
R Help Desk — Accessing the Sources

Uwe Ligges - R News 2006-4

Vol. 6/4, October 2006 43

Y. Escoufier. Operators related to a data matrix. In
J. R. Barra, editor, Recent Developments in Statistics.,
pages 125–131. North Holland, 1977.

F. Fouss, J.-M. Renders, and M. Saerens. Some re-
lationships between Kleinberg’s hubs and author-
ities, correspondence analysis, and the Salsa algo-
rithm. In JADT 2004, International Conference on the
Statistical Analysis of Textual Data, pages 445–455,
Louvain-la-Neuve, 2004.

M. J. Greenacre. Theory and Applications of Correspon-
dence Analysis. Academic Press, London., 1984.

M. Hill and H. Gauch. Detrended correspondence
analysis, an improved ordination technique. Vege-
tatio, 42:47–58, 1980.

S. Holmes. Multivariate analysis: The French way.
In Festschrift for David Freedman, Beachwood, OH,
2006. (edited by D. Nolan and T. Speed) IMS.

J. M. Kleinberg. Hubs, authorities, and communi-
ties. ACM Computing Surveys, 31(4es):5, 1999. ISSN
0360-0300.

C. Lavit, Y. Escoufier, R. Sabatier, and Traissac. The
ACT (STATIS method). Computational Statistics &
Data Analysis, 18:97–119, 1994.

L. Lebart, A. Morineau, and K. M. Warwick. Multi-
variate Descriptive Statistical Analysis. Wiley, 1984.

K. Mardia, J. Kent, and J. Bibby. Multiariate Analysis.
Academic Press, NY., 1979.

B. D. Ripley. Pattern Recognition and Neural Net-
works. Cambridge University Press, Cambridge,
UK, 1996.

C. J. F. ter Braak. Canonical correspondence analysis:
a new eigenvector method for multivariate direct
gradient analysis. Ecology, 67:1167–1179, 1986.

Susan Holmes
Statistics Department
Stanford, CA 94305
susan@stat.stanford.edu

R Help Desk
Accessing the Sources

by Uwe Ligges

Introduction

One of the major advantages of open source software
such as R is implied by its name: the sources are open
(accessible) for everybody.

There are many reasons to look at the sources.
One example is that a user might want to know ex-
actly what the software does, but the documentation
is not sufficiently explicit about the underlying algo-
rithm. As another example, a user might want to
change some code in order to implement a modifi-
cation of a given (already implemented) method or
in order to fix a bug in a contributed package or even
in R itself.

How to access different kinds of sources (in or-
der to read or to change them), both in R itself and in
packages, is described in the following sections.

It is always a good idea to look into appropri-
ate manuals for your current R version, if working
on the sources is required. Almost all manuals con-
tain relevant information for this topic: ‘An Introduc-
tion to R’, ‘Writing R Extensions’, ‘R Installation and
Administration’, and ‘The R Language Definition’
(Venables et al., 2006; R Development Core Team,
2006a,b,c).

R Code Sources

In most cases, it is sufficient to read some R code
of the function in question and look at how other
functions are called or how the data are manipulated
within a function. The fastest and easiest way to
do so for simple functions is to type the function’s
name into R and let R print the object. For example,
here is how to view the source code for the function
matrix():

> matrix

function (data = NA, nrow = 1, ncol = 1,

byrow = FALSE, dimnames = NULL)

{

data <- as.vector(data)

if (missing(nrow))

nrow <- ceiling(length(data)/ncol)

else if (missing(ncol))

ncol <- ceiling(length(data)/nrow)

x <- .Internal(matrix(data, nrow, ncol,

byrow))

dimnames(x) <- dimnames

x

}

<environment: namespace:base>

Unfortunately, comments in the code may have
been removed from the printed output, because they
were already removed in the loaded or installed
package in order to save memory. This is in principle
controlled by the arguments keep.source (for R) and

R News ISSN 1609-3631

1

Vol. 6/4, October 2006 44

keep.source.pkgs (for packages) of the options()

function. If these arguments are set to TRUE com-
ments are not removed, but there are also a lot of
circumstances, e.g., lazy-loading and saved images
of packages (Ripley, 2004), where setting these argu-
ments to TRUE does not help to keep comments in the
sources.

Therefore, it makes more sense to look into the
original sources, i.e., those from which the pack-
age or R have been installed. Both R sources and
sources of contributed packages are available from
the CRAN mirrors (see http://cran.r-project.

org/mirrors.html for a current list of mirrors).
After unpacking a source package, the R source

code can be found in the directory PackageName/R/.
Since the files therein are plain text files, they can be
opened in the user’s favorite text editor. For R’s base
packages, the R code is available in R’s subdirectory
$R_HOME/src/library/PakageName/R/. For pack-
age bundles, replace PackageName by BundleName/

PackageName in the paths given above.

Code Hidden in a Namespace
In some cases, a seemingly missing function is called
within another function. Such a function might sim-
ply be hidden in a namespace (Tierney, 2003). Type
getAnywhere("FunctionName") in order to find it.
This function reports which namespace a function
comes from, and one can then look into the sources of
the corresponding package. This is particularly true
for S3 methods such as, for example, plot.factor:

R> plot.factor

Error: object "plot.factor" not found

R> getAnywhere("plot.factor")

A single object matching ’plot.factor’ was found

It was found in the following places

registered S3 method for plot from namespace

graphics

namespace:graphics

with value

[function code omitted]

The file that contains the code of plot.factor is
‘$R HOME/src/library/graphics/R/plot.R’.

S3 and S4
As another example, suppose that we have the ob-
ject lmObj, which results from a call to lm(), and we
would like to find out what happens when the object
is printed. In that case, a new user probably types

R> print

in order to see the code for printing. The frustrating
result of the call is simply:

function (x, ...)

UseMethod("print")

<environment: namespace:base>

The more experienced user knows a call to
UseMethod() indicates that print() is an S3 generic
and calls the specific method function that is appro-
priate for the object of class class(x). It is possible
to ask for available methods with methods(print).
The function of interest is the S3 method print.lm()

from namespace stats (the generic itself is in the base
package namespace). A method hidden in a names-
pace can be accessed (and therefore printed) directly
using the ::: operator as in stats:::print.lm.
The file containing the source code for printing the
lmObj object is available from package stats’ sources:
‘$R HOME/src/library/stats/R/lm.R’.

In order to understand and change S4 related
sources, it is highly advisable to work directly
with a package’s source files. For a quick look,
functions such as getClass(), getGeneric(), and
getMethod() are available. The following example
prints the code of the show() method for mle objects
from the stats4 package:

R> library("stats4")

R> getMethod("show", "mle")

Compiled Code Sources

When looking at R source code, sometimes calls
to one of the following functions show up: .C(),
.Call(), .Fortran(), .External(), or .Internal()
and .Primitive(). These functions are calling en-
try points in compiled code such as shared objects,
static libraries or dynamic link libraries. Therefore,
it is necessary to look into the sources of the com-
piled code, if complete understanding of the code is
required.

In order to access the sources of compiled code
(i.e., C, C++, or Fortran), it is not sufficient to have
the binary version of R or a contributed package
installed. Rather, it is necessary to download the
sources for R or for the package. How to download
those sources is described in the previous section.

For contributed packages, source code can be
found in the directory PackageName/src/ (again,
for package bundles replace PackageName by
BundleName/PackageName). Files therein can be
searched for the corresponding entry point.

For R and standard R packages, compiled code
sources are in subdirectories of $R_HOME/src/. Par-
ticularly $R_HOME/src/main/ contains most of the
interesting code. The first step is to look up the
entry point in file ‘$R HOME/src/main/names.c’, if
the calling R function is either .Primitive() or
.Internal(). This is done in the following exam-
ple for the code implementing the ‘simple’ R function
sum().

Typing sum shows the R code of that function:

R> sum

function (..., na.rm = FALSE)

.Internal(sum(..., na.rm = na.rm))

<environment: namespace:base>

R News ISSN 1609-3631

Vol. 6/4, October 2006 45

Obviously, there is only one relevant call within
sum(), namely the .Internal call to an inner entry
point sum(). The next step is to look up that entry
point in the file ‘names.c’, which reveals the follow-
ing line:

/* many lines omitted */

{"sum", do_summary, 0, 11, -1,

{PP_FUNCALL, PREC_FN, 0}},

/* many lines omitted */

This line tells us to look for do_summary which it-
self lives in file ‘summary.c’ in the same directory. If
the filename is not obvious, then it can be found by
simply ‘grep’ping for the string in R’s $R_HOME/src/
path.

The Bleeding Edge

Folks working on the bleeding edge of statistical
computing might want to check out the most re-
cent sources, e.g., by looking into the current svn
archives of R. To access them via a web browser, visit
https://svn.r-project.org/R/. The subdirectory
./trunk/ contains the current R-devel version; other
branches (such as R-patched) can be found in ./

branches/, and released versions of R can be found
in ./tags/.

Summary

It is easy to look at both R and C, C++ or Fortran
sources. It is not that difficult to change the sources
and to recompile or to reinstall a modified package.
This way, users can become developers very easily
and contribute bugfixes and new features to existing
packages or even to R itself.

Acknowledgments

I would like to thank Roger Bivand, Gabor
Grothendieck, Paul Murrell, and David Scott for sug-
gestions to improve this Help Desk article.

Bibliography

R Development Core Team. Writing R Extensions.
R Foundation for Statistical Computing, Vienna,
Austria, 2006a. URL http://www.R-project.org.

R Development Core Team. R Installation and Ad-
ministration. R Foundation for Statistical Comput-
ing, Vienna, Austria, 2006b. URL http://www.

R-project.org.

R Development Core Team. R Language Definition.
R Foundation for Statistical Computing, Vienna,
Austria, 2006c. URL http://www.R-project.org.

B. Ripley. Lazy Loading and Packages in R 2.0.0. R
News, 4(2):2–4, September 2004. ISSN 1609-3631.
URL http://CRAN.R-project.org/doc/Rnews/.

L. Tierney. Name Space Management for R. R News,
3(1):2–6, June 2003. ISSN 1609-3631. URL http:

//CRAN.R-project.org/doc/Rnews/.

W. N. Venables, D. M. Smith, and the R Development
Core Team. An Introduction to R. R Foundation for
Statistical Computing, Vienna, Austria, 2006. URL
http://www.R-project.org.

Uwe Ligges
Fachbereich Statistik, Universität Dortmund, Germany
ligges@statistik.uni-dortmund.de

useR! 2006, The Second R User Conference
by Balasubramanian Narasimhan

The second useR! 2006 conference (http://www.
R-project.org/useR-2006) took place in Vienna,
June 15–17. The conference was organized by the
Austrian Association for Statistical Computing and
Wirtschaftsuniversität Wien and sponsored by the R
foundation for Statistical Computing as well as the
American Statistical Association section on Statistical
Computing. The organizing committee consisted of
Torsten Hothorn, Achim Zeileis, David Meyer, and
Bettina Grün (in charge of conference, program, lo-
cal organization, and web site, consecutively) along
with Kurt Hornik and Friedrich Leisch.

The approximately 400 attendees comprised a
broad spectrum of users from the scientific and busi-

ness community. The conference was divided into
keynote, kaleidoscope, and focus sessions. The kalei-
doscope sessions addressed applications and usage
of R appealing to a broad audience, while the focus
sessions were more specialized, highlighting a spe-
cific topic followed by a discussion and exhibition.
Keynote speakers included R core members and R
users:

• John Chambers on the history of S and R

• Brian Everitt on cluster analysis

• John Fox and Sanford Weisberg on using R for
teaching

• Trevor Hastie on path algorithms

• Jan de Leeuw on R in psychometrics

R News ISSN 1609-3631

