
samples:

Ĥe(t|xi) =
1

ntree

ntree

∑
b=1

Ĥb(t|xi).

Concordance error rate

Given the OOB estimator Ĥ∗
e (t|x), it is a simple mat-

ter to compute the error rate. We measure error us-
ing Harrell’s concordance index (Harrell et al., 1982).
Unlike other measures of survival performance, Har-
rell’s C-index does not depend on choosing a fixed
time for evaluation of the model and specifically
takes into account censoring of individuals (May
et al., 2004). The method has quickly become quite
popular in the literature as a means for assessing
prediction performance in survival analysis settings.
See Kattan et al. (1998) and references therein.

To compute the concordance index we must de-
fine what constitutes a worse predicted outcome. We
take the following approach. Let t∗1 , . . . , t∗N denote all
unique event times in the data. Individual i is said to
have a worse outcome than j if

N

∑
k=1

Ĥ∗
e (t∗k |xi) >

N

∑
k=1

Ĥ∗
e (t∗k |x j).

The concordance error rate is computed as follows:

1. Form all possible pairs of observations over all
the data.

2. Omit those pairs where the shorter event time
is censored. Also, omit pairs i and j if Ti = Tj
unless δi = 1 and δ j = 0 or δi = 0 and δ j = 1.
The last restriction only allows ties if one of
the observations is a death and the other a cen-
sored observation. Let Permissible denote the
total number of permissible pairs.

3. Count 1 for each permissible pair in which the
shorter event time had the worse predicted out-
come. Count 0.5 if the predicted outcomes are
tied. Let Concordance denote the total sum
over all permissible pairs.

4. Define the concordance index C as

C =
Concordance
Permissible

.

5. The error rate is Error = 1 − C. Note that
0 ≤ Error ≤ 1 and that Error = 0.5 cor-
responds to a procedure doing no better than
random guessing, whereas Error = 0 indicates
perfect accuracy.

Usage in R

The user interface to randomSurvivalforest is sim-
ilar in many aspects to randomForest and as the
reader may have already noticed, many of the argu-
ment names are also the same. This was done de-
liberately in order to promote compatibility between
the two packages. The primary R function call to the
randomSurvivalforest package is rsf(). The on-
line documentation describes rsf() in great detail
and there is no reason to repeat this information here.
Different R wrapper functions are provided with the
randomSurvivalforest package to aid in interpret-
ing the object produced by rsf(). The examples
given below illustrate how some of these wrappers
work, and also indicate how rsf() might be used in
practice.

Lung-vet data

For our first example, we use the well known
veteran’s administration lung cancer data from
Kalbfleisch and Prentice (Kalbfleisch and Prentice,
1980). This is an example data set available within
the package. In total there are 6 predictors in the
data. We first focus on analysis that includes only
Karnofsky score as a predictor:

> library("randomSurvivalForest")
> data(veteran,package="randomSurvivalForest")
> ntree <- 1000
> v.out <- rsf(Survrsf(time,status) ~ karno,

veteran, ntree=ntree, forest=T)
> print(v.out)

Call:
rsf.default(formula = Survrsf(time, status)

~ karno, data = veteran, ntree = ntree)

Sample size: 137
Number of deaths: 128
Number of trees: 1000

Minimum terminal node size: 3
Average no. of terminal nodes: 8.437

No. of variables tried at each split: 1
Total no. of variables: 1

Splitting rule: logrank
Estimate of error rate: 36.28%
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The error rate is significantly smaller than 0.5, the
benchmark value associated with a procedure no bet-
ter than flipping a coin. This is very strong evidence
that Karnofsky score is predictive.

We can investigate the effect of Karnofsky score
more closely by considering how the ensemble esti-
mated mortality varies as a function of the predictor:

> plot.variable(v.out, partial=T)

Figure 1, produced by the above command, is a par-
tial plot of Karnofsky score. The vertical axis repre-
sents expected number of deaths.
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Figure 1: Partial plot of Karnofsky score. Vertical axis
is mortality ∑

N
k=1 Nk Ĥe(t∗k |x) for a given Karnofsky

value x and represents expected number of deaths.

Now we run an analysis with all six predictors
under each of the four splitting rules. For each split-
ting rule we run 100 replications and record the mean
and standard deviation of the concordance error rate
(as before ntree equals 1000):

> splitrule <- c("logrank", "conserve",
"logrankscore", "logrankapprox")

> nrep <- 100
> err.rate <- matrix(0, 4, nrep)
> names(err.rate) <- splitrule
> v.f <-

as.formula("Survrsf(time,status) ~ .")
> for (j in 1:4) {
> for (k in 1:nrep) {
> err.rate[j,k] <- rsf(v.f,

veteran,ntree=ntree,
splitrule=splitrule[j])$err.rate[ntree]

> }
> }
> err.rate <- rbind(

mean=apply(err.rate, 1, mean),
std=apply(err.rate, 1, sd))

> colnames(err.rate) <- splitrule
> print(round(err.rate,4))

logrank conserve logrankscore logrankapx
mean 0.2982 0.3239 0.2951 0.3170
std 0.0027 0.0034 0.0027 0.0046

The analysis shows that logrankscore has the best
predictive performance (logrank is a close second).
Standard deviations in all cases are reasonably small.
It is interesting to observe that the mean error rates
are not substantially smaller than our previous anal-
ysis which used only Karnofsky score, thus indicat-
ing the predictor is highly influential. Our next ex-
ample illustrates further techniques for studying the
informativeness of a predictor.

Primary biliary cirrhosis (PBC) of the liver

Next we consider the PBC data set found in appendix
D.1 of Fleming and Harrington (Fleming and Har-
rington, 1991). This is also an example data set avail-
able in the package. Similar to the previous analysis
we analyzed the data by running a forest analysis for
each of the four splitting rules, repeating the analy-
sis 100 times independently (as before ntree was set
to 1000). The R code is similar as before and sup-
pressed:

logrank conserve logrankscore logrankapx
mean 0.1703 0.1677 0.1719 0.1602
std 0.0014 0.0014 0.0015 0.0020

As can be seen, the error rates are between 16-17%
with logrankapprox having the lowest value.
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Figure 2: Error rate for PBC data as a function of trees
(left-side) and out-of-bag importance values for pre-
dictors (right-side).

We now consider the informativeness of each pre-
dictor under the logrankapprox splitting rule:

> data("pbc",package="randomSurvivalForest")
> pbc.f <- as.formula("Survrsf(days,status)~.")
> pbc.out <- rsf(pbc.f, pbc, ntree=ntree,

splitrule = "logrankapprox", forest=T)
> plot(pbc.out)

Figure 2 depicts the importance values for all 17 pre-
dictors. From the plot we see that “age” and “bili”
are clearly predictive and have substantially larger
importance values than all other predictors. The par-
tial plots for the top six predictors are displayed in
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Figure 3. The figure was produced using the com-
mand:

> plot.variable(pbc.out,3,partial=T,n.pred=6)

We now consider the incremental effect of each
predictor using a nested analysis. We sort predictors
by their importance values and consider the nested
sequence of models starting with the top variable,
followed by the model with the top 2 variables, then
the model with the top three variables, and so on:

> imp <- pbc.out$importance
> pnames <- pbc.out$predictorNames
> pnames.order <- pnames[rev(order(imp))]
> n.pred <- length(pnames)
> pbc.err <- rep(0, n.pred)
> for (k in 1:n.pred){
> rsf.f <- "Survrsf(days,status)~"
> rsf.f <- as.formula(paste(rsf.f,
> paste(pnames.order[1:k],collapse="+")))
> pbc.err[k] <- rsf(rsf.f, pbc, ntree=ntree,
> splitrule="logrankapprox")$err.rate[ntree]
> }
> pbc.imp.out <- as.data.frame(
> cbind(round(rev(sort(imp)),4),
> round(pbc.err,4),
> round(-diff(c(0.5,pbc.err)),4)),
> row.names=pnames.order)
>colnames(pbc.imp.out) <-
> c("Imp","Err","Drop Err")
> print(pbc.imp.out)

Imp Err Drop Err
age 0.0130 0.3961 0.1039
bili 0.0081 0.1996 0.1965
prothrombin 0.0052 0.1918 0.0078
copper 0.0042 0.1685 0.0233
edema 0.0030 0.1647 0.0038
albumin 0.0026 0.1569 0.0078
chol 0.0022 0.1606 -0.0037
ascites 0.0014 0.1570 0.0036
spiders 0.0013 0.1601 -0.0030
stage 0.0013 0.1557 0.0043
hepatom 0.0008 0.1570 -0.0013
sex 0.0006 0.1549 0.0021
platelet 0.0000 0.1565 -0.0016
sgot -0.0012 0.1538 0.0027
trig -0.0017 0.1545 -0.0007
treatment -0.0019 0.1596 -0.0052
alk -0.0040 0.1565 0.0032

The first column is the importance value of a predic-
tor in the full model. The kth value in the second col-
umn is the error rate for the kth nested model, while
the kth value in the third column is the difference be-
tween the error rate for the kth and (k− 1)th nested
model, where the error rate for the null model, k = 0,
is 0.5. One can see not much is gained by using more
than 6-7 predictors and that the top 3-4 predictors ac-
count for much of the predictive power.

Large scale problems

In terms of computationally challenging problems,
we have applied randomSurvivalForest success-
fully to several large survival datasets. For exam-
ple, we have considered data collected at the Cleve-
land Clinic involving over 20,000 records and well
over 60 predictors. We have also analyzed a data set
containing 1,000 records and with almost 250 predic-
tors. Our success with these applications is consis-
tent with that seen for Random Forests: namely, that
the methodology has been shown to scale up very
nicely, even in very large predictor spaces and with
large sample sizes. In terms of computational speed,
we have found that logrankapprox is almost always
fastest. After that, conserve is second fastest. For
very large datasets, discretizing continuous predic-
tors and/or the observed survival times can greatly
speed up computational times. Discretization does
not have to be overly granular for substantial gains
to be seen.
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Rwui: A Web Application to Create User
Friendly Web Interfaces for R Scripts
by Richard Newton and Lorenz Wernisch

Summary

The web application Rwui is used to create web inter-
faces for running R scripts. All the code is generated
automatically so that a fully functional web interface
for an R script can be downloaded and up and run-
ning in a matter of minutes.

Rwui is aimed at R script writers who have
scripts that they want people unversed in R to use.
The script writer uses Rwui to create a web appli-
cation that will run their R script. Rwui allows the
script writer to do this without them having to do
any web application programming, because Rwui
generates all the code for them.

The script writer designs the web application to
run their R script by entering information on a se-
quence of web pages. The script writer then down-
loads the application they have created and installs
it on their own server. This is a simple matter of
copying one file from the download onto the server.
The script writer now has a web application on their
server that runs their R script, that other people can
use over the web.

Although of general applicability, Rwui was de-
signed primarily with bioinformatics applications in
mind; aimed at bioinformaticians who are develop-
ing a statistical analysis of experimental data for col-
laborators and who want to automate their analysis
in a user friendly way. Rwui may also be of use for
creating teaching applications.

Rwui may be found at http://rwui.cryst.bbk.ac.uk

Introduction

R is widely used in the field of bioinformatics.
The Bioconductor project (Gentleman et al., 2004)
contains R packages specifically designed for this
field. However many potential users of bioinformat-
ics programs written in R, who come from a non-
bioinformatics background, are unfamiliar with the
language. One solution to this problem is for devel-
opers of R scripts to provide user-friendly web inter-
faces for their scripts.

Rwui (R Web User Interface) is a web application
that the developer of an R script can use to create
a web application for running their script. All the
code for the web application is generated automat-
ically. This is the key feature of Rwui and means
that it only takes a few minutes for someone who
is entirely unfamiliar with web application program-
ming to design, download and install on their server

a fully functional web interface for an R script.
A web interface for an R script means that the

script can be used by anyone, even if they have no
knowledge of R. Instead of using the R script directly,
values for variables and data files for processing are
first submitted by the user on a web form. The appli-
cation then runs the R script on a server, out of sight
of the user, and returns the results of the analysis to
the user’s web page. Because the web application
runs on a server it can be accessed remotely and the
user does not need to have R installed on their ma-
chine. And updates to the script need only be made
to the copy on the server.

Although of general applicability, Rwui has been
designed with bioinformatics applications in mind.
To this end the web applications created by Rwui
can include features often required in bioinformat-
ics data analysis, such as a page for uploading repli-
cate data files and their group identifiers. Rwui is
typically aimed at bioinformaticians who have de-
veloped an R script for analysing experimental data
and who want to make their method immediately
accessible to collaborators who are unfamiliar with
R. Rwui enables bioinformaticians to do this quickly
and simply, without having to concern themselves
with any aspects of web application programming.

The completed web applications run on Tomcat
servers (http://tomcat.apache.org/). Tomcat is free
and widely used server software, very easy to in-
stall on both Unix and Windows machines, and with
an impeccable security record. There have been no
known instances of the safety of data on Tomcat
servers being compromised despite its widespread
use. But if data cannot be sent over the internet
then either the web applications created by Rwui
can be installed on a local Tomcat server for inter-
nal use, situated behind a firewall, or Tomcat and the
web applications created by Rwui can be installed on
individual stand-alone machines, in which case the
web applications are accessed in a browser on the
machine via the ‘localhost’ URL. Instructions on in-
stalling and running Tomcat can be accessed from a
link on the ‘Help’ page of Rwui.

A number of approaches to providing web in-
terfaces to R scripts exist. A list with links
can be found on the R website (http://cran.r-
project.org/doc/FAQ/R-FAQ.html) in the section ‘R
Web Interfaces’. These fall into two main categories.
Firstly there are projects which allow the user to sub-
mit R code to a remote server. With these methods,
the end user must handle R code. In contrast, users
of applications created by Rwui have no contact with
R code.

Secondly there are projects which facilitate pro-
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Figure 1: Screenshot showing the web page of Rwui where input items are added.

gramming web applications that run R code. With
these methods, whoever is creating the application
must write web application code. In contrast, when
using Rwui no web application code needs to be
written; a web interface for an R script is created
simply by selecting options from a sequence of web
pages.

Using the Application

The information that Rwui requires in order to create
a web application for running an R script is entered
on a sequence of forms. After entering a title and in-
troductory text for the application, the input items
that will appear on the application’s web page are
selected. Input items may be Numeric or Text entry
boxes, Checkboxes, Drop-down lists, Radio Buttons,
File Upload boxes and a Multiple/Replicate File Up-
load page. Each of the input variables of the R script,
that is, those variables in the script that require a
value supplied by the user, must have a correspond-
ing input item on the application’s web page. Figure

1 shows the web page of Rwui on which the input
items that will appear in the application are added.

Section headings can also be added if required.
Rwui displays a facsimile of the web page that has
been created as items are added to the page. This
can be seen in the lower part of the screenshot shown
in Figure 1. Input items are given a number so that
items can be deleted and new items inserted between
existing items. After uploading the R script, Rwui
generates the web application, which can be down-
loaded as a zip or tgz file.

Rwui creates Java based applications
that use the Apache Struts framework
(http://struts.apache.org/). Struts is open source
and a popular framework for constructing well-
organised, stable and extensible web applications.

The completed applications will run on a Tom-
cat server. All that needs to be done to use the
downloaded web application is to place the appli-
cation’s ‘web application archive’ file, which is con-
tained in the download, into a subdirectory of the
Tomcat server. In addition, the file permissions of an
included shell script must be changed to executable.
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Figure 2: Screenshot showing an example of a results web page of an application created using Rwui.

An application description file, written in XML, is
included in the download. This is useful if the appli-
cation requires modification at a later date. The de-
tails of the application can be re-entered into Rwui by
uploading the application description file. The appli-
cation can then be edited and rebuilt within Rwui.

Further information on using Rwui can be found
from links on the application’s web pages. The
‘Quick Tour’ provides a ten minute introductory ex-
ample of using Rwui. The ‘Technical Report’ gives
a technical overview of the application. The ‘Help’
link accesses the manual for Rwui which contains de-
tailed information for users.

System Requirements

In order to use the web applications created by Rwui
a machine is required with Tomcat version 5.0 or
later, Java version 1.5 and an R version compatible
with the R script(s). Although a server running a
Unix operating system is preferable, the applications
will work without modification on a Tomcat server
running Windows XP.

R script Requirements

An R script needs little or no modification in order
to be run from a web application created by Rwui.
There are three areas where the script may require
attention.

The R script receives input from the user via R
variables, which we term the input variables of the
script. The values of input variables are entered by
the user on the web page of the application. The in-
put variables must be named according to the rules
of both R and Java variable naming. These rules are
given on the ‘Help’ page of Rwui. But those variables
in the R script that are not input variables do not
need to conform to the rules of Java variable naming.

Secondly, in order to make the results of the anal-
ysis available to the user, the R script must save
the results to files. Thirdly, and optionally, the R
script may also write progress information into a file
which can be continously displayed for the user in a
Javascript pop-up window.
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Using applications created by Rwui

A demonstration application created by Rwui can be
accessed from the ‘Help’ page of Rwui.

Applications created by Rwui can include a lo-
gin page. Access can be controlled either by a single
password, or by username/password pairs.

If an application created by Rwui includes a Mul-
tiple/Replicate File upload page, then the applica-
tion consists of two web pages on which the user en-
ters information. On the first web page the user up-
loads multiple files one at a time. Once completed,
a button takes the user to a second web page where
singleton data files and values for all other variables
are entered. The ‘Analyse’ button on this page sub-
mits the values of variables, uploads any data files
and runs the R script. If a Multiple/Replicate File
upload page is not included, the application consists
of this second web page only.

Before running the R script the application first
checks the validity of the values that the user has
entered and returns an error message to the page if
any are invalid. During the analysis, progress infor-
mation can be displayed for the user. To enable this
the R script must append information to a text file at
stages during its execution. This text file is displayed
for the user in a JavaScript pop-up window which
refreshes at fixed intervals.

On completion of the analysis, a link to a Results
page appears at the bottom of the web page. The user
can change data files and/or the values of any of the
variables and re-analyse, and the new results will ap-
pear as a second link at the bottom of the page, and
so on. Clicking on a link brings up the Results page
for the corresponding analysis. Figure 2 shows an
example of a results page.

The user can download individual results files by
clicking on the name of the appropriate file on a Re-
sults page. Alternatively, each Results page also con-
tains a link which will download all the results files
from the page and the html of the page itself. In this
way the user can view offline saved Results pages

with their associated results files. Any uploaded data
files are also linked to on the Results page, giving the
user the opportunity to check that the correct data
has been submitted and has been uploaded correctly.

The applications include a SessionListener which
detects when a user’s session is about to expire. The
SessionListener then removes all the working direc-
tories created during the session from the server, to
prevent it from becoming clogged with data. By de-
fault a session expires 30 minutes after it was last ac-
cessed by the user, but the delay can be changed in
the server configuration.

All the code of a complete demonstration appli-
cation created by Rwui can be downloaded from a
link on the ‘Help’ page of Rwui.
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The np Package: Kernel Methods for
Categorical and Continuous Data
by Tristen Hayfield and Jeffrey S. Racine

Readers of R News are certainly aware of a num-
ber of nonparametric kernel1 methods that exist in
R base (e.g., density) and in certain R packages (e.g.,
locpoly in the KernSmooth package). Such func-
tionality allows R users to nonparametrically model
a density or to conduct nonparametric local polyno-

mial regression, to name but two applications of ker-
nel methods. Nonparametric kernel approaches are
appealing to applied researchers because they often
reveal features in the data that might be missed by
classical parametric methods. However, traditional
nonparametric kernel methods presume that the un-
derlying data is continuous, which is frequently not
the case.

1A ‘kernel’ is simply a weighting function.
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Practitioners often encounter a mix of categori-
cal and continuous data types, but may still wish
to proceed in a nonparametric direction. The tradi-
tional nonparametric approach is called a ‘frequency’
approach, whereby data is broken up into subsets
(‘cells’) corresponding to the values assumed by the
categorical variables, and only then do you apply
say density or locpoly to the continuous data re-
maining in each cell. Nonparametric frequency ap-
proaches are widely acknowledged to be unsatisfac-
tory. Recent theoretical developments offer practi-
tioners a variety of kernel-based methods for cat-
egorical (i.e., unordered and ordered factors) data
only or for a mix of continuous and categorical data;
see Li and Racine (2007) and the references therein
for an in-depth treatment of these methods, and also
see the articles listed in the bibliography below.

The np package implements recently developed
kernel methods that seamlessly handle the mix of
continuous, unordered, and ordered factor data
types often found in applied settings. The package
also allows users to create their own routines us-
ing high-level function calls rather than writing their
own C or Fortran code.2 The design philosophy un-
derlying np is simply to provide an intuitive, flex-
ible, and extensible environment for applied kernel
estimation.

Currently, a range of methods can be found in the
np package including unconditional (Li and Racine,
2003; Ouyang et al., 2006) and conditional (Hall et al.,
2004; Racine et al., 2004) density estimation and
bandwidth selection, conditional mean and gradi-
ent estimation (local constant (Racine and Li, 2004;
Hall et al., forthcoming) and local polynomial (Li
and Racine, 2004)), conditional quantile and gradi-
ent estimation (Li and Racine, forthcoming), model
specification tests (regression (Hsiao et al., forthcom-
ing), quantile, significance (Racine et al., forthcom-
ing)), semiparametric regression (partially linear, in-
dex models, average derivative estimation, vary-
ing/smooth coefficient models), etc.

Before proceeding, we caution the reader that
data-driven bandwidth selection methods can be nu-
merically intensive, which is the reason underlying
the development of an MPI-aware3 version of the
np package that uses some of the functionality of
the Rmpi package, which we have tentatively called
the npRmpi package. The functionality of np and
npRmpi will be identical; however, using npRmpi
you could take advantage of a cluster computing en-
vironment or a multi-core/multi-cpu desktop ma-
chine thereby alleviating the computational burden
associated with the nonparametric analysis of large
datasets. We ought also to point out that data-
driven (i.e., automatic) bandwidth selection proce-
dures are not guaranteed always to produce good

results. For this reason, we advise the reader to in-
terrogate their bandwidth objects with the summary
command which produces a table of the bandwidths
for the continuous variables scaled by an appropriate
constant (σxnα where α depends on the kernel order
and number of continuous variables, e.g. α = −1/5
for one continuous variable and a second order ker-
nel), which some readers may find helpful. Also,
the admissible range for the bandwidths for the cat-
egorical variables is provided when summary is used,
which some readers may also find helpful.

We have tried to make np flexible enough to be
of use to a wide range of users. All options can
be tweaked by users (kernel function, kernel order,
bandwidth type, estimator type and so forth). One
function, npksum, allows you to create your own es-
timators, tests, etc. The function npksum is simply a
call to highly optimized C code, so you get the bene-
fits of compiled code along with the power and flex-
ibility of the R language. We hope that incorporating
the npksum function renders the package suitable for
teaching and research alike.

There are two ways in which you can interact
with functions in np: i) using data frames, or ii) using
a formula interface, where appropriate.

To some, it may be natural to use the data frame
interface. The R data.frame function preserves a
variable’s type once it has been cast (unlike cbind,
which we avoid for this reason). If you find this most
natural for your project, you first create a data frame
casting data according to their type (i.e., one of con-
tinuous (default), factor, ordered), as in

data.object <- data.frame(x1=factor(x1),
x2, x3=ordered(x3))

where x1 is, say, a binary factor, x2 continuous, and
x3 an ordered factor. Then you could pass this data
frame to the appropriate np function, say

npudensbw(dat=data.object)

To others, however, it may be natural to use the
formula interface that is used for the regression ex-
ample outlined below. For nonparametric regression
functions such as npregbw, you would proceed just
as you would using lm, e.g.,

npregbw(y ~ factor(x1) + x2)

except that you would of course not need to specify,
e.g., polynomials in variables or interaction terms.
Every function in np supports both interfaces, where
appropriate.

Before proceeding, a few words on the formula
interface are in order. We use the standard for-
mula interface as it provided capabilities for han-
dling missing observations and so forth. This in-
terface, however, is simply a convenient device for
telling a routine which variable is, say, the outcome

2The high-level functions found in the package in turn call compiled C code, allowing users to focus on the application rather than the
implementation details.

3MPI is a library specification for message-passing, and has emerged as a dominant paradigm for portable parallel programming.
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and which are, say, the covariates. That is, just be-
cause one writes x1 + x2 in no way means or is
meant to imply that the model will be linear and
additive (why use fully nonparametric methods to
estimate such models in the first place?). It sim-
ply means that there are, say, two covariates in the
model, the first being x1 and the second x2, we are
passing them to a routine with the formula interface,
and nothing more is presumed or implied.

Regardless of whether you use the data frame or
formula interface, workflow for nonparametric esti-
mation in np typically proceeds as follows:

1. compute appropriate bandwidths;

2. estimate an object and extract fitted or pre-
dicted values, standard errors, etc.;

3. optionally, plot the object.

In order to streamline the creation of a set of com-
plicated graphics objects, plot (which calls npplot)
is dynamic; i.e., you can specify, say, bootstrapped
error bounds and the appropriate routines will be
called in real time.

Efficient nonparametric regression
in the presence of qualitative data

We begin with a motivating example that demon-
strates the potential benefits arising from the use
of kernel smoothing methods that smooth both the
qualitative and quantitative variables in a particu-
lar manner; see the subsequent section for more de-
tailed information regarding the method itself. For
what follows, we consider an application taken from
Wooldridge (2003, pg. 226) that involves multiple re-
gression analysis with qualitative information.

We consider modeling an hourly wage equa-
tion for which the dependent variable is log(wage)
(lwage) while the explanatory variables include three
continuous variables, namely educ (years of educa-
tion), exper (the number of years of potential ex-
perience), and tenure (the number of years with
their current employer) along with two qualitative
variables, female (“Female”/“Male”) and married
(“Married”/“Notmarried”). For this example there
are n = 526 observations.

The classical parametric approach towards es-
timating such relationships requires that one first
specify the functional form of the underlying rela-
tionship. We start by first modelling this relationship
using a simple parametric linear model. By way of
example, Wooldridge (2003, pg. 222) presents the fol-
lowing model:4

> data("wage1")
>
> model.ols <- lm(lwage ~ factor(female) +
+ factor(married) + educ + exper + tenure,
+ data=wage1)
>
> summary(model.ols)
....

This model is, however, restrictive in a number of
ways. First, the analyst must specify the functional
form (in this case linear) for the continuous vari-
ables (educ, exper, and tenure). Second, the analyst
must specify how the qualitative variables (female
and married) enter the model (in this case they affect
the model’s intercepts only). Third, the analyst must
specify the nature of any interactions among all vari-
ables, quantitative and qualitative (in this case, there
are none). Should any of these assumptions be in-
correct, then the estimated model will be biased and
inconsistent, potentially leading to faulty inference.

One might next test the null hypothesis that this
parametric linear model is correctly specified using
the consistent model specification test found in Hsiao
et al. (forthcoming) that admits both categorical and
continuous data (this example will likely take a few
minutes on a desktop computer as it uses bootstrap-
ping and cross-validated bandwidth selection):

> data("wage1")
> attach(wage1)
>
> model.ols <- lm(lwage ~ factor(female) +
+ factor(married) + educ + exper + tenure,
+ x=TRUE, y=TRUE)
>
> X <- data.frame(factor(female),
+ factor(married), educ, exper, tenure)
>
> output <- npcmstest(model=model.ols,
+ xdat=X, ydat=lwage, tol=.1, ftol=.1)
> summary(output)

Consistent Model Specification Test
....
IID Bootstrap (399 replications)
Test Statistic 'Jn': 5.594745e+00
P Value: 0.000000e+00
....

This naïve linear model is rejected by the data
(the P-value for the null of correct specification is
< 0.001), hence one might proceed instead to model
this relationship using kernel methods.

As noted, the traditional nonparametric approach
towards modeling relationships in the presence of
qualitative variables requires that you first split your
data into subsets containing only the continuous

4We would like to thank Jeffrey Wooldridge for allowing us to use his data. Also, we would like to point out that Wooldridge starts
out with this naïve linear model, but quickly moves on to a more realistic model involving nonlinearities in the continuous variables and
so forth.
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variables of interest (lwage, exper, and tenure). For
instance, we would have four such subsets, a) n =
132 observations for married females, b) n = 120 ob-
servations for single females, c) n = 86 observations
for single males, and d) n = 188 observations for
married males. One would then construct smooth
nonparametric regression models for each of these
subsets and proceed with the analysis in this fashion.
However, this may lead to a loss in efficiency due to
a reduction in the sample size leading to overly vari-
able estimates of the underlying relationship.

Instead, however, we could construct smooth
nonparametric regression models by i) using a
smoothing function that is appropriate for the qual-
itative variables such as that proposed by Aitchi-
son and Aitken (1976), and ii) modifying the non-
parametric regression model as was done by Li and
Racine (2004). One can then conduct sound nonpara-
metric estimation based on the n = 526 observa-
tions rather than resorting to sample splitting. The
rationale for this lies in the fundamental concept that
doing so may introduce potential bias, but it will
always reduce variability, thus leading to potential
finite-sample efficiency gains. Our experience has
been that the potential benefits arising from this ap-
proach more than offset the potential costs in finite-
sample settings.

Next, we consider using the local-linear nonpara-
metric method described in Li and Racine (2004).
For the reader’s convenience we supply precom-
puted cross-validated bandwidths which are auto-
matically loaded when one reads the wage1 dataset.
The commented out code that generates the cross-
validated bandwidths is also provided should the
reader wish to fully replicate the example (recall be-
ing cautioned about the computational burden as-
sociated with multivariate data-driven bandwidth
methods).

> data("wage1")
>
> #bw.all <- npregbw(lwage ~ factor(female) +
> # factor(married) + educ + exper + tenure,
> # regtype="ll", bwmethod="cv.aic",
> # data=wage1)
>
> model.np <- npreg(bws=bw.all)
>
> summary(model.np)

Regression Data: 526 training points,
in 5 variable(s)

....
Kernel Regression Estimator: Local-Linear
Bandwidth Type:Fixed
Residual standard error: 1.371530e-01
R-squared: 5.148139e-01
....

Note that the bandwidth object is the only thing

you need to pass to npreg as it encapsulates the
kernel types, regression method, and so forth. You
could, of course, use npreg with a formula and per-
haps manually specify the bandwidths using a band-
width vector if you so chose. We have tried to make
each function as flexible as possible to meet the needs
of a variety of users.

The goodness of fit of the nonparametric model
(R2 = 51.5%) is better than that for the paramet-
ric model (R2 = 40.4%). In order to investigate
whether this apparent improvement reflects overfit-
ting or simply that the nonparametric model is in fact
more faithful to the underlying data generating pro-
cess, we shuffled the data and created two indepen-
dent samples, one of size n1 = 400 and one of size
n2 = 126. We fit the models on the n1 training ob-
servations then evaluate the models on the n2 inde-
pendent hold-out observations using the predicted
square error criterion, namely n−1

2 ∑
n2
i=1(yi − ŷi)2,

where the yis are the lwage values for the hold-out
observations and the ŷis are the predicted values. Fi-
nally, we compare the parametric model, the non-
parametric model that smooths both the qualitative
and quantitative variables, and the traditional fre-
quency nonparametric model that breaks the data
into subsets and smooths the quantitative data only.

> data("wage1")
> set.seed(123)
>
> # Shuffle the data and create two datasets...
>
> ii <- sample(seq(nrow(wage1)),replace=FALSE)
>
> wage1.train <- wage1[ii[1:400],]
> wage1.eval <- wage1[ii[401:nrow(wage1)],]
>
> # Compute the parametric model for the
> # training data...
>
> model.ols <- lm(lwage ~ factor(female) +
+ factor(married) + educ + exper + tenure,
+ data=wage1.train)
>
> # Obtain the out-of-sample predictions...
>
> fit.ols <- predict(model.ols,
+ data=wage1.train, newdata=wage1.eval)
>
> # Compute the predicted square error...
>
> pse.ols <- mean((wage1.eval$lwage -
+ fit.ols)^2)
>
> #bw.subset <- npregbw(
> # lwage~factor(female) + factor(married) +
> # educ + exper + tenure, regtype="ll",
> # bwmethod="cv.aic", data=wage1.train)
>
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> model.np <- npreg(bws=bw.subset)
>
> # Obtain the out-of-sample predictions...
>
> fit.np <- predict(model.np,
+ data=wage1.train, newdata=wage1.eval)
>
> # Compute the predicted square error...
>
> pse.np <- mean((wage1.eval$lwage -
+ fit.np)^2)
>
> # Do the same for the frequency estimator...
> # We do this by setting lambda=0 for the
> # qualitative variables...
>
> bw.freq <- bw.subset
> bw.freq$bw[1] <- 0
> bw.freq$bw[2] <- 0
>
> model.np.freq <- npreg(bws=bw.freq)
>
> # Obtain the out-of-sample predictions...
>
> fit.np.freq <- predict(model.np.freq,
+ data=wage1.train, newdata=wage1.eval)
>
> # Compute the predicted square error...
>
> pse.np.freq <- mean((wage1.eval$lwage -
+ fit.np.freq)^2)
>
> # Compare performance for the
> # hold-out data...
>
> pse.ols
[1] 0.1469691
> pse.np
[1] 0.1344028
> pse.np.freq
[1] 0.1450111

The predicted square error on the hold-out data
was 0.147 for the parametric linear model, 0.145 for
the traditional nonparametric estimator that splits
the data into subsets, and 0.134 for the nonparamet-
ric estimator that uses the full sample but smooths
both the qualitative and quantitative data. We there-
fore conclude that the nonparametric model that
smooths both the continuous and qualitative vari-
ables appears to provide a better description of the
underlying data generating process than either the
nonparametric model that uses sample splitting or
the naïve linear model.

Note that for this example we have only four
cells. If one used all qualitative variables included
in the dataset (16 in total), one would have 65, 536
cells, many of which would be empty, and most hav-
ing far too few observations to provide meaningful
nonparametric estimates. As the number of qualita-

tive variables increases, the difference between the
estimator that smooths both continuous and discrete
variables in a particular manner and the traditional
estimator that relies upon sample splitting will be-
come even more pronounced.

We now briefly outline the essence of kernel
smoothing of categorical data for the interested
reader.

Categorical data kernel methods

To introduce the R user to the basic concept of ker-
nel smoothing of categorical random variables, con-
sider a kernel estimator of a probability function,
i.e. p(xd) = P(Xd = xd), where Xd is an unordered
(i.e., discrete) categorical variable assuming values
in, say, {0, 1, 2, . . . , c − 1} where c is the number of
possible outcomes of the discrete random variable
Xd. Aitchison and Aitken (1976) proposed a kernel
estimator of p(xd) given by

p̂(xd) =
1
n

n

∑
i=1

L(Xd
i = xd),

where L(·) is a kernel function defined by, say,

L(Xd
i = xd) =

{
1− λ if Xd

i = xd

λ/(c− 1) otherwise,

and where λ is a ‘smoothing’ parameter that can be
selected via a variety of data-driven methods; see
also Ouyang et al. (2006) for theoretical underpin-
nings of least-squares cross-validation in this con-
text.

The smoothing parameter λ is restricted to lie in
[0, (c − 1)/c] for the kernel given above. Note that
when λ = 0, then L(Xd

i = xd) becomes an indi-
cator function, and hence p̂(xd) would be the stan-
dard frequency probability estimator (i.e., the sam-
ple proportion of Xd

i = xd). If, on the other hand,
λ = (c − 1)/c, its upper bound, then L(Xd

i = xd)
becomes a constant function and p̂(xd) = 1/c for all
xd, which is the discrete uniform distribution. Data-
driven methods for selecting λ are based on minimiz-
ing expected square error loss, among other criteria.

A number of issues surrounding this estimator
are noteworthy: i) this approach extends trivially to a
general multivariate setting, and in fact is best suited
to such settings; ii) to deal with ordered variables
you simply use an ‘ordered kernel’; iii) there is no
“curse of dimensionality” associated with smooth-
ing discrete probability functions – the estimators
are

√
n consistent, just like their parametric counter-

parts; and iv) you can “mix-and-match” data types
using “generalized product kernels” as we describe
in the next section.

Why would anyone want to smooth a probabil-
ity function in the first place? For finite-sample effi-
ciency reasons of course. That is, smoothing a prob-
ability function may introduce some finite-sample
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bias, but, it always reduces variability. In settings
where you are modeling a mix of categorical and
continuous data or where one has sparse multivari-
ate categorical data, the efficiency gains can be sub-
stantial indeed.

Mixed data kernel methods

Estimating a joint density function defined over
mixed data (i.e., both categorical and continuous)
follows naturally using generalized product kernels.
For example, for one discrete variable xd and one
continuous variable xc, our kernel estimator of the
joint PDF would be

f̂ (xd, xc) =
1

nhx

n

∑
i=1

L(Xd
i = xd)W

(
Xc

i − xc

hxc

)
,

where L(Xd
i = xd) is a categorical data kernel func-

tion, while W[(Xc
i − xc)/hxc ] is a continuous data ker-

nel function (e.g., Epanechnikov, Gaussian, or uni-
form) and hxc is the bandwidth for the continuous
variable; see Li and Racine (2003) for further details.

Once we can consistently estimate a joint density
function defined over mixed data, we can then pro-
ceed to estimate a range of statistical objects of inter-
est to practitioners. Some mainstays of applied data
analysis include estimation of regression functions
and their derivatives, conditional density functions
and their quantiles, conditional mode functions (i.e.,
count data models, probability models), and so forth,
each of which is currently implemented.

Nonparametric estimation of binary out-
come and count data models

For what follows, we adopt the conditional proba-
bility estimator proposed in Hall et al. (2004) to es-
timate a nonparametric model of a binary outcome
when there exist a number of categorical covariates.

For this example, we use the birthwt data taken
from the MASS package, and compute a parametric
Logit model and a nonparametric conditional mode
model. We then compare their confusion matrices
and assess their classification ability. The outcome
is an indicator of low infant birthweight (0/1).

> library("MASS")
> attach(birthwt)
>
> # First, we model this with a simple
> # parametric Logit model...
>
> model.logit <- glm(low ~ factor(smoke) +
+ factor(race) + factor(ht) + factor(ui)+
+ ordered(ftv) + age + lwt, family=binomial)
>
> # Now we model this with the nonparametric

> # conditional density estimator and compute
> # the conditional mode...
>
> bw <- npcdensbw(factor(low) ~
+ factor(smoke) + factor(race) +
+ factor(ht) + factor(ui)+ ordered(ftv) +
+ age + lwt, tol=.1, ftol=.1)
> model.np <- npconmode(bws=bw)
>
> # Finally, we compare confusion matrices
> # from the logit and nonparametric models...
>
> # Parametric...
>
> cm <- table(low,
+ ifelse(fitted(model.logit) > 0.5, 1, 0))
> cm

low 0 1
0 119 11
1 34 25

>
> # Nonparametric...
>
> summary(model.np)

Conditional Mode data: 189 training points,
in 8 variable(s)

....
Bandwidth Type: Fixed

Confusion Matrix
Predicted

Actual 0 1
0 127 3
1 27 32

....

For this example the nonparametric model is bet-
ter able to predict low birthweight infants than its
parametric counterpart, correctly predicting 159/189
birthweights compared with 144/189 for the para-
metric model.

Visualizing and summarizing nonpara-
metric results

Summarizing nonparametric results and comparing
them with parametric ones is perhaps one of the
main challenges faced by the practitioner. We have
attempted to provide a range of summary measures
and plotting methods to facilitate these tasks.

The plot function (which calls npplot) can be
used on most nonparametric objects. In order to fur-
ther facilitate comparison of parametric with non-
parametric results, we also compute a number of
summary measures of goodness of fit, normalized
bandwidths (‘scale factors’) and so forth that are ac-
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cessed by the summary command, while objects gen-
erated by np also contain various alternative mea-
sures of goodness of fit and the like. We again con-
sider the approach detailed in Li and Racine (2004)
which conducts local linear kernel regression with
a mix of discrete and continuous data types on a
popular macroeconomic dataset. The original study
assessed the impact of Organisation for Economic
Co-operation and Development (OECD) member-
ship on a country’s growth rate when controlling for
a range of factors such as population growth rates,
stock of capital (physical and human) and so forth.
For this example we shall use the formula interface
rather than the data frame interface. For this exam-
ple, we have already computed the cross-validated
bandwidths which are loaded when one reads the
oecdpanel dataset.

> data("oecdpanel")
> attach(oecdpanel)
>
> #bw <- npregbw(growth ~ factor(oecd) +
> # ordered(year) + initgdp + popgro+ inv +
> # humancap, bwmethod="cv.aic",
> # regtype="ll")
>
> summary(bw)

Regression Data (616 observations,
6 variable(s)):

Regression Type: Local-Linear

....

>
> model <- npreg(bw)
>
> summary(model)

Regression Data: 616 training points,
in 6 variable(s)

....
>
> plot(bw,
+ plot.errors.method="bootstrap",
+ plot.errors.boot.num=25)
>

We display partial regression plots in Figure 1.5

We also plot bootstrapped variability bounds, where
the bootstrapping is done via the boot package
thereby facilitating a variety of bootstrap methods.

If you prefer gradients rather than levels, you can
simply use the argument gradients=TRUE in plot
to indicate that you wish to plot partial derivatives
rather than the conditional mean function itself.6

Many of the accessor functions such as predict,
fitted, and residuals work with most non-
parametric objects, where appropriate. As well,
gradients is a generic function which extracts gra-
dients from objects. The R function coef can be
used for extracting the parametric coefficients from
semiparametric models such as those created with
npplreg.

Creating mixed data kernel objects via
npksum

Rather than being limited to only those kernel meth-
ods that exist in np, you could instead create your
own mixed data kernel objects. npksum is a func-
tion that computes kernel sums on evaluation data,
given a set of training data, data to be weighted (op-
tional), and a bandwidth specification (any band-
width object). npksum uses highly-optimized C code
that strives to minimize its memory footprint, while
there is low overhead involved when using repeated
calls to this function. The convolution kernel op-
tion would allow you to create, say, the least squares
cross-validation function for kernel density estima-
tion. You can choose powers to which the kernels
constituting the sum are raised (default=1), whether
or not to divide by bandwidths, whether or not
to generate leave-one-out sums, and so on. Three
classes of kernel methods for the continuous data
types are available: fixed, adaptive nearest-neighbor,
and generalized nearest-neighbor. Adaptive nearest-
neighbor bandwidths change with each sample real-
ization in the set, xi, when estimating the kernel sum
at the point x. Generalized nearest-neighbor band-
widths change with the point at which the sum is
computed, x. Fixed bandwidths are constant over
the support of x. A variety of kernels may be spec-
ified by users. Kernels implemented for continu-
ous data types include the second, fourth, sixth, and
eighth order Gaussian and Epanechnikov kernels,
and the uniform kernel. We have tried to anticipate
the needs of a variety of users when designing this
function. A number of semiparametric estimators
and nonparametric tests in the np package in fact
make use of npksum.

In the following example, we conduct local-
constant (i.e., Nadaraya-Watson) kernel regression.
We shall use cross-validated bandwidths drawn
from npregbw for this example. Note that we extract
the kernel sum from npksum via the ‘$ksum’ return
value in both the numerator and denominator of the
resulting object. For this example, we use the data
frame interface rather than the formula interface, and
output from this example is plotted in Figure 2.

5A “partial regression plot” is simply a 2D plot of the outcome y versus one covariate x j when all other covariates are held constant at
their respective medians (this can be changed by users).

6plot(bw, gradients=TRUE, plot.errors.method="bootstrap", plot.errors.boot.num=25, common.scale=FALSE) will work
for this example.
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Figure 1: Partial regression plots with bootstrapped error bounds based on a cross-validated local linear kernel
estimator.

> data("cps71")
> attach(cps71)
....
> fit.lc <- npksum(txdat=age,tydat=logwage,
+ bws=1.892169)$ksum/
+ npksum(txdat=age,bws=1.892169)$ksum
>

Note that the arguments ‘txdat’ and ‘tydat’ refer to
‘training’ data for the regressors X and for the depen-
dent variable y, respectively. One can also specify
‘evaluation’ data if you wish to evaluate the function
on a set of points that differ from the training data.
In such cases, you would also specify ‘exdat’ (and
‘eydat’ if so desired).

We direct the interested reader to see, by way of
illustration, the example available via ?npksum that
conducts leave-one-out cross-validation for a local
constant regression estimator via calls to the R func-
tion nlm, and compares this to the npregbw function.
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Figure 2: A local constant kernel estimator created
with npksum using the Gaussian kernel (default) and
a bandwidth of 1.89.
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eiPack: R × C Ecological Inference and
Higher-Dimension Data Management
by Olivia Lau, Ryan T. Moore, and Michael Kellermann

Introduction

Ecological inference (EI) models allow researchers
to infer individual-level behavior from aggregate
data when individual-level data is unavailable. Ta-
ble 1 shows a typical unit of ecological analysis: a
contingency table with observed row and column
marginals and unobserved interior cells.

col1 col2 . . . colC
row1 N11i N12i . . . N1Ci N1·i
row2 N21i N22i . . . N2Ci N2·i
. . . . . . . . . . . . . . .
rowR NR1i NR2i . . . NRCi NR·i

N·1i N·2i . . . N·Ci Ni

Table 1: A typical R× C unit in ecological inference;
red quantities are typically unobserved.

In ecological inference, challenges arise because
information is lost when aggregating across indi-
viduals, a problem that cannot be solved by col-
lecting more aggregate-level data. Thus, EI mod-
els are unusually sensitive to modeling assumptions.
Testing these assumptions is difficult without access
to individual-level data, and recent years have wit-
nessed a lively discussion of the relative merits of
various models (Wakefield, 2004).

Nevertheless, there are many applied problems in
which ecological inferences are necessary, either be-
cause individual-level data is unavailable or because
the aggregate-level data is considered more authori-
tative. The latter is true in the voting rights context
in the United States, where federal courts often base
decisions on evidence derived from one or more EI
models (Cho and Yoon, 2001). While packages such
as MCMCpack (Martin and Quinn, 2006) and eco
(Imai and Lu, 2005), provide tools for 2× 2 inference,
this is insufficient in many applications. In eiPack,
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we implement three existing methods for the general
case in which the ecological units are R× C tables.

Methods and Data in eiPack

The methods currently implemented in eiPack are
the method of bounds (Duncan and Davis, 1953),
ecological regression (Goodman, 1953), and the
Multinomial-Dirichlet model (Rosen et al., 2001).

The functions that implement these models share
several attributes. The ecological tables are defined
using a common formula of the form cbind(col1,
..., colC) ∼ cbind(row1, ...,rowR). The row
and column marginals can be expressed as either
proportions or counts. Auxiliary functions renormal-
ize the results for some subset of columns taken from
the original ecological table, and appropriate print,
summary, and plot functions conveniently summa-
rize the model output.

In the following section, we demonstrate the fea-
tures of eiPack using the (included) senc dataset,
which contains individual-level party affiliation data
for Black, White, and Native American voters in
8 counties in southeastern North Carolina. These
counties include 212 precincts, which form the eco-
logical units in this dataset. Because the data are ob-
served at the individual level, the interior cell counts
are known, allowing us to benchmark the estimates
generated by each method.

Method of Bounds

The method of bounds (Duncan and Davis, 1953)
uses the observed row and column marginals to cal-
culate upper and lower bounds for functions of the
interior cells of each ecological unit. The method of
bounds is not a statistical procedure in the traditional
sense; the bounds implied by the row and column
marginals are deterministic and there is no proba-
bilistic model for the data-generating process.

As implemented in eiPack, the method of bounds
allows the user to calculate for a specified column
k′ ∈ k = {1, . . . , C} the deterministic bounds on the
proportion of individuals in each row who belong in
that column. For each unit being considered, let j be
the row of interest, k index columns, k′ be the column
of interest, k′′ be the set of other columns considered,
and k̃ be the set of columns excluded. For example,
if we want the bounds on the proportion of Native
American two-party registrants who are Democrats,
j is Native American, k′ is Democrat, k′′ is Repub-
lican, and k̃ is No Party. The unit-level quantity of
interest is

N jk′i

N jk′i + ∑k∈k′′ N jki

The lower and upper bounds on this quantity given
by the observed marginals are, respectively,

max(0, N ji − ∑k 6=k′ Nki)
max(0, N ji − ∑k 6=k′ Nki) + min(N ji , ∑k∈k′′ Nki)

and

min(N ji , Nk′i)
min(N ji , Nk′i) + max(0, N ji − Nk′i − ∑k∈k̃ Nki)

The intervals generated by the method of bounds
can be analyzed in a variety of ways. Grofman (2000)
suggests calculating the intersection of the unit-level
bounds. If this intersection (calculated by eiPack) is
non-empty, it represents the range of values that are
consistent with the observed marginals in each of the
ecological units.

Researchers and practitioners may also choose to
restrict their attention to units in which one group
dominates, since the bounds will typically be more
informative in those units. eiPack allows users to set
row thresholds to conduct this extreme case analy-
sis (known as homogeneous precinct analysis in the
voting context). For example, suppose the user is in-
terested in the proportion of two-party White regis-
trants registered as Democrats in precincts that are
at least 90% White. eiPack calculates the desired
bounds:

> out <- bounds(cbind(dem, rep, non) ~ cbind(black,

+ white, natam), data = senc, rows = "white",

+ column = "dem", excluded = "non",

+ threshold = 0.9, total = NULL)

These calculated bounds can then be represented
graphically. Segments cover the range of possible
values (the true value for each precinct is the red dot,
not included in the standard bounds plot). In this ex-
ample, the intersection of the precinct-level bounds
is empty.

> plot(out, row = "white", column = "dem")

# add true values to plot

> idx <- as.numeric(rownames(out$bounds$white.dem))

> truth <- senc$whdem[idx]/(senc$white[idx]

+ - senc$non[idx])

> plot((1:length(idx)) / (length(idx) + 1), truth)
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Figure 1: A plot of deterministic bounds.

Ecological Regression

In ecological regression (Goodman, 1953), observed
row and column marginals are expressed as propor-
tions and each column is regressed separately on the
row proportions, thus performing C regressions. Re-
gression coefficients then estimate the population in-
ternal cell proportions. For a given unit i, define

• Xri, the proportion of individuals in row r,

• Tci, the proportion of individuals in column c,
and

• βrci, the proportion of row r individuals in col-
umn c

The following identities hold:

Tci =
R

∑
r=1

βrciXri and
C

∑
c=1

βrci = 1

Defining the population cell fractions βrc such that
∑

C
c=1 βrc = 1 for every r, ecological regression as-

sumes that βrc = βrci for all i, and estimates the
regression equations Tci = βrcXri + εci. Under
the standard linear regression assumptions, includ-
ing E[εci] = 0 and Var[εci] = σ2

c for all i, these
regressions recover the population parameters βrc.
eiPack implements frequentist and Bayesian regres-
sion models (via ei.reg and ei.reg.bayes, respec-
tively).

In the Bayesian implementation, we offer two op-
tions for the prior on βrc. As a default, truncate
= FALSE uses an uninformative flat prior that pro-
vides point estimates approaching the frequentist es-
timates (even when those estimates are outside the

feasible range) as the number of draws m → ∞. In
cases where the cell estimates are near the bound-
aries, choosing truncate = TRUE imposes a uniform
prior over the unit hypercube such that all cell frac-
tions are restricted to the range [0, 1].

Output from ecological regression can be summa-
rized numerically just as in lm, or graphically using
density plots. We also include functions to calculate
estimates and standard errors of shares of a subset
of columns in order to address questions such as,
"What is the Democratic share of 2-party registration
for each group?" For the Bayesian model, densities
represent functions of the posterior draws of the βrc;
for the frequentist model, densities reflect functions
of regression point estimates and standard errors cal-
culated using the δ-method.

> out.reg <- ei.reg(cbind(dem, rep, non)

+ ~ cbind(black, white, natam), data = senc)

> lreg <- lambda.reg(out.reg,

columns = c("dem", "rep"))

> density.plot(lreg)
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Figure 2: Density plots of ecological regression out-
put.

Multinomial-Dirichlet (MD) model

In the Multinomial-Dirichlet model proposed by
Rosen et al. (2001), the data is expressed as counts
and a hierarchical Bayesian model is fit using a
Metropolis-within-Gibbs algorithm implemented in
C. Level 1 models the observed column marginals
as multinomial (and independent across units); the
choice of the multinomial corresponds to sampling
with replacement from the population. Level 2 mod-
els the unobserved row cell fractions as Dirichlet
(and independent across rows and units); Level 3
models the Dirichlet parameters as i.i.d. Gamma.
More formally, without a covariate, the model is
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(N·1i , . . . , N·Ci)
⊥⊥∼ Multinomial(Ni ,

R

∑
r=1

βr1iXri ,

. . . ,
R

∑
r=1

βrCiXri)

(βr1i , . . . , βrCi)
⊥⊥∼ Dirichlet(αr1, . . . ,αrC)

αrc
i.i.d.∼ Gamma(λ1, λ2)

With a unit-level covariate Zi in the second level,
the model becomes

(N·1i , . . . , N·Ci)
⊥⊥∼ Multinomial(Ni ,

R

∑
r=1

βr1iXri ,

. . . ,
R

∑
r=1

βrCiXri)

(βr1i , . . . , βrCi)
⊥⊥∼ Dirichlet(dre(γrc+δrcZi), . . . ,

dre(γr(C−1)+δr(C−1)Zi), dr)

dr
i.i.d.∼ Gamma(λ1, λ2)

In the model with a covariate, users have two op-
tions for the priors on γrc and δrc . They may as-
sume an improper uniform prior, as was suggested
by Rosen et al. (2001), or they may specify normal
priors for each γrc and δrc as follows:

γrc ∼ N(µγrc ,σ2
γrc)

δrc ∼ N(µδrc ,σ2
δrc

)

As Wakefield (2004) notes, the weak identification
that characterizes hierarchical models in the EI con-
text is likely to make the results sensitive to the
choice of prior. Users should experiment with differ-
ent assumptions about the prior distribution of the
upper-level parameters in order to gauge the robust-
ness of their inferences.

The parameterization of the prior on each
(βr1i , . . . , βrCi) implies that the following log-odds
ratio of expected fractions is linear with respect to
the covariate Zi:

log
(

E(βrci)
E(βrCi)

)
= γrc + δrcZi

Conducting an analysis using the MD model re-
quires two steps. First, tuneMD calibrates the tuning
parameters used for Metropolis-Hastings sampling:

> tune.nocov <- tuneMD(cbind(dem, rep, non)

+ ~ cbind(black, white, natam), data = senc,

+ ntunes = 10, totaldraws = 100000)

Second, ei.MD.bayes fits the model by calling C code
to generate MCMC draws:

> out.nocov <- ei.MD.bayes(cbind(dem, rep, non)

+ ~ cbind(black, white, natam),

+ covariate = NULL, data = senc,

+ tune.list = tune.nocov)

The output of this function can be returned as mcmc
objects or arrays; in the former case, the standard
diagnostic tools in coda (Plummer et al., 2006) can
be applied directly. The MD implementation in-
cludes lambda and density.plot functions, usage
for which is analogous to ecological regression:

> lmd <- lambda.MD(out.nocov,

+ columns = c("dem", "rep"))

> density.plot(lmd)

If the precinct-level parameters are returned or
saved, cover.plot plots the central credible inter-
vals for each precinct. The segments represent the
95% central credible intervals and their medians for
each unit (the true value for each precinct is the red
dot, not included in the standard cover.plot).

> cover.plot(out.nocov, row = "white",

+ column = "dem")

# add true values to plot

> points(senc$white/senc$total,

+ senc$whdem/senc$white)
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Figure 3: Coverage plot for MD model output.

Data Management

In the MD model, reasonable-sized problems produce
unreasonable amounts of data. For example, a model
for voting in Ohio includes 11000 precincts, 3 racial
groups, and 4 parties. Implementing 1000 iterations
yields about 130 million parameter draws. These
draws occupy about 1GB of RAM, and this is almost
certainly not enough iterations. We provide a few
options to users in order to make this model tractable
for large EI problems.

The unit-level parameters present the most sig-
nificant data management problem. Rather than
storing unit-level parameters in the workspace,
users can save each chain as a .tar.gz file on
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disk using the option ei.MD.bayes(..., ret.beta
= "s"), or discard the unit-level draws entirely us-
ing ei.MD.bayes(..., ret.beta = "d"). To recon-
struct the chains, users can select the row marginals,
column marginals, and units of interest, without re-
constructing the entire matrix of unit-level draws:
> read.betas(rows = c("black", "white"),

+ columns = "dem", units = 1:150,

+ dir = getwd())

If users are interested in some function of the unit-
level parameters, the implementation of the MD
model allows them to define a function in R that
will be called from within the C sampling algorithm,
in which case the unit-level parameters need not be
saved for post-processing.
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The ade4 Package — II: Two-table and
K-table Methods
by Stéphane Dray, Anne B. Dufour and Daniel Chessel

Introduction

The ade4 package proposes a great variety of ex-
planatory methods to analyse multivariate datasets.
As suggested by the acronym ade4 (Data Analysis
functions to analyse Ecological and Environmental
data in the framework of Euclidean Exploratory
methods), the package is devoted to ecologists but
it could be useful in many other fields (e.g., Goecke,
2005). Methods available in the package are partic-
ular cases of the duality diagram (Escoufier, 1987;

Holmes, 2006; Dray and Dufour, 2007) and the im-
plementation of the functions follows the description
of this unifying mathematical tool (class dudi). The
main functions of the package for one-table analysis
methods have been presented in Chessel et al. (2004).
This new paper presents a short summary of two-
table and K-table methods available in the package.

Ecological illustration

In order to illustrate the methods, we used the
dataset jv73 (Verneaux, 1973) which is available in
the package. This dataset concerns 12 rivers. For
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each river, a number of sites have been sampled. The
number of sites per river is not constant. jv73$poi
is a data.frame and contains presence/absence data
for 19 fish species (columns) in 92 sites (rows).
jv73$fac.riv is a factor indicating the river corre-
sponding to each site. jv73$morpho contains the
measurements of six environmental variables (alti-
tude (m), distance between the site and the source
(km), slope (per thousand), wetted cross section (m2),
average flow (m3/s) and average speed (m/s)) for the
same sites . Several ecological questions are related
to these data:

1. Are the groups of fish species living together
(i.e. species communities)?

2. Is there a relation between the composition of
fish communities and the environmental varia-
tions?

3. Does the composition of fish communities vary
(or not) among rivers?

4. Do the species-environment relationships vary
(or not) among rivers?

Multivariate analyses help to answer these different
questions: one-table methods for the first question,
two-table methods for the second one and K-table
methods for the last two.

Matching two tables

The main purpose of ecological data analysis is
the matching of two data tables: a sites-by-
environmental variables table and a sites-by-species
table, to study the relationships between the com-
position of species communities and their environ-
ment. The ade4 package contains the main variants
of these methods (procrustean rotation, co-inertia
analysis and principal component analyses with re-
spect to instrumental variables).

The first approach is procrustean rotation
(Gower, 1971), introduced in ecology by Digby and
Kempton (1987, p. 116).

data(jv73)

pca1 <- dudi.pca(jv73$morpho, scannf = FALSE)

pca2 <- dudi.pca(jv73$poi, scale = FALSE,

scannf = FALSE)

plot(procuste(pca1$tab, pca2$tab,

nf = 2))
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Figure 1: Plot of a Procrustes analysis: loadings for en-
vironmental variables and species, eigenvalues screeplot,
scores of sites for the two data sets, and projection of the
two sets of sites after rotation (arrows link environment
site score to the species site score) (Dray et al., 2003a).

Two randomization procedures are available to test
the association between two tables: PROTEST (Jack-
son, 1995) and RV (Heo and Gabriel, 1998).

plot(procuste.randtest(pca1$tab,

pca2$tab), main = "PROTEST")

plot(RV.rtest(pca1$tab, pca2$tab),

main = "RV")
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Figure 2: Plots of PROTEST and RV tests: histograms
of simulated values and observed value (vertical line).

Co-inertia analysis (Dolédec and Chessel, 1994;
Dray et al., 2003b) is a general approach that can
be applied to any pair of duality diagrams hav-
ing the same row weights. This method is sym-
metric and seeks for a common structure between
two datasets. It extends psychometricians inter-
battery analysis (Tucker, 1958), canonical analysis
on qualitative variables (Cazes, 1980), and ecologi-
cal profiles analysis (Montaña and Greig-Smith, 1990;
Mercier et al., 1992). Co-inertia analysis of the pair
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of triplets (X1, Q1, D) and (X2, Q2, D) leads to the
triplet (Xt

2DX1, Q1, Q2). Note that the two triplets
must have the same row weights. For a comprehen-
sive definition of the statistical triplet of matrices X,
Q, D, the reader could consult Chessel et al. (2004).

coa1 <- dudi.coa(jv73$poi, scannf = FALSE)

pca3 <- dudi.pca(jv73$morpho,

row.w = coa1$lw, scannf = F)

plot(coinertia(coa1, pca3, scannf = FALSE))
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Figure 3: Plot of a co-inertia analysis: projection of
the principal axes of the two tables (species and environ-
ment) on co-inertia axes, eigenvalues screeplot, canonical
weights of species and environmental variables, and joint
display of the sites.

For each coupling method, a generic plot func-
tion presents the various elements required to in-
terpret the results. However, the quality of graphs
could vary according to the data set. It is con-
sequently impossible to manage relevant graphical
outputs for all cases. That is why these generic plot
use graphical functions of ade4 which can be directly
called by the user. A brief description of some of
these functions is given in Table 1.

Another two-table matching strategy is princi-
pal component analyses with respect to instrumental
variables (pcaiv, Rao, 1964). This approach con-
sists in explaining a triplet (X2, Q2, D) by a table
of independent variables X1 and leads to triplet
(PX1 X2, Q2, D) where PX1 = X1(Xt

1DX1)−Xt
1D.

This family of methods are constrained ordinations,
among which redundancy analysis (van den Wollen-
berg, 1977) and canonical correspondence analysis
(Ter Braak, 1986) are the most frequently used in
ecology. Note that canonical correspondence anal-
ysis can also be performed using the cca wrapper
function which takes two tables as arguments. The
example given below is then exactly equivalent to

plot(cca(jv73$poi,jv73$morpho,scannf=FALSE)).
While the cca function of ade4 is a particular case
of pcaiv, the cca function of the package vegan is
a more traditional implementation of the method
which could be preferred by ecologists.

Function Objective
s.arrow cloud of points with vectors
s.chull cloud of points with groups

by convex hulls
s.class cloud of points with groups

by stars or ellipses
s.corcircle correlation circle
s.distri cloud of points with fre-

quency distribution by stars
and ellipses

s.hist cloud of points with two
marginal histograms

s.image grid of gray-scale rectangles
with contour lines

s.kde2d cloud of points with kernel
density estimation

s.label cloud of points with labels
s.logo cloud of points with pictures
s.match matching two clouds of

points with vectors
s.traject cloud of points with trajecto-

ries
s.value cloud of points with numeri-

cal variable
Table 1: Objectives of some graphical functions.

plot(pcaiv(coa1, jv73$morpho, scannf = FALSE))
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Figure 4: Plot of a CCA seen as a particular case of
PCAIV: environmental variables loadings and correla-
tions with CCA axes, projection of principal axes on CCA
axes, species scores, eigenvalues screeplot, and joint dis-
play of the rows of the two tables (position of the sites by
averaging (points) and by regression (arrow tips)).
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Orthogonal analysis (pcaivortho) removes the
effect of independent variables and corresponds to
the triplet (P⊥X1 X2, Q2, D) where P⊥X1 = I − PX1 .
Between-class (between) and within-class (within)
analyses (see Chessel et al., 2004, for details) are par-
ticular cases of PCAIV and orthogonal PCAIV when
there is only one categorical variable (i.e. factor) in
X1. Within-class analyses take into account a parti-
tion of individuals into groups and focus on struc-
tures which are common to all groups. It can be seen
as a first step to K-table methods.

wit1 <- within(coa1, fac = jv73$fac.riv,

scannf = FALSE)

plot(wit1)
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Figure 5: Plot of a within-class analysis: species loadings,
species scores, eigenvalues screeplot, projection of princi-
pal axes on within-class axes, sites scores (common cen-
tring), projections of sites and groups (i.e. rivers in this
example) on within-class axes.

The K-table class

Class ktab corresponds to collections of more than
two duality diagrams, for which the internal struc-
tures are to be compared. Three formats of these
collections can be considered:

• (X1, Q1, D), (X2, Q2, D),. . . , (XK , QK , D)

• (X1, Q, D1), (X2, Q, D2),. . . , (XK , Q, DK) stored
in the form of (Xt

1, D1, Q), (Xt
2, D2, Q),. . . ,

(Xt
K , DK , Q)

• (X1, Q, D), (X2, Q, D),. . . , (XK , Q, D) which
can also be stored in the form of (Xt

1, D, Q),
(Xt

2, D, Q),. . . , (Xt
K , D, Q)

Each statistical triplet corresponds to a separate
analysis (e.g., principal component analysis, corre-
spondence analysis ...). The common dimension
of the K statistical triplets are the rows of tables
which can represent individuals (samples, statistical
units) or variables. Utilities for building and ma-
nipulating ktab objects are available. K-table can
be constructed from a list of tables (ktab.list.df),
a list of dudi objects (ktab.list.dudi), a within-
class analysis (ktab.within) or by splitting a ta-
ble (ktab.data.frame). Generic functions to trans-
pose (t.ktab), combine (c.ktab) or extract elements
([.ktab) are also available. The sepan function can
be used to compute automatically the K separate
analyses.

kt1 <- ktab.within(wit1)

sep1 <- sepan(kt1)

kplot.sepan.coa(sep1, permute.row.col = TRUE)
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Figure 6: Kplot of 12 separate correspondence analyses
(same species, different sites).

When the ktab object is built, various statistical
methods can be used to analyse it. The foucart
function can be used to analyse K tables of posi-
tive number having the same rows and the same
columns and that can be analysed by a CA (Foucart,
1984; Pavoine et al., 2007). Partial triadic analysis
(Tucker, 1966) is a first step toward three modes prin-
cipal component analysis (Kroonenberg, 1989) and
can be computed with the pta function. It must be
used on K triplets having the same row and column
weights. The pta function can be used to perform
the STATICO method (Simier et al., 1999; Thioulouse
et al., 2004). This makes it possible to analyse a pair
of ktab objects which have been combined by the
ktab.match2ktabs function.

Multiple factor analysis (mfa, Escofier and Pagès,
1994), multiple co-inertia analysis (mcoa, Chessel and
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Hanafi, 1996) and the STATIS method (statis, Lavit
et al., 1994) can be used to compare K triplets having
the same row weights. The STATIS method can also
be used to compare K triplets having the same col-
umn weights, which is a first step toward Common
PCA (Flury, 1988).

sta1 <- statis(kt1, scannf = F)

plot(sta1)
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Figure 7: Plot of STATIS analysis: interstructure, typo-
logical value of each table, compromise and projection of
principal axes of separate analyses onto STATIS axes.

The kplot generic function is associated to the
foucart, mcoa, mca, pta, sepan, sepan.coa and
statis methods, giving adapted collections of
graphics.

kplot(sta1, traj = TRUE, arrow = FALSE,

unique = TRUE, clab = 0)

Conclusion

The ade4 package provides many methods to anal-
yse multivariate ecological data sets. This diversity
of tools is a methodological answer to the great va-
riety of questions and data structures associated to
biological questions. Specific methods dedicated to
the analysis of biodiversity, spatial, genetic or phy-
logenetic data are also available in the package. The
adehabitat brother-package contains tools to analyse
habitat selection by animals while the ade4TkGUI
package provides a graphical interface to ade4. More
resources can be found on the ade4 website (http:
//pbil.univ-lyon1.fr/ADE-4/).
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Figure 8: Kplot of the projection of the sites of each table
on the principal axes of the compromise of STATIS analy-
sis.

Bibliography

P. Cazes. L’analyse de certains tableaux rectangu-
laires décomposés en blocs : généralisation des
propriétés rencontrées dans l’étude des correspon-
dances multiples. I. Définitions et applications à
l’analyse canonique des variables qualitatives. Les
Cahiers de l’Analyse des Données, 5:145–161, 1980.

D. Chessel and M. Hanafi. Analyse de la co-inertie de
K nuages de points. Revue de Statistique Appliquée,
44(2):35–60, 1996.

D. Chessel, A.-B. Dufour, and J. Thioulouse. The
ade4 package-I- One-table methods. R News, 4:5–
10, 2004.

P. G. N. Digby and R. A. . Kempton. Multivariate
Analysis of Ecological Communities. Chapman and
Hall, Population and Community Biology Series,
London, 1987.

S. Dolédec and D. Chessel. Co-inertia analy-
sis: an alternative method for studying species-
environment relationships. Freshwater Biology, 31:
277–294, 1994.

S. Dray, D. Chessel, and J. Thioulouse. Procrustean
co-inertia analysis for the linking of multivariate
datasets. Ecoscience, 10:110–119, 2003a.

S. Dray, D. Chessel, and J. Thioulouse. Co-inertia
analysis and the linking of ecological tables. Ecol-
ogy, 84(11):3078–3089, 2003b.

S. Dray and A. Dufour. The ade4 package: imple-
menting the duality diagram for ecologists. Journal
of Statistical Software, 22(4):1–20, 2007.

R News ISSN 1609-3631

http://pbil.univ-lyon1.fr/ADE-4/
http://pbil.univ-lyon1.fr/ADE-4/


Vol. 7/2, October 2007 52

B. Escofier and J. Pagès. Multiple factor analysis (AF-
MULT package). Computational Statistics and Data
Analysis, 18:121–140, 1994.

Y. Escoufier. The duality diagram : a means of better
practical applications. In P. Legendre and L. Leg-
endre, editors, Development in numerical ecology,
pages 139–156. NATO advanced Institute , Serie G
.Springer Verlag, Berlin, 1987.

B. Flury. Common Principal Components and Related
Multivariate. models. Wiley and Sons, New-York,
1988.

T. Foucart. Analyse factorielle de tableaux multiples.
Masson, Paris, 1984.

R. Goecke. 3D lip tracking and co-inertia analy-
sis for improved robustness of audio-video au-
tomatic speech recognition. In Proceedings of the
Auditory-Visual Speech Processing Workshop AVSP
2005, pages 109–114, 2005.

J. Gower. Statistical methods of comparing different
multivariate analyses of the same data. In F. Hod-
son, D. Kendall, and P. Tautu, editors, Mathemat-
ics in the archaeological and historical sciences, pages
138–149. University Press, Edinburgh, 1971.

M. Heo and K. Gabriel. A permutation test of associ-
ation between configurations by means of the RV
coefficient. Communications in Statistics - Simulation
and Computation, 27:843–856, 1998.

S. Holmes. Multivariate analysis: The French way. In
N. D. and S. T., editors, Festschrift for David Freed-
man. IMS, Beachwood, OH, 2006.

D. Jackson. PROTEST: a PROcustean randomization
TEST of community environment concordance.
Ecosciences, 2:297–303, 1995.

P. Kroonenberg. The analysis of multiple tables in
factorial ecology. iii three-mode principal compo-
nent analysis:"analyse triadique complète". Acta
OEcologica, OEcologia Generalis, 10:245–256, 1989.

C. Lavit, Y. Escoufier, R. Sabatier, and P. Traissac. The
ACT (STATIS method). Computational Statistics and
Data Analysis, 18:97–119, 1994.

P. Mercier, D. Chessel, and S. Dolédec. Complete cor-
respondence analysis of an ecological profile data
table: a central ordination method. Acta OEcolog-
ica, 13:25–44, 1992.

C. Montaña and P. Greig-Smith. Correspondence
analysis of species by environmental variable ma-
trices. Journal of Vegetation Science, 1:453–460, 1990.

S. Pavoine, J. Blondel, M. Baguette, and D. Chessel.
A new technique for ordering asymmetrical three-
dimensional data sets in ecology. Ecology, 88:512–
523, 2007.

C. Rao. The use and interpretation of principal com-
ponent analysis in applied research. Sankhya A, 26:
329–359, 1964.

M. Simier, L. Blanc, F. Pellegrin, and D. Nandris.
Approche simultanée de K couples de tableaux:
application à l’étude des relations pathologie
végétale-environment. Revue de Statistique Ap-
pliquée, 47:31–46, 1999.

C. Ter Braak. Canonical correspondence analysis : a
new eigenvector technique for multivariate direct
gradient analysis. Ecology, 67:1167–1179, 1986.

J. Thioulouse, M. Simier, and D. Chessel. Simulta-
neous analysis of a sequence of pairs of ecological
tables with the STATICO method. Ecology, 85:272–
283, 2004.

L. . Tucker. An inter-battery method of factor analy-
sis. Psychometrika, 23:111–136, 1958.

L. Tucker. Some mathemetical notes on three-mode
factor analysis. Psychometrika, 31:279–311, 1966.

A. van den Wollenberg. Redundancy analysis, an al-
ternative for canonical analysis. Psychometrika, 42
(2):207–219, 1977.

J. Verneaux. Cours d’eau de Franche-Comté (Massif
du Jura). Recherches écologiques sur le réseau hydro-
graphique du Doubs. Essai de biotypologie. Thèse de
doctorat, Université de Besançon, Besançon, 1973.

Stéphane Dray, Anne-Béatrice Dufour, Daniel Chessel
Laboratoire de Biométrie et
Biologie Evolutive (UMR 5558) ; CNRS
Université de Lyon ; université Lyon 1
43, Boulevard du 11 Novembre 1918
69622 Villeurbanne Cedex, France
dray@biomserv.univ-lyon1.fr
dufour@biomserv.univ-lyon1.fr
chessel@biomserv.univ-lyon1.fr

R News ISSN 1609-3631

mailto:dray@biomserv.univ-lyon1.fr
mailto:dufour@biomserv.univ-lyon1.fr
mailto:chessel@biomserv.univ-lyon1.fr


Vol. 7/2, October 2007 53

Review of “The R Book”
Michael J. Crawley, Wiley, 2007

by Friedrich Leisch

The back cover of this physically impressive 1000-
page volume advertises it as “. . . the first comprehem-
sive reference manual for the R language. . . ” which
“. . . introduces all the statistical models covered by R. . . ”.
Considering (a) that the R Core Team considers its
own language manual (R Development Core Team,
2007b) a draft, and only the source code the ulti-
mate reference in more cases than we like, and (b) the
multitude of models implemented by R packages on
CRAN or Bioconductor, I thought I would be in for
an interesting read.

The book has 27 chapters. Chapters 1–8 give an
introduction to R, starting where to obtain and how
to install the software, describing the language, data
input and data manipulation, graphics, tables, math-
ematical calculations, and classical statistical tests.
Chapters 9–20 on statistical modelling form the main
part of the book with a detailed coverage of the lin-
ear regression model and its extensions like GLMs,
GAMs, mixed effects and non-linear least squares.
Chapters 20–27 show “other” topics like trees, time
series, multivariate and spatial statistics, survival
analysis, using R for simulation models and low-
level graphics commands.

The preface states that the book is “aimed at be-
ginners and intermediate users” and can be used “as a
text . . . as well as a reference manual”. I find that the
book in its present form is not optimal for either pur-
pose. The first section on “getting started” has a few
minor problems, like using many functions without
quoted character arguments. In some cases this is
a matter of style (like library(foo) or help(foo)),
but some instances simply do not work (find(foo),
apropos(foo)). Packages are often called libraries
(which is a different thing), input lines can be longer
than 128 characters (the current limit is 8192), and
recommending MS Word as a source code editor is
at least debatable even for Windows users. I per-
sonally find the R code throughout the book hard
to read: it is typeset in a proportional font, uses no
spaces around the assignment operator <-, no line
indentation for nested code blocks, and path names
sometimes contain erroneous spaces, especially after
backslashes.

The chapter on “essentials of the R language”
gives an introduction to the language and many non-
statistical functions like string processing and reg-
ular expressions. What I found very confusing is
the lack of clear structure. The book uses only one
level of numbering (chapters), and this chapter is 100
pages long. E.g., on page 47 there are two headings:
“The match function” and “Writing functions in R”.

Both seem to have the same font size and hence are
on equal level. However, as is to be expected given
the two topics, the section on the match function is
2 paragraphs long, how to write functions takes the
next 20 pages, with many intermezzos and headings
in two different sizes. The author also jumps around
a lot, many concepts are discussed or introduced as a
side note for a different theme, and it is often unclear
where examples end. E.g., how formal and actual
arguments are matched in a funcion call is the first
paragraph in the section on “Saving data to disc”. All
of this will be confusing for beginners and makes it
hard to use the book as a reference manual.

In the chapter on mathematics a dozen pages is
used on introducing the OLS estimate (typo in sev-
eral equations: β̂ = X′X − 1X′y), including a step-
wise implementation of (the correct version of) this
formula. Although the next page in the book starts
with solving linear equations via solve(), it is not
even mentioned that it is numerically not the best
idea to compute regression coefficients using the for-
mula above.

The quality of the book increases considerably in
the chapters on statistical modelling. A minor draw-
back is that it sometimes gives the impression that
linear models are the only ones available, even dis-
criminant analysis is not considered a model, be-
cause response variables cannot be multi-level cate-
gorical according to the cookbook recipe on page 324.
However, there is a nice general introduction to sta-
tistical modelling and model selection, and linear
modelling is covered in depth with many examples.

Once the author leaves the territory of linear
models (and their extensions), quality decreases
again. The chapter on trees uses package tree, al-
though even the author of tree recommends using
package rpart (Venables and Ripley, 2002, p. 266).
The chapter on multivariate statistics basically rec-
ommends not doing multivariate statistics at all, be-
cause one is too likely to shoot oneself into the foot.

In summary, the book fails to meet the high ex-
pectations that the title and cover texts raise. In
this review I could list only a selection of problems
I found, and of course there are good things too, like
the detailed explanation on how to enter data into a
spreadsheet to form a proper data frame. The book is
definitely not a reference manual for the R system or
R language, but a book on applied linear modelling
with (many pages of) lower-quality additional ma-
terial to give the impression of universal coverage.
There are better introductionary books for beginners,
and Venables and Ripley (2002) is still “the R book”
when it comes to a reference text for applied statis-
tics.

A (symptomatic) end note: The author gives de-
tailed credit to the R core team and wider R com-
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munity in the acknowledgements (thanks!). On
page one he recommends the citation() function
to users to give credit to developers (yes!), however
he seems not to have used the function too often, be-
cause R Development Core Team (2007a,b) and many
others are missing from the references, which cover
only 4 of 1000 pages.
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Changes in R 2.6.0
by the R Core Team

User-visible changes

• integrate(), nlm(), nlminb(), optim(),
optimize() and uniroot() now have ...
much earlier in their argument list. This re-
duces the chances of unintentional partial
matching but means that the later arguments
must be named in full.

• The default type for nchar() is now "chars".
This is almost always what was intended, and
differs from the previous default only for non-
ASCII strings in a MBCS locale. There is a
new argument allowNA, and the default be-
haviour is now to throw an error on an invalid
multibyte string if type = "chars" or type =
"width".

• Connections will be closed if there is no R ob-
ject referring to them. A warning is issued if
this is done, either at garbage collection or if all
the connection slots are in use.

New features

• abs(), sign(), sqrt(), floor(), ceiling(),
exp() and the gamma, trig and hyperbolic trig
functions now only accept one argument even
when dispatching to a Math group method
(which may accept more than one argument for
other group members).

• abbreviate() gains a method argument with
a new option "both.sides" which can make
shorter abbreviations.

• aggregate.data.frame() no longer changes
the group variables into factors, and leaves
alone the levels of those which are factors. (In-
ter alia grants the wish of PR#9666.)

• The default max.names in all.names() and
all.vars() is now -1 which means unlimited.
This fixes PR#9873.

• as.vector() and the default methods of
as.character(), as.complex(), as.double(),
as.expression(), as.integer(), as.logical()
and as.raw() no longer duplicate in most
cases where the object is unchanged. (Beware:
some code has been written that invalidly as-
sumes that they do duplicate, often when using
.C/.Fortran(DUP = FALSE).)

• as.complex(), as.double(), as.integer(),
as.logical() and as.raw() are now prim-
itive and internally generic for efficiency.
They no longer dispatch on S3 methods for
as.vector() (which was never documented).
as.real() and as.numeric() remain as alter-
native names for as.double().

expm1(), log(), log1p(), log2(), log10(),
gamma(), lgamma(), digamma() and
trigamma() are now primitive. (Note that
logb() is not.)

The Math2 and Summary groups (round, signif,
all, any, max, min, sum, prod, range) are now
primitive.

See under Section “methods Package” below
for some consequences for S4 methods.

• apropos() now sorts by name and not by posi-
tion on the search path.
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• attr() gains an exact = TRUE argument to
disable partial matching.

• bxp() now allows xlim to be specified.
(PR#9754)

• C(f, SAS) now works in the same way as C(f,
treatment), etc.

• chol() is now generic.

• dev2bitmap() has a new option to go via PDF
and so allow semi-transparent colours to be
used.

• dev.interactive() regards devices with the
displaylist enabled as interactive, and packages
can register the names of their devices as inter-
active via deviceIsInteractive().

• download.packages() and
available.packages() (and functions which
use them) now support in repos or contriburl
either ‘file:’ plus a general path (includ-
ing drives on a UNC path on Windows) or a
‘file:///’ URL in the same way as url().

• dQuote() and sQuote() are more flexible,
with rendering controlled by the new option
useFancyQuotes. This includes the ability
to have TEX-style rendering and directional
quotes (the so-called “smart quotes”) on Win-
dows. The default is to use directional quotes
in UTF-8 locales (as before) and in the Rgui con-
sole on Windows (new).

• duplicated() and unique() and their meth-
ods in base gain an additional argument
fromLast.

• fifo() no longer has a default description ar-
gument.

fifo("") is now implemented, and works in
the same way as file("").

• file.edit() and file.show() now tilde-
expand file paths on all interfaces (they used
to on some and not others).

• The find() argument is now named numeric
and not numeric.: the latter was needed
to avoid warnings about name clashes many
years ago, but partial matching was used.

• stats:::.getXlevels() confines attention to
factors since some users expected R to treat
unclass(a_factor) as a numeric vector.

• grep(), strsplit() and friends now warn if
incompatible sets of options are used, instead
of silently using the documented priority.

• gsub()/sub() with perl = TRUE now pre-
serves attributes from the argument x on the
result.

• is.finite() and is.infinite() are now S3
and S4 generic.

• jpeg(), png(), bmp() (Windows), dev2bitmap()
and bitmap() have a new argument units to
specify the units of width and height.

• levels() is now generic (levels<-() has been
for a long time).

• Loading serialized raw objects with load() is
now considerably faster.

• New primitive nzchar() as a faster alternative
to nchar(x) > 0 (and avoids having to convert
to wide chars in a MBCS locale and hence con-
sider validity).

• The way old.packages() and hence
update.packages() handle packages with dif-
ferent versions in multiple package repositories
has been changed. The first package encoun-
tered was selected, now the one with highest
version number.

• optim(method = "L-BFGS-B") now accepts
zero-length parameters, like the other methods.
Also, method = "SANN" no longer attempts to
optimize in this case.

• New options showWarnCalls and
showErrorCalls to give a concise traceback on
warnings and errors. showErrorCalls = TRUE
is the default for non-interactive sessions. Op-
tion showNCalls controls how abbreviated the
call sequence is.

• New options warnPartialMatchDollar,
warnPartialMatchArgs and
warnPartialMatchAttr to help detect the un-
intended use of partial matching in $, argu-
ment matching and attr() respectively.

• A device named as a character string in
options(device =) is now looked for in the
grDevices name space if it is not visible from
the global environment.

• pmatch(x, y, duplicates.ok = TRUE) now
uses hashing and so is much faster for large x
and y when most matches are exact.

• qr() is now generic.

• It is now a warning to have an non-integer ob-
ject for .Random.seed: this indicates a user had
been playing with it, and it has always been
documented that users should only save and
restore it.

• New higher-order functions Reduce(),
Filter() and Map().
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• regexpr() and gregexpr() gain an
ignore.case argument for consistency with
grep(). (This does change the positional
matching of arguments, but no instances of
positional matching beyond the second were
found.)

• relist() utility, an S3 generic with several
methods, providing an inverse for unlist();
thanks to a code proposal from Andrew
Clausen.

• require() now returns invisibly.

• The interface to reshape() has been revised,
allowing some simplified forms that did not
work before, and somewhat improved error
handling. A new argument sep has been intro-
duced to replace simple usages of split (the
old features are retained).

• rmultinom() uses a high-precision accumula-
tor where available, and so is more likely to
give the same result on different platforms (al-
though it is still possible to get different results,
and the result may differ from previous ver-
sions of R).

• row() and col() now work on matrix-like ob-
jects such as data frames, not just matrices.

• Rprof() allows smaller values of interval on
machines that support it: for example modern
Linux systems support interval = 0.001.

• sample() now requires its first argument x to
be numeric (in the sense of is.numeric()) as
well as of length 1 and ≥ 1 before it is regarded
as shorthand for 1:x.

• sessionInfo() now provides details about
package name spaces that are loaded but not
attached. The output of sessionInfo() has
been improved to make it easier to read when
it is inadvertently wrapped after being pasted
into an email message.

• setRepositories() has a new argument ind
to allow selections to be made programmati-
cally.

• showMethods() has a “smart” default for
inherited such that showMethods(genfun,
incl = TRUE) becomes a useful short cut.

• sprintf() no longer has a output string length
limit.

• storage.mode<-() is now primitive, and hence
makes fewer copies of an object (none if the
mode is unchanged). It is a little less general
than mode<-(), which remains available. (See
also the entry under Deprecated & defunct be-
low.)

• sweep() gains an argument check.margin =
TRUE which warns about mismatched dimen-
sions.

• The mathematical annotation facility
(plotmath()) now recognises a symbol() func-
tion which forces the font to be a symbol
font. This allows access to all characters in
the Adobe Symbol encoding within plotmath
expressions.

• For OSes that cannot unset environment vari-
ables, Sys.unsetenv() sets the value to "",
with a warning.

• New function Sys.which(), an interface to
which on Unix-alikes and an emulation on Win-
dows.

• On Unix-alikes, system(, intern = TRUE) re-
ports on very long lines that may be truncated,
giving the line number of the content being
read.

• termplot() has a default for ask that uses
dev.interactive().

It allows ylim to be set, or computed to cover
all the plots to be made (the new default) or
computed for each plot (the previous default).

• uniroot(f, *) is slightly faster for non-
trivial f() because it computes f(lower) and
f(upper) only once, and it has new optional
arguments f.lower and f.upper by which the
caller can pass these.

• unlink() is now internal, using common
POSIX code on all platforms.

• unsplit() now works with lists of dataframes.

• The vcov() methods for classes "gls" and
"nlme" have migrated to package nlme.

• vignette() has a new argument all to choose
between showing vignettes in attached pack-
ages or in all installed packages.

• New function within(), which is like with(),
except that it returns modified versions back of
lists and data frames.

• X11(), postscript() (and hence bitmap()),
xfig(), jpeg(), png() and the Windows de-
vices win.print(), win.metafile() and bmp()
now warn (once at first use) if semi-transparent
colours are used (rather than silently treating
them as fully transparent).

• New function xspline() to provide
base graphics support of X-splines
(cf. grid.xspline()).

• New function xyTable() does the 2D gridding
“computations” used by sunflowerplot().
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• Rd conversion to HTML and CHM now makes
use of classes, which are set in the stylesheets.
Editing ‘R.css’ will change the styles used for
\env, \option, \pkg etc. (CHM styles are set at
compilation time.)

• The documented arguments of %*% have been
changed to be x and y, to match S and the im-
plicit S4 generic.

• If members of the Ops group (the arithmetic,
logical and comparison operators) and %*% are
called as functions, e.g., ‘>‘(x, y), positional
matching is always used. (It used to be the case
that positional matching was used for the de-
fault methods, but names would be matched
for S3 and S4 methods and in the case of !
the argument name differed between S3 and S4
methods.)

• Imports environments of name spaces are
named (as "imports:foo"), and so are known
e.g. to environmentName().

• Package stats4 uses lazy-loading not
SaveImage (which is now deprecated).

• Installing help for a package now parses the
‘.Rd’ file only once, rather than once for each
type.

• PCRE has been updated to version 7.2.

• bzip2 has been updated to version 1.0.4.

• gettext has been updated to version 0.16.1.

• There is now a global CHARSXP cache,
R_StringHash. CHARSXPs are no longer du-
plicated and must not be modified in place.
Developers should strive to only use mkChar
(and mkString) for creating new CHARSXPs and
avoid use of allocString. A new macro,
CallocCharBuf, can be used to obtain a tem-
porary char buffer for manipulating character
data. This patch was written by Seth Falcon.

• The internal equivalents of as.complex(),
as.double(), as.integer() and as.logical()
used to handle length - 1 arguments now ac-
cept character strings (rather than report that
this is “unimplemented”).

• Lazy-loading a package is now substantially
more efficient (in memory saved and load
time).

• Various performance improvements lead to a
45% reduction in the startup time without
methods (and one-sixth with – methods now
takes 75% of the startup time of a default ses-
sion).

• The [[ subsetting operator now has an argu-
ment exact that allows programmers to dis-
able partial matching (which will in due course
become the default). The default value is exact
= NA which causes a warning to be issued
when partial matching occurs. When exact =
TRUE, no partial matching will be performed.
When exact = FALSE, partial matching can oc-
cur and no warning will be issued. This patch
was written by Seth Falcon.

• Many of the C-level warning/error messages
(e.g., from subscripting) have been re-worked
to give more detailed information on either the
location or the cause of the problem.

• The S3 and S4 Math groups have been
harmonized. Functions log1p(), expm1(),
log10() and log2() are members of the S3
group, and sign(), log1p(), expm1(), log2(),
cummax(), cummin(), digamma(), trigamma()
and trunk() are members of the S4 group.
gammaCody() is no longer in the S3 group. They
are now all primitive.

• The initialization of the random-number
stream makes use of the sub-second part of
the current time where available.

Initialization of the 1997 Knuth TAOCP gener-
ator is now done in R code, avoiding some C
code whose licence status has been questioned.

• The reporting of syntax errors has been made
more user-friendly.

methods Package

• Packages using methods have to have been in-
stalled in R 2.4.0 or later (when various internal
representations were changed).

• Internally generic primitives no longer dis-
patch S4 methods on S3 objects.

• load() and restoring a workspace attempt to
detect and warn on the loading of pre-2.4.0 S4
objects.

• Making functions primitive changes the se-
mantics of S4 dispatch: these no longer dis-
patch on classes based on types but do dispatch
whenever the function in the base name space
is called.

This applies to as.complex(), as.integer(),
as.logical(), as.numeric(), as.raw(),
expm1(), log(), log1p(), log2(), log10(),
gamma(), lgamma(), digamma() and
trigamma(), as well as the Math2 and Summary
groups.

R News ISSN 1609-3631



Vol. 7/2, October 2007 58

Because all members of the group generics are
now primitive, they are all S4 generic and set-
ting an S4 group generic does at last apply to
all members and not just those already made
S4 generic.

as.double() and as.real() are identical to
as.numeric(), and now remain so even if
S4 methods are set on any of them. Since
as.numeric is the traditional name used in S4,
currently methods must be exported from a
‘NAMESPACE’ for as.numeric only.

• The S4 generic for ! has been changed to have
signature (x) (was (e1)) to match the docu-
mentation and the S3 generic. setMethod()
will fix up methods defined for (e1), with a
warning.

• The "structure" S4 class now has methods
that implement the concept of structures as
described in the Blue Book—that element-by-
element functions and operators leave struc-
ture intact unless they change the length. The
informal behavior of R for vectors with at-
tributes was inconsistent.

• The implicitGeneric() function and relatives
have been added to specify how a function in
a package should look when methods are de-
fined for it. This will be used to ensure that
generic versions of functions in R core are con-
sistent. See ?implicitGeneric.

• Error messages generated by some of the func-
tions in the methods package provide the name
of the generic to provide more contextual infor-
mation.

• It is now possible to use
setGeneric(useAsDefault = FALSE) to de-
fine a new generic with the name of a prim-
itive function (but having no connection with
the primitive).

Deprecated & defunct

• $ on an atomic vector now gives a warning that
it is “invalid”. It remains deprecated, but may
be removed in R ≥ 2.7.0.

• storage.mode(x) <- "real" and
storage.mode(x) <- "single" are defunct:
use instead storage.mode(x) <- "double"
and mode(x) <- "single".

• In package installation, ‘SaveImage: yes’ is
deprecated in favour of ‘LazyLoad: yes’.

• seemsS4Object (methods package) is depre-
cated in favour of isS4().

• It is planned that [[exact = TRUE]] will be-
come the default in R 2.7.0.

Utilities

• checkS3methods() (invoked by R CMD check)
now checks the arguments of methods for
primitive members of the S3 group generics.

• R CMD check now does a recursive copy on the
‘tests’ directory.

• R CMD check now warns on non-ASCII ‘.Rd’
files without an \encoding field, rather than
just on ones that are definitely not from an
ISO-8859 encoding. This agrees with the long-
standing stipulation in “Writing R Extensions”,
and catches some packages with UTF-8 man
pages.

• R CMD check now warns on DESCRIPTION
files with a non-portable Encoding field, or
with non-ASCII data and no Encoding field.

• R CMD check now loads all the Suggests and
Enhances dependencies to reduce warnings
about non-visible objects, and also emulates
standard functions (such as shell()) on alter-
native R platforms.

• R CMD check now (by default) attempts to latex
the vignettes rather than just weave and tangle
them: this will give a NOTE if there are latex
errors.

• R CMD check computations no longer ignore
Rd \usage entries for functions for extracting
or replacing parts of an object, so S3 methods
should use the appropriate \method{} markup.

• R CMD check now checks for CR (as well
as CRLF) line endings in C/C++/Fortran
source files, and for non-LF line endings in
‘Makefile[.in]’ and ‘Makevars[.in]’ in the package
‘src’ directory. R CMD build will correct non-LF
line endings in source files and in the make files
mentioned.

• Rdconv now warns about unmatched braces
rather than silently omitting sections con-
taining them. (Suggestion by Bill Dunlap,
PR#9649)

Rdconv now renders (rather than ig-
nores) \var{} inside \code{} markup in
LATEXconversion.

R CMD Rdconv gains a ‘--encoding’ argument
to set the default encoding for conversions.

• The list of CRAN mirrors now has a new (man-
ually maintained) column "OK" which flags
mirrors that seem to be OK, only those are used
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by chooseCRANmirror(). The now exported
function getCRANmirrors() can be used to get
all known mirrors or only the ones that are OK.

• R CMD SHLIB gains arguments ‘--clean’ and
‘--preclean’ to clean up intermediate files af-
ter and before building.

• R CMD config now knows about FC and
FCFLAGS (used for F9x compilation).

• R CMD Rdconv now does a better job of render-
ing quotes in titles in HTML, and \sQuote and
\dQuote into text on Windows.

C-level facilities

• New utility function alloc3DArray similar to
allocMatrix.

• The entry point R_seemsS4Object in
‘Rinternals.h’ has not been needed since R 2.4.0
and has been removed. Use IS_S4_OBJECT in-
stead.

• Applications embedding R can use
R_getEmbeddingDllInfo() to obtain DllInfo
for registering symbols present in the applica-
tion itself.

• The instructions for making and using stan-
dalone libRmath have been moved to the R In-
stallation and Administration manual.

• CHAR() now returns (const char *) since
CHARSXPs should no longer be modified in
place. This change allows compilers to warn
or error about improper modification. Thanks
to Herve Pages for the suggestion.

• acopy_string is a (provisional) new helper
function that copies character data and returns
a pointer to memory allocated using R_alloc.
This can be used to create a copy of a string
stored in a CHARSXP before passing the data on
to a function that modifies its arguments.

• asLogical, asInteger, asReal and asComplex
now accept STRSXP and CHARSXP arguments,
and asChar accepts CHARSXP.

• New R_GE_str2col() exported via
‘R ext/GraphicsEngine.h’ for external device de-
velopers.

• doKeybd and doMouseevent are now exported
in ‘GraphicsDevice.h’.

• R_alloc now has first argument of type size_t
to support 64-bit platforms (e.g., Win64) with a
32-bit long type.

• The type of the last two arguments of
getMatrixDimnames (non-API but mentioned
in ‘R-exts.texi’ and in ‘Rinternals.h’) has been
changed to const char ** (from char **).

• R_FINITE now always resolves to the function
call R_finite in packages (rather than some-
times substituting isfinite). This avoids some
issues where R headers are called from C++
code using features tested on the C compiler.

• The advice to include R headers from C++ in-
side extern "C" has been changed. It is nowa-
days better not to wrap the headers, as they
include other headers which on some OSes
should not be wrapped.

• ‘Rinternals.h’ no longer includes a substantial
set of C headers. All but ‘ctype.h’ and ‘errno.h’
are included by ‘R.h’ which is supposed to be
used before ‘Rinternals.h’.

• Including C system headers can be avoided
by defining NO_C_HEADERS before including R
headers. This is intended to be used from C++
code, and you will need to include C++ equiv-
alents such as <cmath> before the R headers.

Installation

• The test-Lapack test is now part of make
check.

• The stat system call is now required, along
with opendir (which had long been used but
not tested for). (make check would have failed
in earlier versions without these calls.)

• evince is now considered as a possible PDF
viewer.

• make install-strip now also strips the DLLs
in the standard packages.

• Perl 5.8.0 (released in July 2002) or later is now
required. (R 2.4.0 and later have in fact re-
quired 5.6.1 or later.)

• The C function finite is no longer used:
we expect a C99 compiler which will have
isfinite. (If that is missing, we test separately
for NaN, Inf and -Inf.)

• A script/executable texi2dvi is now required
on Unix-alikes: it is part of the texinfo distribu-
tion.

• Files ‘texinfo.tex’ and ‘txi-en.tex’ are no longer
supplied in doc/manual (as the latest versions
have an incompatible licence). You will need
to ensure that your texinfo and/or TeX instal-
lations supply them.
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• wcstod is now required for MBCS support.

• There are some experimental provisions for
building on Cygwin.

Package Installation

• The encoding declared in the ‘DESCRIPTION’
file is now used as the default encoding for
‘.Rd’ files.

• A standard for specifying package license in-
formation in the ‘DESCRIPTION’ License field
was introduced, see “Writing R Extensions”.
In addition, files ‘LICENSE’ or ‘LICENCE’ in a
package top-level source directory are now in-
stalled (so putting copies into the ‘inst’ subdi-
rectory is no longer necessary).

• install.packages() on a Unix-alike now up-
dates ‘doc/html/packages.html’ only if packages
are installed to ‘.Library’ (by that exact name).

• R CMD INSTALL with option ‘--clean’ now
runs R CMD SHLIB with option ‘--clean’ to do
the clean up (unless there is a ‘src/Makefile’),
and this will remove $(OBJECTS) (which might
have been redefined in ‘Makevars’).

R CMD INSTALL with ‘--preclean’ cleans up
the sources after a previous installation (as if
that had used ‘--clean’) before attempting to
install.

R CMD INSTALL will now run R CMD SHLIB in
the ‘src’ directory if ‘src/Makevars’ is present,
even if there are no source files with known ex-
tensions.

• If there is a file ‘src/Makefile’, ‘src/Makevars’
is now ignored (it could be included
by ‘src/Makefile’ if desired), and it is
preceded by ‘etc/Makeconf’ rather than
‘R HOME/share/make/shlib.mk’. Thus the
makefiles read are ‘R HOME/etc/Makeconf’,
‘src/Makefile’ in the package and then any per-
sonal ‘Makevars’ files.

• R CMD SHLIB used to support the use of OBJS
in ‘Makevars’, but this was changed to OBJECTS
in 2001. The undocumented alternative of OBJS
has finally been removed.

• R CMD check no longer issues a warning about
no data sets being present if a lazyload db
is found (as determined by the presence of
‘Rdata.rdb’, ‘Rdata.rds’, and ‘Rdata.rdx’ in the
‘data’ subdirectory).

Bug fixes

• charmatch() and pmatch() used to accept non-
integer values for nomatch even though the re-
turn value was documented to be integer. Now
nomatch is coerced to integer (rather than the
result being coerced to the type of nomatch).

• match.call() no longer “works” outside a
function unless definition is supplied. (Un-
der some circumstances it used to “work”,
matching itself.)

• The formula methods of boxplot, cdplot,
pairs and spineplot now attach stats so that
model.frame() is visible where they evaluate
it.

• Date-time objects are no longer regarded as nu-
meric by is.numeric().

• methods("Math") did not work if methods was
not attached.

• readChar() read an extra empty item (or more
than one) beyond the end of the source; in some
conditions it would terminate early when read-
ing an item of length 0.

• Added a promise evaluation stack so inter-
rupted promise evaluations can be restarted.

• R.version[1:10] now nicely prints.

• In the methods package, prototypes are now
inherited for the .Data “slot”; i.e., for classes
that contain one of the basic data types.

• data_frame[[i, j]] now works if i is charac-
ter.

• write.dcf() no longer writes NA fields
(PR#9796), and works correctly on empty de-
scriptions.

• pbeta(x, log.p = TRUE) now has improved
accuracy in many cases, and so have func-
tions depending on it such as pt(), pf() and
pbinom().

• mle() had problems with the L-BFGS-B in
the no-parameter case and consequentially also
when profiling 1-parameter models (fix thanks
to Ben Bolker).

• Two bugs fixed in methods that in involve the
... argument in the generic function: previ-
ously failed to catch methods that just dropped
the ...; and use of callGeneric() with no
arguments failed in some circumstances when
... was a formal argument.

• sequence() now behaves more reasonably, al-
though not back-compatibly for zero or nega-
tive input.
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• nls() now allows more peculiar but reason-
able ways of being called, e.g., with data
= list(uneven_lengths) or a model without
variables.

• match.arg() was not behaving as documented
when several.ok = TRUE (PR#9859), gave
spurious warnings when arg had the wrong
length and was incorrectly documented (exact
matches are returned even when there is more
than one partial match).

• The data.frame method for split<-() was
broken.

• The test for -D__NO_MATH_INLINES was badly
broken and returned true on all non-glibc plat-
forms and false on all glibc ones (whether they
were broken or not).

• LF was missing after the last prompt when
‘--quiet’ was used without ‘--slave’. Use
‘--slave’ when no final LF is desired.

• Fixed bug in initialisation code in grid pack-
age for determining the boundaries of shapes.
Problem reported by Hadley Wickham; symp-
tom was error message: ‘Polygon edge not
found’.

• str() is no longer slow for large POSIXct ob-
jects. Its output is also slightly more compact
for such objects; implementation via new op-
tional argument give.head.

• strsplit(*, fixed = TRUE), potentially
iconv() and internal string formatting is
now faster for large strings, thanks to report
PR#9902 by John Brzustowski.

• de.restore() gave a spurious warning for ma-
trices (Ben Bolker)

• plot(fn, xlim = c(a, b)) would not set
from and to properly when plotting a func-
tion. The argument lists to curve() and
plot.function() have been modified slightly
as part of the fix.

• julian() was documented to work with
POSIXt origins, but did not work with POSIXlt
ones. (PR#9908)

• Dataset HairEyeColor has been corrected to
agree with Friendly (2000): the change involves
the breakdown of the Brown hair / Brown eye
cell by Sex, and only totals over Sex are given
in the original source.

• Trailing spaces are now consistently stripped
from \alias{} entries in ‘.Rd’ files, and this is
now documented. (PR#9915)

• .find.packages(), packageDescription()
and sessionInfo() assumed that attached en-
vironments named "package:foo" were pack-
age environments, although misguided users
could use such a name in attach().

• spline() and splinefun() with method =
"periodic" could return incorrect results
when length(x) was 2 or 3.

• getS3method() could fail if the method name
contained a regexp metacharacter such as "+".

• help(a_character_vector) now uses the name
and not the value of the vector unless it has
length exactly one, so e.g. help(letters) now
gives help on letters. (Related to PR#9927)

• Ranges in chartr() now work better in CJK lo-
cales, thanks to Ei-ji Nakama.

Changes on CRAN
by Kurt Hornik

New contributed packages

ADaCGH Analysis and plotting of array CGH data.
Allows usage of Circular Binary Segmentation,
wavelet-based smoothing, ACE method (CGH
Explorer), HMM, BioHMM, GLAD, CGHseg,
and Price’s modification of Smith & Water-
man’s algorithm. Most computations are par-
allelized. Figures are imagemaps with links
to IDClight (http://idclight.bioinfo.cnio.
es). By Ramon Diaz-Uriarte and Oscar M.
Rueda. Wavelet-based aCGH smoothing code

from Li Hsu and Douglas Grove, imagemap
code from Barry Rowlingson.

AIS Tools to look at the data (“Ad Inidicia Spec-
tata”). By Micah Altman.

AcceptanceSampling Creation and evaluation of
Acceptance Sampling Plans. Plans can be sin-
gle, double or multiple sampling plans. By An-
dreas Kiermeier.

Amelia Amelia II: A Program for Missing Data.
Amelia II “multiply imputes” missing data in
a single cross-section (such as a survey), from
a time series (like variables collected for each
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year in a country), or from a time-series-cross-
sectional data set (such as collected by years
for each of several countries). Amelia II im-
plements a bootstrapping-based algorithm that
gives essentially the same answers as the stan-
dard IP or EMis approaches, is usually con-
siderably faster than existing approaches and
can handle many more variables. The program
also generalizes existing approaches by allow-
ing for trends in time series across observations
within a cross-sectional unit, as well as priors
that allow experts to incorporate beliefs they
have about the values of missing cells in their
data. The program works from the R command
line or via a graphical user interface that does
not require users to know R. By James Honaker,
Gary King, and Matthew Blackwell.

BiodiversityR A GUI (via Rcmdr) and some util-
ity functions (often based on the vegan) for
statistical analysis of biodiversity and ecolog-
ical communities, including species accumu-
lation curves, diversity indices, Renyi pro-
files, GLMs for analysis of species abundance
and presence-absence, distance matrices, Man-
tel tests, and cluster, constrained and un-
constrained ordination analysis. By Roeland
Kindt.

CORREP Multivariate correlation estimator and
statistical inference procedures. By Dongxiao
Zhu and Youjuan Li.

CPGchron Create radiocarbon-dated depth
chronologies, following the work of Parnell
and Haslett (2007, submitted to JRSSC). By An-
drew Parnell.

Cairo Provides a Cairo graphics device that can
be use to create high-quality vector (PDF,
PostScript and SVG) and bitmap output (PNG,
JPEG, TIFF), and high-quality rendering in dis-
plays (X11 and Win32). Since it uses the same
back-end for all output, copying across formats
is WYSIWYG. Files are created without the de-
pendence on X11 or other external programs.
This device supports alpha channel (semi-
transparent drawing) and resulting images can
contain transparent and semi-transparent re-
gions. It is ideal for use in server environments
(file output) and as a replacement for other de-
vices that don’t have Cairo’s capabilities such
as alpha support or anti-aliasing. Backends
are modular such that any subset of backends
is supported. By Simon Urbanek and Jeffrey
Horner.

CarbonEL Carbon Event Loop: hooks a Carbon
event loop handler into R. This is useful for en-
abling UI from a console R (such as using the

Quartz device from Terminal or ESS). By Simon
Urbanek.

DAAGbio Data sets and functions useful for the
display of microarray and for demonstrations
with microarray data. By John Maindonald.

Defaults Set, get, and import global function de-
faults. By Jeffrey A. Ryan.

Devore7 Data sets and sample analyses from Jay L.
Devore (2008), “Probability and Statistics for
Engineering and the Sciences (7th ed)”, Thom-
son. Original by Jay L. Devore, modifications
by Douglas Bates, modifications for the 7th edi-
tion by John Verzani.

G1DBN Perform Dynamic Bayesian Network infer-
ence using 1st order conditional dependencies.
By Sophie Lebre.

GSA Gene Set Analysis. By Brad Efron and R. Tib-
shirani.

GSM Gamma Shape Mixture. Implements a
Bayesian approach for estimation of a mixture
of gamma distributions in which the mixing
occurs over the shape parameter. This fam-
ily provides a flexible and novel approach for
modeling heavy-tailed distributions, is compu-
tationally efficient, and only requires to specify
a prior distribution for a single parameter. By
Sergio Venturini.

GeneF Implements several generalized F-statistics,
including ones based on the flexible iso-
tonic/monotonic regression or order restricted
hypothesis testing. By Yinglei Lai.

HFWutils Functions for Excel connections, garbage
collection, string matching, and passing by ref-
erence. By Felix Wittmann.

ICEinfer Incremental Cost-Effectiveness (ICE) Sta-
tistical Inference. Given two unbiased sam-
ples of patient level data on cost and effec-
tiveness for a pair of treatments, make head-
to-head treatment comparisons by (i) generat-
ing the bivariate bootstrap resampling distri-
bution of ICE uncertainty for a specified value
of the shadow price of health, λ, (ii) form
the wedge-shaped ICE confidence region with
specified confidence fraction within [0.50, 0.99]
that is equivariant with respect to changes in
λ, (iii) color the bootstrap outcomes within the
above confidence wedge with economic pref-
erences from an ICE map with specified values
of λ, beta and gamma parameters, (iv) display
VAGR and ALICE acceptability curves, and
(v) display indifference (iso-preference) curves
from an ICE map with specified values of λ, β

and γ or η parameters. By Bob Obenchain.
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ICS ICS/ICA computation based on two scatter ma-
trices. Implements Oja et al.’s method of two
different scatter matrices to obtain an invari-
ant coordinate system or independent compo-
nents, depending on the underlying assump-
tions. By Klaus Nordhausen, Hannu Oja, and
Dave Tyler.

ICSNP Tools for multivariate nonparametrics, as
location tests based on marginal ranks, spa-
tial median and spatial signs computation,
Hotelling’s T-test, estimates of shape. By Klaus
Nordhausen, Seija Sirkia, Hannu Oja, and Dave
Tyler.

LLAhclust Hierarchical clustering of variables or
objects based on the likelihood linkage analy-
sis method. The likelihood linkage analysis is
a general agglomerative hierarchical clustering
method developed in France by Lerman in a
long series of research articles and books. Ini-
tially proposed in the framework of variable
clustering, it has been progressively extended
to allow the clustering of very general object
descriptions. The approach mainly consists in
replacing the value of the estimated similar-
ity coefficient by the probability of finding a
lower value under the hypothesis of “absence
of link”. Package LLAhclust contains routines
for computing various types of probabilistic
similarity coefficients between variables or ob-
ject descriptions. Once the similarity values be-
tween variables/objects are computed, a hier-
archical clustering can be performed using sev-
eral probabilistic and non-probabilistic aggre-
gation criteria, and indices measuring the qual-
ity of the partitions compatible with the result-
ing hierarchy can be computed. By Ivan Ko-
jadinovic, Israël-César Lerman, and Philippe
Peter.

LLN Learning with Latent Networks. A new frame-
work in which graph-structured data are used
to train a classifier in a latent space, and then
classify new nodes. During the learning phase,
a latent representation of the network is first
learned and a supervised classifier is then built
in the learned latent space. In order to clas-
sify new nodes, the positions of these nodes
in the learned latent space are estimated using
the existing links between the new nodes and
the learning set nodes. It is then possible to ap-
ply the supervised classifier to assign each new
node to one of the classes. By Charles Bouvey-
ron & Hugh Chipman.

LearnBayes Functions helpful in learning the basic
tenets of Bayesian statistical inference. Con-
tains functions for summarizing basic one and
two parameter posterior distributions and pre-
dictive distributions, MCMC algorithms for

summarizing posterior distributions defined
by the user, functions for regression models, hi-
erarchical models, Bayesian tests, and illustra-
tions of Gibbs sampling. By Jim Albert.

LogConcDEAD Computes the maximum likelihood
estimator from an i.i.d. sample of data from a
log-concave density in any number of dimen-
sions. Plots are available for 1- and 2-d data. By
Madeleine Cule, Robert Gramacy, and Richard
Samworth.

MLDS Maximum Likelihood Difference Scaling.
Difference scaling is a method for scaling per-
ceived supra-threshold differences. The pack-
age contains functions that allow the user to
design and run a difference scaling experiment,
to fit the resulting data by maximum likelihood
and test the internal validity of the estimated
scale. By Kenneth Knoblauch and Laurence T.
Maloney, based in part on C code written by
Laurence T. Maloney and J. N. Yang.

MLEcens MLE for bivariate (interval) censored
data. Contains functions to compute the non-
parametric maximum likelihood estimator for
the bivariate distribution of (X, Y), when real-
izations of (X, Y) cannot be observed directly.
More precisely, the MLE is computed based on
a set of rectangles (“observation rectangles”)
that are known to contain the unobservable re-
alizations of (X, Y). The methods can also be
used for univariate censored data, and for cen-
sored data with competing risks. The package
contains the functionality of bicreduc, which
will no longer be maintained. By Marloes
Maathuis.

MiscPsycho Miscellaneous Psychometrics: statisti-
cal analyses useful for applied psychometri-
cians. By Harold C. Doran.

ORMDR Odds ratio based multifactor-dimensionality
reduction method for detecting gene-gene in-
teractions. By Eun-Kyung Lee, Sung Gon Yi,
Yoojin Jung, and Taesung Park.

PET Simulation and reconstruction of PET images.
Implements different analytic/direct and itera-
tive reconstruction methods of Peter Toft, and
offers the possibility to simulate PET data. By
Joern Schulz, Peter Toft, Jesper James Jensen,
and Peter Philipsen.

PSAgraphics Propensity Score Analysis (PSA)
Graphics. Includes functions which test bal-
ance within strata of categorical and quantita-
tive covariates, give a representation of the esti-
mated effect size by stratum, provide a graphic
and loess based effect size estimate, and vari-
ous balance functions that provide measures of
the balance achieved via a PSA in a categorical
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covariate. By James E. Helmreich and Robert
M. Pruzek.

PerformanceAnalytics Econometric tools for per-
formance and risk analysis. Aims to aid prac-
titioners and researchers in utilizing the lat-
est research in analysis of non-normal return
streams. In general, the package is most tested
on return (rather than price) data on a monthly
scale, but most functions will work with daily
or irregular return data as well. By Peter Carl
and Brian G. Peterson.

QRMlib Code to examine Quantitative Risk Man-
agement concepts, accompanying the book
“Quantitative Risk Management: Concepts,
Techniques and Tools” by Alexander J. McNeil,
Rüdiger Frey and Paul Embrechts. S-Plus orig-
inal by Alexander McNeil; R port by Scott Ul-
man.

R.cache Fast and light-weight caching of objects.
Methods for memoization, that is, caching ar-
bitrary R objects in persistent memory. Objects
can be loaded and saved stratified on a set of
hashing objects. By Henrik Bengtsson.

R.huge Methods for accessing huge amounts of
data. Provides a class representing a matrix
where the actual data is stored in a binary for-
mat on the local file system. This way the size
limit of the data is set by the file system and not
the memory. Currently in an alpha/early-beta
version. By Henrik Bengtsson.

RBGL Interface to boost C++ graph library. Demo
of interface with full copy of all hpp defining
boost. By Vince Carey, Li Long, and R. Gentle-
man.

RDieHarder An interface to the dieharder test suite
of random number generators and tests that
was developed by Robert G. Brown, extending
earlier work by George Marsaglia and others.
By Dirk Eddelbuettel.

RLRsim Exact (Restricted) Likelihood Ratio tests for
mixed and additive models. Provides rapid
simulation-based tests for the presence of vari-
ance components/nonparametric terms with a
convenient interface for a variety of models. By
Fabian Scheipl.

ROptEst Optimally robust estimation using S4
classes and methods. By Matthias Kohl.

ROptRegTS Optimally robust estimation for
regression-type models using S4 classes and
methods. By Matthias Kohl.

RSVGTipsDevice An R SVG graphics device with
dynamic tips and hyperlinks using the w3.org
XML standard for Scalable Vector Graphics.

Supports tooltips with 1 to 3 lines and line
styles. By Tony Plate, based on RSvgDevice by
T Jake Luciani.

Rcapture Loglinear Models in Capture-Recapture
Experiments. Estimation of abundance and
other demographic parameters for closed pop-
ulations, open populations and the robust de-
sign in capture-recapture experiments using
loglinear models. By Sophie Baillargeon and
Louis-Paul Rivest.

RcmdrPlugin.TeachingDemos Provides an Rcmdr
“plug-in” based on the TeachingDemos pack-
age, and is primarily for illustrative purposes.
By John Fox.

Reliability Functions for estimating parameters in
software reliability models. Only infinite fail-
ure models are implemented so far. By Andreas
Wittmann.

RiboSort Rapid classification of (TRFLP & ARISA)
microbial community profiles, eliminating the
laborious task of manually classifying commu-
nity fingerprints in microbial studies. By au-
tomatically assigning detected fragments and
their respective relative abundances to ap-
propriate ribotypes, RiboSort saves time and
greatly simplifies the preparation of DNA fin-
gerprint data sets for statistical analysis. By
Úna Scallan & Ann-Kathrin Liliensiek.

Rmetrics Rmetrics —- Financial Engineering and
Computational Finance. Environment for
teaching “Financial Engineering and Compu-
tational Finance”. By Diethelm Wuertz and
many others.

RobLox Optimally robust influence curves in case
of normal location with unknown scale. By
Matthias Kohl.

RobRex Optimally robust influence curves in case
of linear regression with unknown scale and
standard normal distributed errors where the
regressor is random. By Matthias Kohl.

Rsac Seismic analysis tools in R. Mostly functions
to reproduce some of the Seismic Analysis
Code (SAC, http://www.llnl.gov/sac/) com-
mands in R. This includes reading standard
binary ‘.SAC’ files, plotting arrays of seismic
recordings, filtering, integration, differentia-
tion, instrument deconvolution, and rotation of
horizontal components. By Eric M. Thompson.

Runuran Interface to the UNU.RAN library for Uni-
versal Non-Uniform RANdom variate gener-
ators. By Josef Leydold and Wolfgang Hör-
mann.
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Ryacas An interface to the yacas computer al-
gebra system. By Rob Goedman, Gabor
Grothendieck, Søren Højsgaard, Ayal Pinkus.

SRPM Shared Reproducibility Package Manage-
ment. A package development and manage-
ment system for distributed reproducible re-
search. By Roger D. Peng.

SimHap A comprehensive modeling framework
for epidemiological outcomes and a multiple-
imputation approach to haplotypic analysis of
population-based data. Can perform single
SNP and multi-locus (haplotype) association
analyses for continuous Normal, binary, lon-
gitudinal and right-censored outcomes mea-
sured in population-based samples. Uses es-
timation maximization techniques for inferring
haplotypic phase in individuals, and incorpo-
rates a multiple-imputation approach to deal
with the uncertainty of imputed haplotypes in
association testing. By Pamela A. McCaskie.

SpatialNP Multivariate nonparametric methods
based on spatial signs and ranks. Contains
test and estimates of location, tests of indepen-
dence, tests of sphericity, several estimates of
shape and regression all based on spatial signs,
symmetrized signs, ranks and signed ranks. By
Seija Sirkia, Jaakko Nevalainen, Klaus Nord-
hausen, and Hannu Oja.

TIMP Problem solving environment for fitting su-
perposition models. Measurements often rep-
resent a superposition of the contributions of
distinct sub-systems resolved with respect to
many experimental variables (time, tempera-
ture, wavelength, pH, polarization, etc). TIMP
allows parametric models for such superposi-
tions to be fit and validated. The package has
been extensively applied to modeling data aris-
ing in spectroscopy experiments. By Katharine
M. Mullen and Ivo H. M. van Stokkum.

TwslmSpikeWeight Normalization of cDNA mi-
croarray data with the two-way semilinear
model(TW-SLM). It incorporates information
from control spots and data quality in the TW-
SLM to improve normalization of cDNA mi-
croarray data. Huber’s and Tukey’s bisquare
weight functions are available for robust esti-
mation of the TW-SLM. By Deli Wang and Jian
Huang.

Umacs Universal Markov chain sampler. By Jouni
Kerman.

WilcoxCV Functions to perform fast variable se-
lection based on the Wilcoxon rank sum test
in the cross-validation or Monte-Carlo cross-
validation settings, for use in microarray-

based binary classification. By Anne-Laure
Boulesteix.

YaleToolkit Tools for the graphical exploration of
complex multivariate data developed at Yale
University. By John W. Emerson and Walton
Green.

adegenet Genetic data handling for multivariate
analysis using ade4. By Thibaut Jombart.

ads Spatial point patterns analysis. Perform first-
and second-order multi-scale analyses derived
from Ripley’s K-function, for univariate, multi-
variate and marked mapped data in rectangu-
lar, circular or irregular shaped sampling win-
dows, with test of statistical significance based
on Monte Carlo simulations. By R. Pelissier
and F. Goreaud.

argosfilter Functions to filter animal satellite track-
ing data obtained from Argos. Especially indi-
cated for telemetry studies of marine animals,
where Argos locations are predominantly of
low quality. By Carla Freitas.

arrayImpute Missing imputation for microarray
data. By Eun-kyung Lee, Dankyu Yoon, and
Taesung Park.

ars Adaptive Rejection Sampling. By Paulino Perez
Rodriguez; original C++ code from Arnost Ko-
marek.

arulesSequences Add-on for arules to handle and
mine frequent sequences. Provides interfaces
to the C++ implementation of cSPADE by Mo-
hammed J. Zaki. By Christian Buchta and
Michael Hahsler.

asuR Functions and data sets for a lecture in Ad-
vanced Statistics using R. Especially the func-
tions mancontr() and inspect() may be of
general interest. With the former, it is pos-
sible to specify your own contrasts and give
them useful names. Function inspect() shows
a wide range of inspection plots to validate
model assumptions. By Thomas Fabbro.

bayescount Bayesian analysis of count distributions
with JAGS. A set of functions to apply a
zero-inflated gamma Poisson (equivalent to a
zero-inflated negative binomial), zero-inflated
Poisson, gamma Poisson (negative binomial)
or Poisson model to a set of count data us-
ing JAGS (Just Another Gibbs Sampler). Re-
turns information on the possible values for
mean count, overdispersion and zero inflation
present in count data such as faecal egg count
data. By Matthew Denwood.
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benchden Full implementation of the 28 distribu-
tions introduced as benchmarks for nonpara-
metric density estimation by Berlinet and De-
vroye (1994). Includes densities, cdfs, quantile
functions and generators for samples. By Tho-
ralf Mildenberger, Henrike Weinert, and Sebas-
tian Tiemeyer.

biOps Basic image operations and image process-
ing. Includes arithmetic, logic, look up table
and geometric operations. Some image pro-
cessing functions, for edge detection (several
algorithms including Roberts, Sobel, Kirsch,
Marr-Hildreth, Canny) and operations by con-
volution masks (with predefined as well as
user defined masks) are provided. Supported
file formats are jpeg and tiff. By Matias Bordese
and Walter Alini.

binMto Asymptotic simultaneous confidence inter-
vals for comparison of many treatments with
one control, for the difference of binomial pro-
portions, allows for Dunnett-like-adjustment,
Bonferroni or unadjusted intervals. Simulation
of power of the above interval methods, ap-
proximate calculation of any-pair-power, and
sample size iteration based on approximate
any-pair power. Exact conditional maximum
test for many-to-one comparisons to a control.
By Frank Schaarschmidt.

bio.infer Compute biological inferences. Imports
benthic count data, reformats this data, and
computes environmental inferences from this
data. By Lester L. Yuan.

blockTools Block, randomly assign, and diagnose
potential problems between units in random-
ized experiments. Blocks units into experimen-
tal blocks, with one unit per treatment condi-
tion, by creating a measure of multivariate dis-
tance between all possible pairs of units. Max-
imum, minimum, or an allowable range of dif-
ferences between units on one variable can be
set. Randomly assign units to treatment con-
ditions. Diagnose potential interference prob-
lems between units assigned to different treat-
ment conditions. Write outputs to ‘.tex’ and
‘.csv’ files. By Ryan T. Moore.

bootStepAIC Model selection by bootstrapping the
stepAIC() procedure. By Dimitris Rizopoulos.

brew A templating framework for mixing text and R
code for report generation. Template syntax is
similar to PHP, Ruby’s erb module, Java Server
Pages, and Python’s psp module. By Jeffrey
Horner.

ca Computation and visualization of simple, mul-
tiple and joint correspondence analysis. By
Michael Greenacre and Oleg Nenadic.

catmap Case-control And Tdt Meta-Analysis Pack-
age. Conducts fixed-effects (inverse vari-
ance) and random-effects (DerSimonian and
Laird, 1986) meta-analyses of case-control or
family-based (TDT) genetic data; in addition,
performs meta-analyses combining these two
types of study designs. The fixed-effects model
was first described by Kazeem and Farrell
(2005); the random-effects model is described
in Nicodemus (submitted for publication). By
Kristin K. Nicodemus.

celsius Retrieve Affymetrix microarray measure-
ments and metadata from Celsius web services,
see http://genome.ucla.edu/projects/
celsius. By Allen Day, Marc Carlson.

cghFLasso Spatial smoothing and hot spot detection
using the fused lasso regression. By Robert Tib-
shirani and Pei Wang.

choplump Choplump tests: permutation tests for
comparing two groups with some positive but
many zero responses. By M. P. Fay.

clValid Statistical and biological validation of clus-
tering results. By Guy Brock, Vasyl Pihur, Sus-
mita Datta, and Somnath Datta.

classGraph Construct directed graphs of S4 class hi-
erarchies and visualize them. Typically, these
graphs are DAGs (directed acyclic graphs) in
general, though often trees. By Martin Maech-
ler partly based on code from Robert Gentle-
man.

clinfun Clinical Trial Design and Data Analysis
Functions. Utilities to make your clinical col-
laborations easier if not fun. By E. S. Venkatra-
man.

clusterfly Explore clustering interactively using R
and GGobi. Contains both general code for
visualizing clustering results and specific vi-
sualizations for model-based, hierarchical and
SOM clustering. By Hadley Wickham.

clv Cluster Validation Techniques. Contains most of
the popular internal and external cluster vali-
dation methods ready to use for the most of the
outputs produced by functions coming from
package cluster. By Lukasz Nieweglowski.

codetools Code analysis tools for R. By Luke Tier-
ney.

colorRamps Builds single and double gradient color
maps. By Tim Keitt.

contrast Contrast methods, in the style of the De-
sign package, for fit objects produced by the
lm, glm, gls, and geese functions. By Steve We-
ston, Jed Wing and Max Kuhn.
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coxphf Cox regression with Firth’s penalized likeli-
hood. R by Meinhard Ploner, Fortran by Georg
Heinze.

crosshybDetector Identification of probes poten-
tially affected by cross-hybridizations in mi-
croarray experiments. Includes functions for
diagnostic plots. By Paolo Uva.

ddesolve Solver for Delay Differential Equations by
interfacing numerical routines written by Si-
mon N. Wood, with contributions by Benjamin
J. Cairns. These numerical routines first ap-
peared in Simon Wood’s solv95 program. By
Alex Couture-Beil, Jon T. Schnute, and Rowan
Haigh.

desirability Desirability Function Optimization and
Ranking. S3 classes for multivariate optimiza-
tion using the desirability function by Der-
ringer and Suich (1980). By Max Kuhn.

dplR Dendrochronology Program Library in R.
Contains functions for performing some stan-
dard tree-ring analyses. By Andy Bunn.

dtt Discrete Trigonometric Transforms. Functions
for 1D and 2D Discrete Cosine Transform
(DCT), Discrete Sine Transform (DST) and Dis-
crete Hartley Transform (DHT). By Lukasz
Komsta.

earth Multivariate Adaptive Regression Spline
Models. Build regression models using
the techniques in Friedman’s papers “Fast
MARS” and “Multivariate Adaptive Regres-
sion Splines”. (The term “MARS” is copy-
righted and thus not used as the name of the
package.). By Stephen Milborrow, derived
from code in package mda by Trevor Hastie
and Rob Tibshirani.

eigenmodel Semiparametric factor and regression
models for symmetric relational data. Esti-
mates the parameters of a model for symmet-
ric relational data (e.g., the above-diagonal part
of a square matrix) using a model-based eigen-
value decomposition and regression. Missing
data is accommodated, and a posterior mean
for missing data is calculated under the as-
sumption that the data are missing at random.
The marginal distribution of the relational data
can be arbitrary, and is fit with an ordered pro-
bit specification. By Peter Hoff.

epibasix Elementary tools for the analysis of com-
mon epidemiological problems, ranging from
sample size estimation, through 2 × 2 con-
tingency table analysis and basic measures
of agreement (kappa, sensitivity/specificity).
Appropriate print and summary statements
are also written to facilitate interpretation

wherever possible. The target audience
includes biostatisticians and epidemiologists
who would like to apply standard epidemi-
ological methods in a simple manner. By
Michael A Rotondi.

experiment Various statistical methods for design-
ing and analyzing randomized experiments.
One main functionality is the implementa-
tion of randomized-block and matched-pair
designs based on possibly multivariate pre-
treatment covariates. Also provides the tools
to analyze various randomized experiments in-
cluding cluster randomized experiments, ran-
domized experiments with noncompliance,
and randomized experiments with missing
data. By Kosuke Imai.

fCopulae Rmetrics — Dependence Structures with
Copulas. Environment for teaching “Financial
Engineering and Computational Finance”. By
Diethelm Wuertz and many others.

forensic Statistical Methods in Forensic Genetics.
Statistical evaluation of DNA mixtures, DNA
profile match probability. By Miriam Marusi-
akova.

fractal Insightful Fractal Time Series Modeling and
Analysis. Software to book in development en-
titled “Fractal Time Series Analysis in S-PLUS
and R” by William Constantine and Donald B.
Percival, Springer. By William Constantine and
Donald Percival.

fso Fuzzy Set Ordination: a multivariate analy-
sis used in ecology to relate the composition
of samples to possible explanatory variables.
While differing in theory and method, in prac-
tice, the use is similar to “constrained ordina-
tion”. Contains plotting and summary func-
tions as well as the analyses. By David W.
Roberts.

gWidgetstcltk Toolkit implementation of the gWid-
gets API for the tcltk package. By John Verzani.

gamlss.mx A GAMLSS add on package for fitting
mixture distributions. By Mikis Stasinopoulos
and Bob Rigby.

gcl Computes a fuzzy rules classifier (Vinterbo, Kim
& Ohno-Machado, 2005). By Staal A. Vinterbo.

geiger Analysis of evolutionary diversification. Fea-
tures running macroevolutionary simulation
and estimating parameters related to diversifi-
cation from comparative phylogenetic data. By
Luke Harmon, Jason Weir, Chad Brock, Rich
Glor, and Wendell Challenger.

ggplot An implementation of the grammar of
graphics in R. Combines the advantages of
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both base and lattice graphics: conditioning
and shared axes are handled automatically,
and one can still build up a plot step by step
from multiple data sources. Also implements
a more sophisticated multidimensional condi-
tioning system and a consistent interface to
map data to aesthetic attributes. By Hadley
Wickham.

ghyp Provides all about univariate and multivari-
ate generalized hyperbolic distributions and
its special cases (Hyperbolic, Normal Inverse
Gaussian, Variance Gamma and skewed Stu-
dent t distribution). Especially fitting proce-
dures, computation of the density, quantile,
probability, random variates, expected shortfall
and some portfolio optimization and plotting
routines. Also contains the generalized inverse
Gaussian distribution. By Wolfgang Breymann
and David Luethi.

glmmAK Generalized Linear Mixed Models. By
Arnost Komarek.

granova Graphical Analysis of Variance. Provides
distinctive graphics for display of ANOVA re-
sults. Functions were written to display data
for any number of groups, regardless of their
sizes (however, very large data sets or numbers
of groups are likely to be problematic) using
a specialized approach to construct data-based
contrast vectors with respect to which ANOVA
data are displayed. By Robert M. Pruzek and
James E. Helmreich.

graph Implements some simple graph handling ca-
pabilities. By R. Gentleman, Elizabeth Whalen,
W. Huber, and S. Falcon.

grasp Generalized Regression Analysis and Spatial
Prediction for R. GRASP is a general method
for making spatial predictions of response vari-
ables (RV) using point surveys of the RV and
spatial coverages of predictor variables (PV).
Originally, GRASP was developed to analyse,
model and predict vegetation distribution over
New Zealand. It has been used in all sorts of
applications since then. By Anthony Lehmann,
Fabien Fivaz, John Leathwick and Jake Over-
ton, with contributions from many specialists
from around the world.

hdeco Hierarchical DECOmposition of Entropy for
Categorical Map Comparisons. A flexible and
hierarchical framework for comparing categor-
ical map composition and configuration (spa-
tial pattern) along spatial, thematic, or external
grouping variables. Comparisons are based on
measures of mutual information between the-
matic classes (colors) and location (spatial par-
titioning). Results are returned in textual, tabu-

lar, and graphical forms. By Tarmo K. Remmel,
Sandor Kabos, and Ferenc (Ferko) Csillag.

heatmap.plus Heatmaps with more sensible behav-
ior. Allows the heatmap matrix to have non-
identical x and y dimensions, and multiple
tracks of annotation for RowSideColors and
ColSideColors. By Allen Day.

hydrosanity Graphical user interface for exploring
hydrological time series. Designed to work
with catchment surface hydrology data (rain-
fall and streamflow); but could also be used
with other time series data. Hydrological time
series typically have many missing values, and
varying accuracy of measurement (indicated
by data quality codes). Furthermore, the spa-
tial coverage of data varies over time. Much
of the functionality of this package attempts
to understand these complex data sets, detect
errors and characterize sources of uncertainty.
Emphasis is on graphical methods. The GUI is
based on rattle. By Felix Andrews.

identity Calculate identity coefficients, based on
Mark Abney’s C code. By Na Li.

ifultools Insightful Research Tools. By William Con-
stantine.

inetwork Network Analysis and Plotting. Imple-
ments a network partitioning algorithm to
identify communities (or modules) in a net-
work. A network plotting function then uti-
lizes the identified community structure to po-
sition the vertices for plotting. Also con-
tains functions to calculate the assortativity
and transitivity of a vertex. By Sun-Chong
Wang.

inline Functionality to dynamically define R func-
tions and S4 methods with in-lined C, C++ or
Fortran code supporting .C and .Call calling
conventions. By Oleg Sklyar, Duncan Mur-
doch, and Mike Smith.

irtoys A simple common interface to the estima-
tion of item parameters in IRT models for bi-
nary responses with three different programs
(ICL, BILOG-MG, and ltm), and a variety of
functions useful with IRT models. By Ivailo
Partchev.

kin.cohort Analysis of kin-cohort studies. Provides
estimates of age-specific cumulative risk of a
disease for carriers and noncarriers of a muta-
tion. The cohorts are retrospectively built from
relatives of probands for whom the genotype
is known. Currently the method of moments
and marginal maximum likelihood are imple-
mented. Confidence intervals are calculated
from bootstrap samples. Most of the code is
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a translation from previous MATLAB code by
Chatterjee. By Victor Moreno, Nilanjan Chat-
terjee, and Bhramar Mukherjee.

kzs Kolmogorov-Zurbenko Spline. A collection of
functions utilizing splines to smooth a noisy
data set in order to estimate its underlying sig-
nal. By Derek Cyr and Igor Zurbenko.

lancet.iraqmortality Surveys of Iraq mortality pub-
lished in The Lancet. The Lancet has published
two surveys on Iraq mortality before and after
the US-led invasion. The package facilitates ac-
cess to the data and a guided tour of some of
their more interesting aspects. By David Kane,
with contributions from Arjun Navi Narayan
and Jeff Enos.

ljr Fits and tests logistic joinpoint models. By Michal
Czajkowski, Ryan Gill, and Greg Rempala.

luca Likelihood Under Covariate Assumptions
(LUCA). Likelihood inference in case-control
studies of a rare disease under independence or
simple dependence of genetic and non-genetic
covariates. By Ji-Hyung Shin, Brad McNeney,
and Jinko Graham.

meifly Interactive model exploration using GGobi.
By Hadley Wickham.

mixPHM Mixtures of proportional hazard models.
Fits multiple variable mixtures of various para-
metric proportional hazard models using the
EM algorithm. Proportionality restrictions can
be imposed on the latent groups and/or on the
variables. Several survival distributions can be
specified. Missing values are allowed. Inde-
pendence is assumed over the single variables.
By Patrick Mair and Marcus Hudec.

mlmmm Computational strategies for multivariate
linear mixed-effects models with missing val-
ues (Schafer and Yucel, 2002). By Recai Yucel.

modeest Provides estimators of the mode of uni-
variate unimodal data or univariate unimodal
distributions. Also allows to compute the
Chernoff distribution. By Paul Poncet.

modehunt Multiscale Analysis for Density Func-
tions. Given independent and identically dis-
tributed observations X(1), . . . , X(n) from a
density f , this package provides five meth-
ods to perform a multiscale analysis about f
as well as the necessary critical values. The
first method, introduced in Duembgen and
Walther (2006), provides simultaneous confi-
dence statements for the existence and loca-
tion of local increases (or decreases) of f , based
on all intervals I(all) spanned by any two ob-
servations X( j), X(k). The second method ap-
proximates the latter approach by using only

a subset of I(all) and is therefore computa-
tionally much more efficient, but asymptoti-
cally equivalent. Omitting the additive correc-
tion term Gamma in either method offers an-
other two approaches which are more power-
ful on small scales and less powerful on large
scales, however, not asymptotically minimax
optimal anymore. Finally, the block proce-
dure is a compromise between adding Gamma
or not, having intermediate power properties.
The latter is again asymptotically equivalent to
the first and was introduced in Rufibach and
Walther (2007). By Kaspar Rufibach and Guen-
ther Walther.

monomvn Estimation of multivariate normal data
of arbitrary dimension where the pattern of
missing data is monotone. Through the use of
parsimonious/shrinkage regressions (plsr, pcr,
lasso, ridge, etc.), where standard regressions
fail, the package can handle an (almost) arbi-
trary amount of missing data. The current ver-
sion supports maximum likelihood inference.
Future versions will provide a means of sam-
pling from a Bayesian posterior. By Robert B.
Gramacy.

mota Mean Optimal Transformation Approach for
detecting nonlinear functional relations. Origi-
nally designed for the identifiability analysis of
nonlinear dynamical models. However, the un-
derlying concept is very general and allows to
detect groups of functionally related variables
whenever there are multiple estimates for each
variable. By Stefan Hengl.

nlstools Tools for assessing the quality of fit of a
Gaussian nonlinear model. By Florent Baty and
Marie-Laure Delignette-Muller, with contribu-
tions from Sandrine Charles, Jean-Pierre Flan-
drois.

oc OC Roll Call Analysis Software. Estimates Op-
timal Classification scores from roll call votes
supplied though a rollcall object from pack-
age pscl. By Keith Poole, Jeffrey Lewis, James
Lo and Royce Carroll.

oce Analysis of Oceanographic data. Supports CTD
measurements, sea-level time series, coastline
files, etc. Also includes functions for cal-
culating seawater properties such as density,
and derived properties such as buoyancy fre-
quency. By Dan Kelley.

pairwiseCI Calculation of parametric and nonpara-
metric confidence intervals for the difference
or ratio of location parameters and for the dif-
ference, ratio and odds-ratio of binomial pro-
portion for comparison of independent sam-
ples. CIs are not adjusted for multiplicity. A by
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statement allows calculation of CI separately
for the levels of one further factor. By Frank
Schaarschmidt.

paran An implementation of Horn’s technique
for evaluating the components retained in
a principle components analysis (PCA).
Horn’s method contrasts eigenvalues pro-
duced through a PCA on a number of random
data sets of uncorrelated variables with the
same number of variables and observations as
the experimental or observational data set to
produce eigenvalues for components that are
adjusted for the sample error-induced inflation.
Components with adjusted eigenvalues greater
than one are retained. The package may also
be used to conduct parallel analysis follow-
ing Glorfeld’s (1995) suggestions to reduce the
likelihood of over-retention. By Alexis Dinno.

pcse Estimation of panel-corrected standard errors.
Data may contain balanced or unbalanced pan-
els. By Delia Bailey and Jonathan N. Katz.

penalized L1 (lasso) and L2 (ridge) penalized esti-
mation in Generalized Linear Models and in
the Cox Proportional Hazards model. By Jelle
Goeman.

plRasch Fit log linear by linear association models.
By Zhushan Li & Feng Hong.

plink Separate Calibration Linking Methods. Uses
unidimensional item response theory meth-
ods to compute linking constants and conduct
chain linking of tests for multiple groups un-
der a nonequivalent groups common item de-
sign. Allows for mean/mean, mean/sigma,
Haebara, and Stocking-Lord calibrations of
single-format or mixed-format dichotomous
(1PL, 2PL, and 3PL) and polytomous (graded
response partial credit/generalized partial
credit, nominal, and multiple-choice model)
common items. By Jonathan Weeks.

plotAndPlayGTK A GUI for interactive plots using
GTK+. When wrapped around plot calls, a
window with the plot and a tool bar to interact
with it pop up. By Felix Andrews, with contri-
butions from Graham Williams.

pomp Inference methods for partially-observed
Markov processes. By Aaron A. King, Ed Ion-
ides, and Carles Breto.

poplab Population Lab: a tool for constructing a vir-
tual electronic population of related individu-
als evolving over calendar time, by using vi-
tal statistics, such as mortality and fertility, and
disease incidence rates. By Monica Leu, Kamila
Czene, and Marie Reilly.

proftools Profile output processing tools. By Luke
Tierney.

proj4 A simple interface to lat/long projection and
datum transformation of the PROJ.4 carto-
graphic projections library. Allows transforma-
tion of geographic coordinates from one pro-
jection and/or datum to another. By Simon Ur-
banek.

proxy Distance and similarity measures. An exten-
sible framework for the efficient calculation of
auto- and cross-proximities, along with imple-
mentations of the most popular ones. By David
Meyer and Christian Buchta.

psych Routines for personality, psychometrics and
experimental psychology. Functions are pri-
marily for scale construction and reliability
analysis, although others are basic descriptive
stats. By William Revelle.

psyphy Functions that could be useful in analyz-
ing data from pyschophysical experiments, in-
cluding functions for calculating d′ from sev-
eral different experimental designs, links for
mafc to be used with the binomial family in
glm (and possibly other contexts) and self-Start
functions for estimating gamma values for CRT
screen calibrations. By Kenneth Knoblauch.

qualV Qualitative methods for the validation of
models. By K.G. van den Boogaart, Stefanie
Jachner and Thomas Petzoldt.

quantmod Specify, build, trade, and analyze quanti-
tative financial trading strategies. By Jeffrey A.
Ryan.

rateratio.test Exact rate ratio test. By Michael Fay.

regtest Functions for unary and binary regression
tests. By Jens Oehlschlägel.

relations Data structures for k-ary relations with ar-
bitrary domains, predicate functions, and fit-
ters for consensus relations. By Kurt Hornik
and David Meyer.

rgcvpack Interface to the GCVPACK Fortran pack-
age for thin plate spline fitting and prediction.
By Xianhong Xie.

rgr Geological Survey of Canada (GSC) functions
for exploratory data analysis with applied geo-
chemical data, with special application to the
estimation of background ranges to support
both environmental studies and mineral explo-
ration. By Robert G. Garrett.

rindex Indexing for R. Index structures allow
quickly accessing elements from large collec-
tions. With btree optimized for disk databases
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and ttree for RAM databases, uses hybrid static
indexing which is quite optimal for R. By Jens
Oehlschlägel.

rjson JSON for R. Converts R object into JSON ob-
jects and vice-versa. By Alex Couture-Beil.

rsbml R support for SBML. Links R to libsbml for
SBML parsing and output, provides an S4
SBML DOM, converts SBML to R graph objects,
and more. By Michael Lawrence.

sapa Insightful Spectral Analysis for Physical Appli-
cations. Software for the book “Spectral Analy-
sis for Physical Applications” by Donald B. Per-
cival and Andrew T. Walden, Cambridge Uni-
versity Press, 1993. By William Constantine
and Donald Percival.

scagnostics Calculates Tukey’s scagnostics which
describe various measures of interest for pairs
of variables, based on their appearance on a
scatterplot. They are useful tool for weeding
out interesting or unusual scatterplots from a
scatterplot matrix, without having to look at
ever individual plot. By Heike Hofmann„ Lee
Wilkinson, Hadley Wickham, Duncan Temple
Lang, and Anushka Anand.

schoolmath Functions and data sets for math used
in school. A main focus is set to prime-
calculation. By Joerg Schlarmann and Josef
Wienand.

sdcMicro Statistical Disclosure Control methods for
the generation of public- and scientific-use
files. Data from statistical agencies and other
institutions are mostly confidential. The pack-
age can be used for the generation of safe (mi-
cro)data, i.e., for the generation of public- and
scientific-use files. By Matthias Templ.

seriation Infrastructure for seriation with an im-
plementation of several seriation/sequencing
techniques to reorder matrices, dissimilarity
matrices, and dendrograms. Also contains
some visualizations techniques based on seri-
ation. By Michael Hahsler, Christian Buchta
and Kurt Hornik.

signalextraction Real-Time Signal Extraction (Direct
Filter Approach). The Direct Filter Approach
(DFA) provides efficient estimates of signals
at the current boundary of time series in real-
time. For that purpose, one-sided ARMA-
filters are computed by minimizing customized
error criteria. The DFA can be used for esti-
mating either the level or turning-points of a
series, knowing that both criteria are incongru-
ent. In the context of real-time turning-point
detection, various risk-profiles can be opera-
tionalized, which account for the speed and/or

the reliability of the one-sided filter. By Marc
Wildi & Marcel Dettling.

simba Functions for similarity calculation of binary
data (for instance presence/absence species
data). Also contains wrapper functions for
reshaping species lists into matrices and vice
versa and some other functions for further pro-
cessing of similarity data (Mantel-like permu-
tation procedures) as well as some other useful
stuff. By Gerald Jurasinski.

simco A package to import Structure files and de-
duce similarity coefficients from them. By
Owen Jones.

snpXpert Tools to analysis SNP data. By Eun-kyung
Lee, Dankyu Yoon, and Taesung Park.

spam SPArse Matrix: functions for sparse matrix
algebra (used by fields). Differences with
SparseM and Matrix are: (1) support for only
one sparse matrix format, (2) based on trans-
parent and simple structure(s) and (3) S3 and
S4 compatible. By Reinhard Furrer.

spatgraphs Graphs, graph visualization and graph
based summaries to be used with spatial point
pattern analysis. By Tuomas Rajala.

splus2R Insightful package providing missing S-
PLUS functionality in R. Currently there are
many functions in S-PLUS that are missing in
R. To facilitate the conversion of S-PLUS mod-
ules and libraries to R packages, this package
helps to provide missing S-PLUS functionality
in R. By William Constantine.

sqldf Manipulate R data frames using SQL. By G.
Grothendieck.

sspline Smoothing splines on the sphere. By Xian-
hong Xie.

stochasticGEM Fitting Stochastic General Epidemic
Models: Bayesian inference for partially ob-
served stochastic epidemics. The general epi-
demic model is used for estimating the param-
eters governing the infectious and incubation
period length, and the parameters governing
susceptibility. In real-life epidemics the infec-
tion process is unobserved, and the data con-
sists of the times individuals are detected, usu-
ally via appearance of symptoms. The pack-
age fits several variants of the general epi-
demic model, namely the stochastic SIR with
Markovian and non-Markovian infectious pe-
riods. The estimation is based on Markov chain
Monte Carlo algorithm. By Eugene Zwane.

surveyNG An experimental revision of the survey
package for complex survey samples (featuring
a database interface and sparse matrices). By
Thomas Lumley.
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termstrc Term Structure and Credit Spread Estima-
tion. Offers several widely-used term structure
estimation procedures, i.e., the parametric Nel-
son and Siegel approach, Svensson approach
and cubic splines. By Robert Ferstl and Josef
Hayden.

tframe Time Frame coding kernel. Functions for
writing code that is independent of the way
time is represented. By Paul Gilbert.

timsac TIMe Series Analysis and Control package.
By The Institute of Statistical Mathematics.

trackObjs Track Objects. Stores objects in files on
disk so that files are automatically rewritten
when objects are changed, and so that objects
are accessible but do not occupy memory until
they are accessed. Also tracks times when ob-
jects are created and modified, and cache some
basic characteristics of objects to allow for fast
summaries of objects. By Tony Plate.

tradeCosts Post-trade analysis of transaction costs.
By Aaron Schwartz and Luyi Zhao.

tripEstimation Metropolis sampler and supporting
functions for estimating animal movement
from archival tags and satellite fixes. By
Michael Sumner and Simon Wotherspoon.

twslm A two-way semilinear model for normaliza-
tion and analysis of cDNA microarray data.
Huber’s and Tukey’s bisquare weight func-
tions are available for robust estimation of the
two-way semilinear models. By Deli Wang and
Jian Huang.

vbmp Variational Bayesian multinomial probit re-
gression with Gaussian process priors. By
Nicola Lama and Mark Girolami.

vrtest Variance ratio tests for weak-form market ef-
ficiency. By Jae H. Kim.

waved The WaveD Transform in R. Makes avail-
able code necessary to reproduce figures and
tables in recent papers on the WaveD method
for wavelet deconvolution of noisy signals. By
Marc Raimondo and Michael Stewart.

wikibooks Functions and datasets of the german
WikiBook “GNU R” which introduces R to new
users. By Joerg Schlarmann.

wmtsa Insightful Wavelet Methods for Time Series
Analysis. Software to book “Wavelet Methods
for Time Series Analysis” by Donald B. Percival
and Andrew T. Walden, Cambridge University
Press, 2000. By William Constantine and Don-
ald Percival.

wordnet An interface to WordNet using the Jaw-
bone Java API to WordNet. By Ingo Feinerer.

yest Model selection and variance estimation in
Gaussian independence models. By Petr Sime-
cek.

Other changes

• CRAN’s Devel area is gone.

• Package write.snns was moved up from Devel.

• Package anm was resurrected from the
Archive.

• Package Rcmdr.HH was renamed to Rcmdr-
Plugin.HH.

• Package msgcop was renamed to sbgcop.

• Package grasper was moved to the Archive.

• Package tapiR was removed from CRAN.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

R Foundation News
by Kurt Hornik

Donations and new members

Donations

AT&T Research (USA)
Jaimison Fargo (USA)
Stavros Panidis (Greece)
Saxo Bank (Denmark)
Julian Stander (United Kingdom)

New benefactors

Shell Statistics and Chemometrics, Chester, UK

New supporting institutions

AT&T Labs, New Jersey, USA

BC Cancer Agency, Vancouver, Canada

Black Mesa Capital, Santa Fe, USA

Department of Statistics, Unviersity of Warwick,
Coventry, UK
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New supporting members

Michael Bojanowski (Netherlands)
Caoimhin ua Buachalla (Ireland)
Jake Bowers (UK)
Sandrah P. Eckel (USA)
Charles Fleming (USA)
Hui Huang (USA)

Jens Oehlschlägel (Germany)
Marc Pelath (UK)
Tony Plate (USA)
Julian Stander (UK)

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

News from the Bioconductor Project
by Hervé Pagès and Martin Morgan

Bioconductor 2.1 was released on October 8, 2007
and is designed to be compatible with R 2.6.0, re-
leased five days before Bioconductor. This release
contains 23 new software packages, 97 new anno-
tation (or metadata) packages, and many improve-
ments and bug fixes to existing packages.

New packages

The 23 new software packages provide excit-
ing analytic and interactive tools. Packages ad-
dress Affymetrix array quality assessment (e.g., ar-
rayQualityMetrics, AffyExpress), error assessment
(e.g., OutlierD, MCRestimate), particular applica-
tion domains (e.g., comparative genomic hybridiza-
tion, CGHcall, SMAP; SNP arrays, oligoClasses,
RLMM, VanillaICE; SAGE, sagenhaft; gene set en-
richment, GSEABase; protein interaction, Rintact)
and sophisticated modeling tools (e.g., timecourse,
vbmp, maigesPack). exploRase uses the GTK toolkit
to provide an integrated user interface for systems
biology applications.

Several packages benefit from important infras-
tructure developments in R. Recent changes allow
consolidation of C code common to several pack-
ages into a single location (preprocessCore), greatly
simplifying code maintenance and improving reli-
ability. Many new packages use the S4 class sys-
tem. A number of these extend classes provided in
Biobase, facilitating more seamless interoperability.
The ability to access web resources, including con-
venient XML parsing, allow Bioconductor packages
such as GSEABase to access important curated re-
sources.

SQLite-based annotations

This release provides SQLite-based annotations in
addition to the traditional environment-based ones.
Annotations contain maps between information from
microarray manufactures, standard naming con-
ventions (e.g., Entrez gene identifiers) and re-

sources such as the Gene Ontology consortium.
Eighty-six SQLite-based annotation packages are
currently available. The name of these pack-
ages end with ".db" (e.g., hgu95av2.db). For
an example of different metadata packages related
to specific chips, view the annotations available
for the hgu95av2 chip: http://bioconductor.org/
packages/2.1/hgu95av2.html

New genome wide metadata packages provide a
more complete set of maps, similar to those provided
in the chip-based annotation packages. Genome
wide annotations have an "org." prefix in their
name, and are available as SQLite-based pack-
ages only. Five organisms are currently supported:
human (org.Hs.eg.db), mouse (org.Mm.eg.db),
rat (org.Rn.eg.db), fly (org.Dm.eg.db) and yeast
(org.Sc.sgd.db). The *LLMappings packages will
be deprecated in Bioconductor 2.2.

Environment-based (e.g., hgu95av2) and SQLite-
based (e.g., hgu95av2.db) packages contain the same
data. For the end user, moving from hgu95av2 to
hgu95av2.db is transparent because the objects (or
maps) in hgu95av2.db can be manipulated as if they
were environments (i.e., functions ls, mget, get,
etc. . . still work on them). Using SQLite allows con-
siderable flexibility in querying maps and in per-
forming complex joins between tables, in addition
to placing the burden of memory management and
optimized query construction in sqlite. As with the
implementation of operations like ls and mget, the
intention is to recognize common use cases and to
code these so that R users do not need to know the
underlying SQL query.

Looking ahead

For the next release (BioC 2.2, April 2008) all our an-
notations will be SQLite-based and we will deprecate
the environment-based versions.

We anticipate increasing emphasis on sequence-
based technologies like Solexa (http://www.
illumina.com) and 454 (http://www.454.com). The
volume of data these technologies generate is very
large (a three day Solexa run produces almost a ter-
abyte of raw data, with 10’s of gigabytes appropriate
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for numerical analysis). This volume of data poses
significant challenges, but graphical, statistical, and
interactive abilities and web-based integration make
R a strong candidate for making sense of, and mak-
ing fundamental new contributions to, understand-
ing and critically assessing this data.

The best Bioconductor packages are contributed
by our users, based on their practical needs and so-
phisticated experience. We look forward to receiving
your contribution over the next several months.

Hervé Pagès
Computational Biology Program
Fred Hutchinson Cancer Research Center
hpages@fhcrc.org

Martin Morgan
Computational Biology Program
Fred Hutchinson Cancer Research Center
mtmorgan@fhcrc.org

Past Events: useR! 2007
Duncan Murdoch and Martin Maechler

The first North American useR! meeting took place
over three hot days at Iowa State University in Ames
this past August.

The program started with John Chambers talk-
ing about his philosophy of programming: our mis-
sion is to enable effective and rapid exploration of
data, and the prime directive is to provide trust-
worthy software and “tell no lies”. This was fol-
lowed by a varied and interesting program of pre-
sentations and posters, many of which are now
online at http://useR2007.org. A panel on the
use of R in clinical trials may be noteworthy be-
cause of the related publishing by the R Founda-
tion of a document (http://www.r-project.org/
certification.html) on “Regulatory Compliance
and Validation” issues. In particular “21 CFR part
11” compliance is very important in the pharmaceu-
tical industry.

The meeting marked the tenth anniversary of the
formation of the R Core group, and an enormous
blue R birthday cake was baked for the occasion (Fig-
ure 1). Six of the current R Core members were
present for the cutting, and Thomas Lumley gave a
short after dinner speech at the banquet.

Figure 1: R Core turns ten.

There were two programming competitions. The
first requested submissions in advance, to produce
a package useful for large data sets. This was won
by the team of Daniel Adler, Oleg Nenadić, Walter
Zucchini and Christian Gläser from Göttingen. They
wrote the ff package to use paged memory-mapping
of binary files to handle very large datasets. Daniel,
Oleg and Christian attended the meeting and pre-
sented their package.

The second competition was a series of short R
programming tasks to be completed within a time
limit at the conference. The tasks included rela-
belling, working with ragged longitudinal data, and
writing functions on functions. There was a tie for
first place between Elaine McVey and Olivia Lau.

Three kinds of T-shirts with variations on the “R”
theme were available: the official conference T-shirt
(also worn by the local staff) sold out within a day,
so the two publishers’ free T-shirts gained even more
attraction.

Local arrangements for the meeting were han-
dled by Di Cook, Heike Hofmann, Michael
Lawrence, Hadley Wickham, Denise Riker, Beth Ha-
genman and Karen Koppenhaver at Iowa State; the
Program Committee also included Doug Bates, Dave
Henderson, Olivia Lau, and Luke Tierney. Thanks
are due to all of them, and to the team of Iowa
State students who made numerous trips to the Des
Moines airport carrying meeting participants back
and forth, and who kept the equipment and facili-
ties running smoothly–useR! 2007 was an excellent
meeting.

Duncan Murdoch, University of Western Ontario
Duncan.Murdoch@R-project.org
Martin Maechler, ETH Zürich
Martin.Maechler@R-project.org
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Forthcoming Events: useR! 2008
The international R user conference ‘useR! 2008’ will
take place at the Universität Dortmund, Dortmund,
Germany, August 12-14, 2008.

This world-meeting of the R user community will
focus on

• R as the ‘lingua franca’ of data analysis and sta-
tistical computing,

• providing a platform for R users to discuss and
exchange ideas how R can be used to do statis-
tical computations, data analysis, visualization
and exciting applications in various fields,

• giving an overview of the new features of the
rapidly evolving R project.

The program comprises invited lectures, user-
contributed sessions and pre-conference tutorials.

Invited Lectures

R has become the standard computing engine in
more and more disciplines, both in academia and the
business world. How R is used in different areas will
be presented in invited lectures addressing hot top-
ics. Speakers will include Peter Bühlmann, John Fox,
Andrew Gelman, Kurt Hornik, Gary King, Duncan Mur-
doch, Jean Thioulouse, Graham J. Williams, and Keith
Worsley.

User-contributed Sessions

The sessions will be a platform to bring together
R users, contributers, package maintainers and de-
velopers in the S spirit that ‘users are developers’.
People from different fields will show us how they
solve problems with R in fascinating applications.
The scientific program is organized by members of
the program committee, including Micah Altman,
Roger Bivand, Peter Dalgaard, Jan de Leeuw, Ramón
Díaz-Uriarte, Spencer Graves, Leonhard Held, Torsten
Hothorn, François Husson, Christian Kleiber, Friedrich
Leisch, Andy Liaw, Martin Mächler, Kate Mullen, Ei-ji
Nakama, Thomas Petzold, Martin Theus, and Heather
Turner. The program will cover topics of current in-
terest such as

• Applied Statistics & Biostatistics
• Bayesian Statistics

• Bioinformatics
• Chemometrics and Computational Physics
• Data Mining
• Econometrics & Finance
• Environmetrics & Ecological Modeling
• High Performance Computing
• Machine Learning
• Marketing & Business Analytics
• Psychometrics
• Robust Statistics
• Sensometrics
• Spatial Statistics
• Statistics in the Social and Political Sciences
• Teaching
• Visualization & Graphics
• and many more.

Call for pre-conference Tutorials

Before the start of the official program, half-day tuto-
rials will be offered on Monday, August 11.

We invite R users to submit proposals for three
hour tutorials on special topics on R. The proposals
should give a brief description of the tutorial, includ-
ing goals, detailed outline, justification why the tu-
torial is important, background knowledge required
and potential attendees. The proposals should be
sent before 2007-10-31 to useR-2008@R-project.org.

Call for Papers

We invite all R users to submit abstracts on top-
ics presenting innovations or exciting applications of
R. A web page offering more information on ‘useR!
2008’ is available at:

http://www.R-project.org/useR-2008/

Abstract submission and registration will start in
December 2007.

We hope to meet you in Dortmund!

The organizing committee:
Uwe Ligges, Achim Zeileis, Claus Weihs, Gerd Kopp,
Friedrich Leisch, and Torsten Hothorn
useR-2008@R-project.org
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Forthcoming Events: R Courses in Munich
by Friedrich Leisch

The department of statistics at Ludwig–
Maximilians–Universität München, Germany, is of-
fering a range of R courses to practitioners from
industry, universities and all others interested in
using R for data analysis, starting with R basics
(November 8–9, by Torsten Hothorn and Friedrich
Leisch) followed by R programming (December 12–
13, by Torsten Hothorn and Friedrich Leisch), ma-
chine learning (January 23–24, by Torsten Hothorn,

Friedrich Leisch and Carolin Strobl), econometrics
(spring 2008, by Achim Zeileis), and generalized re-
gression (spring 2008, by Thomas Kneib).

The regular courses are taught in German,
more information is available from http://www.
statistik.lmu.de/R/.

Friedrich Leisch
Ludwig-Maximilians-Universität München, Germany
Friedrich.Leisch@R-project.org
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