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Editorial
by Kurt Hornik

Welcome to the fourth issue of R News, the newsletter
of the R project for statistical computing.

This is the first special issue of R News, with an
emphasis on applying R in medical statistics. It is
special in many ways: first, it took longer to pre-
pare than we had originally antipicated (which typi-
cally seems to happen for special issues). Second, the
newsletter file is rather large as there are many excit-
ing images—in fact, in trying to keep the size rea-
sonable, in some cases images are only included at a
lower resolution, with the “real stuff” available from
the respective authors’ web pages. And finally, arti-
cles are fewer but longer: as many of the applications
described are based on recent advances in medical
technology, we felt that extra space with background
information was warranted.

The main focus in this issue is on using R in
the analysis of genome data. Here, several excit-
ing initiatives have recently been started, and R has
the potential to become a standard tool in this area.
The multitude of research questions calls for a flex-
ible computing environment with seemless integra-
tion to databases and web content and, of course,
state-of-the-art statistical methods: R can do all
of that. Robert Gentleman and Vince Carey have
started the Bioconductor project, a collaborative ef-
fort to provide common infrastructure for the anal-

ysis of genome data. The packages developed by
this project (about 20 are currently under way) make
heavy use of the S4 formal classes and methods
(which are now also available in R) introduced in the
“Green Book” by John Chambers, and in fact provide
the first large-scale project employing the new S ob-
ject system.

R 1.4.0 was released on Dec 19, 2001, making it
the “Lord of the Rings” release of R. Its new features
are described in “Changes in R”. The number of R
packages distributed via CRAN’s main section alone
now exceeds 150 (!!!)—“Changes on CRAN” briefly
presents the 26 most recent ones. The series of intro-
ductory articles on each recommended package con-
tinues with “Reading Foreign Files”.

Developers of R packages should consider sub-
mitting their work to the Journal of Statistical Software
(JSS, http://www.jstatsoft.org) which has be-
come the ‘Statistical Software’ section of the Journal
of Computational and Graphical Statistics (JCGS).
JSS provides peer reviews of code and publishes user
manuals alongside, and hence ideally complements
R News as a platform for disseminating news about
exciting statistical software.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Technische Universität Wien, Austria
Kurt.Hornik@R-project.org
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Reading Foreign Files
by Duncan Murdoch

One of the first tasks in any statistical analysis is get-
ting the data into a usable form. When your client
gives you notebooks filled with observations or a pile
of surveys and you control the data entry, then you
can choose the form to be something convenient. In
R, that usually means some form of text file, either
comma- or tab-delimited. Through the RODBC and
various SQL packages R can also import data directly
from many databases.

However, sometimes you receive data that has al-
ready been entered into some other statistical pack-
age and stored in a proprietary format. In that case
you have a couple of choices. You might be able to
write programs in that package to export the data in
an R-friendly format, but often you don’t have access
or familiarity with it, and it would be best if R could
read the foreign file directly. The foreign package is
designed for exactly this situation. It has code to read
files from Minitab, S, S-PLUS, SAS, SPSS and Stata.
In this article I’ll describe how to import data from
all of these packages. I wrote the S and S-PLUS parts,
so I’ll describe those in most detail first. Other cred-
its for the foreign package go to Doug Bates, Saikat
DebRoy, and Thomas Lumley.

For more information on data import and export,
I recommend reading the fine manual “R Data Im-
port/Export” which comes with the R distribution.

Reading S and S-PLUS files

Both S and S-PLUS usually store objects (which, as
most R users know, are very similar to R objects) in
individual files in a data directory, as opposed to the
single workspace files that R uses. Sometimes the file
has the same name as the object, sometimes it has a
constructed name, e.g., ‘ 12’. The mapping between
object name and file name is complicated and ver-
sion dependent. In S-PLUS 2000 for Windows, the
file ‘ nonfi’ in the data directory contains a list of ob-
ject names and corresponding filenames. Other ver-
sions use different mechanisms. Sometimes (e.g., in
library sections) all objects are stored in one big file;
at present the foreign package cannot read these.

The foreign function read.S() can be used to
read the individual binary files. I have tested it
mainly on S-PLUS 2000 for Windows, but it is based
on code that worked on earlier versions as well. It
may not work at all on later versions. (This is a con-
tinuing problem with reading foreign files. The writ-
ers of those foreign applications frequently change
the formats of their files, and in many cases, the file
formats are unpublished. When the format changes,
foreign stops working until someone works out the

new format and modifies the code.)
read.S() takes just one argument: the filename

to read from. It’s up to you to figure out which file
contains the data you want. Because S and R are so
similar, read.S is surprisingly successful. It can gen-
erally read simple vectors, data frames, and can oc-
casionally read functions. It almost always has trou-
ble reading formulas, because those are stored differ-
ently in S and R.

For example, I have an S-PLUS data frame called
Bars:

> Bars

type time y1 y2

1 0 1 -0.5820 24.7820

2 0 2 0.5441 23.6559

317 0 7 -1.1925 25.3925

319 0 8 1.4409 22.7591

631 0 13 -3.4194 27.6194

633 0 14 0.7975 23.4025

738 0 19 -0.3439 24.5439

740 0 20 0.6580 23.5420

At the beginning of the session, S-PLUS printed this
header:

Working data will be in

F:\Program files\sp2000\users\murdoch\_Data

so that’s the place to go looking for Bars: but there’s
no file there by that name. The ‘ nonfi’ file has these
lines near the end:

"Bars"

"__107"

which give me the correct filename, ‘ 107’. Here I
read the file into R:

> setwd(’F:/Program files/sp2000/users’)

NULL

> read.S(’murdoch/_Data/__107’)

type time y1 y2

1 0 1 -0.5820 24.7820

2 0 2 0.5441 23.6559

317 0 7 -1.1925 25.3925

319 0 8 1.4409 22.7591

631 0 13 -3.4194 27.6194

633 0 14 0.7975 23.4025

738 0 19 -0.3439 24.5439

740 0 20 0.6580 23.5420

(The only reason to use setwd here is to fit into these
narrow columns!) We see that read.S was success-
ful; only the printing format is different.

Of course, since I have access to S-PLUS to
do this, it would have been much easier to ex-
port the data frame using dump() and read it into
R using source(). I could also have exported
it using data.dump and restored it using foreign’s
data.restore, but that has the same limitations as
read.S.
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Reading SAS files
SAS stores its files in a number of different formats,
depending on the platform (PC, Unix, etc.), version,
etc. The read.xport function can read the SAS trans-
port (XPORT) format. How you produce one of these
files depends on which version of SAS you’re using.
In older versions, there was a PROC XPORT. Newer
versions use a “library engine” called sasv5xpt to
create them. From the SAS technical note referenced
in the ?read.xport help page, a line like

libname xxx sasv5xpt ’xxx.dat’;

creates a library named xxx which lives in the physi-
cal file ‘xxx.dat’. New datasets created in this library,
e.g. with

data xxx.abc;

set otherdata;

will be saved in the XPORT format.
To read them, use the read.xport function. For

example, read.xport(’xxx.dat’) will return a list
of data frames, one per dataset in the exported li-
brary. If there is only a single dataset, it will be re-
turned directly, not in a list. The lookup.xport func-
tion gives information about the contents of the li-
brary.

Reading Minitab files

Minitab also stores its data files in several differ-
ent formats. The foreign package can only read the
“portable” format, the MTP files. In its current in-
carnation, only numeric data types are supported; in
particular, dataset descriptions cannot be read.

The read.mtp function is used to read the files. It
puts each column, matrix or constant into a separate
component of a list.

Reading SPSS and Stata files

The foreign functions read.spss and read.dta can
read the binary file formats of the SPSS and Stata
packages respectively. The former reads data into a
list, while the latter reads it into a data frame. The
write.dta function is unique in the foreign package
in being able to export data in the Stata binary format.

Caveats and conclusions

It’s likely that all of the functions in the foreign pack-
age have limitations, but only some of them are doc-
umented. It’s best to be very careful when transfer-
ring data from one package to another. If you can,
use two different methods of transfer and compare
the results; calculate summary statistics before and
after the transfer; do anything you can to ensure that
the data that arrives in R is the data that left the other
package. If it’s not, you’ll be analyzing programming
bugs instead of the data that you want to see.

But this is true of any data entry exercise: errors
introduced in data entry aren’t of much interest to
your client!

Duncan Murdoch
University of Western Ontario
murdoch@stats.uwo.ca

Maximally Selected Rank Statistics in R
by Torsten Hothorn and Berthold Lausen

Introduction

The determination of two groups of observations
with respect to a simple cutpoint of a predictor is a
common problem in medical statistics. For example,
the distinction of a low and high risk group of pa-
tients is of special interest. The selection of a cutpoint
in the predictor leads to a multiple testing problem,
cf. Figure 1. This has to be taken into account when
the effect of the selected cutpoint is evaluated. Maxi-
mally selected rank statistics can be used for estima-
tion as well as evaluation of a simple cutpoint model.
We show how this problems can be treated with the
maxstat package and illustrate the usage of the pack-
age by gene expression profiling data.

Maximally selected rank statistics

The functional relationship between a quantitative or
ordered predictor X and a quantitative, ordered or
censored response Y is unknown. As a simple model
one can assume that an unknown cutpoint µ in X de-
termines two groups of observations regarding the
response Y: the first group with X-values less or
equal µ and the second group with X-values greater
µ. A measure of the difference between two groups
with respect to µ is the absolute value of an appro-
priate standardized two-sample linear rank statistic
of the responses. We give a short overview and fol-
low the notation in Lausen and Schumacher (1992).

The hypothesis of independence of X and Y can
be formulated as

H0 : P(Y ≤ y|X ≤ µ) = P(Y ≤ y|X > µ)

for all y and µ ∈ R. This hypothesis can be tested as
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follows. For every reasonable cutpoint µ in X (e.g.,
cutpoints that provide a reasonable sample size in
both groups), the absolute value of the standardized
two-sample linear rank statistic |Sµ | is computed.
The maximum of the standardized statistics

M = max
µ
|Sµ |

of all possible cutpoints is used as a test statistic
for the hypothesis of independence above. The cut-
point in X that provides the best separation of the re-
sponses into two groups, i.e., where the standardized
statistics take their maximum, is used as an estimate
of the unknown cutpoint.

Several approximations for the distribution of the
maximum of the standardized statistics Sµ have been
suggested. Lausen and Schumacher (1992) show that
the limiting distribution is the distribution of the
supremum of the absolute value of a standardized
Brownian bridge and consequently the approxima-
tion of Miller and Siegmund (1982) can be used. An
approximation based on an improved Bonferroni in-
equality is given by Lausen et al. (1994). For small
sample sizes, Hothorn and Lausen (2001) derive an
lower bound on the distribution function based on
the exact distribution of simple linear rank statis-
tics. The algorithm by Streitberg and Röhmel (1986)
is used for the computations. The exact distribution
of a maximally selected Gauß statistic can be com-
puted using the algorithms by Genz (1992). Because
simple linear rank statistics are asymptotically nor-
mal, the results can be applied to approximate the
distribution of maximally selected rank statistics (see
Hothorn and Lausen, 2001).

The maxstat package

The package maxstat implements both cutpoint esti-
mation and the test procedure above with several P-
value approximations as well as plotting of the em-
pirical process of the standardized statistics. It de-
pends on the packages exactRankTests for the com-
putation of the distribution of linear rank statistics
(Hothorn, 2001) and mvtnorm for the computation of
the multivariate normal distribution (Hothorn et al.,
2001). All packages are available at CRAN. The
generic method maxstat.test provides a formula
interface for the specification of predictor and re-
sponse. An object of class "maxtest" is returned.
The methods print.maxtest and plot.maxtest are
available for inspectation of the results.

Gene expression profiling

The distinction of two types of diffuse large B-cell
lymphoma by gene expression profiling is studied by
Alizadeh et al. (2000). Hothorn and Lausen (2001)

suggest the mean gene expression (MGE) as quan-
titative factor for the discrimination between two
groups of patients with respect to overall survival
time. The dataset DLBCL is included in the pack-
age. The maximally selected log-rank statistic for
cutpoints between the 10% and 90% quantile of MGE
using the upper bound of the P-value by Hothorn
and Lausen (2001) can be computed by

> data(DLBCL)

> maxstat.test(Surv(time, cens) ~ MGE,

data=DLBCL, smethod="LogRank",

pmethod="HL")

LogRank using HL

data: Surv(time, cens) by MGE

M = 3.171, p-value = 0.02220

sample estimates:

estimated cutpoint

0.1860526

For censored responses, the formula interface is
similar to the one used in package survival: time
specifies the time until an event and cens is the sta-
tus indicator (dead=1). For quantitative responses
y, the formula is of the form ‘y ~ x’. Currently it
is not possible to specify more than one predictor
x. smethod allows the selection of the statistics to
be used: Gauss, Wilcoxon, Median, NormalQuantil
and LogRank are available. pmethod defines which
kind of P-value approximation is computed: Lau92
means the limiting distribution, Lau94 the approxi-
mation based on the improved Bonferroni inequal-
ity, exactGauss the distribution of a maximally se-
lected Gauß statistic and HL is the upper bound of
the P-value by Hothorn and Lausen (2001). All im-
plemented approximations are known to be conser-
vative and therefore their minimum P-value is avail-
able by choosing pmethod="min".
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Figure 1: Absolute standardized log-rank statistics
and significance bound based on the improved Bon-
ferroni inequality.
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For the overall survival time, the estimated cut-
point is 0.186 mean gene expression, the maximum
of the log-rank statistics is M = 3.171. The proba-
bility that, under the null hypothesis, the maximally
selected log-rank statistic is greater M = 3.171 is less
then than 0.022. The empirical process of the stan-
dardized statistics together with theα-quantile of the
null distribution can be plotted using plot.maxtest.

> data(DLBCL)

> mod <-

maxstat.test(Surv(time, cens) ~ MGE,

data=DLBCL, smethod="LogRank",

pmethod="Lau94", alpha=0.05)

> plot(mod, xlab="Mean gene expression")

If the significance level alpha is specified, the cor-
responding quantile is computed and drawn as a
horizonal red line. The estimated cutpoint is plotted
as vertical dashed line, see Figure 1.

The difference in overall survival time between
the two groups determined by a cutpoint of 0.186
mean gene expression is plotted in Figure 2. No
event was observed for patients with mean gene ex-
pression greater 0.186.
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Figure 2: Kaplan-Meier curves of two groups of DL-
BCL patients separated by the cutpoint 0.186 mean
gene expression.

Summary

The package maxstat provides a user-friendly inter-
face and implements standard methods as well as
recent suggestions for the approximation of the null
distribution of maximally selected rank statistics.

Acknowledgement. Support from Deutsche
Forschungsgemeinschaft SFB 539-A4 is gratefully
acknowledged.
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Quality Control and Early Diagnostics for
cDNA Microarrays
by Günther Sawitzki

We present a case study of a simple application of R
to analyze microarray data. As is often the case, most
of the tools are nearly available in R, with only minor
adjustments needed. Some more sophisticated steps
are needed in the finer issues, but these details can
only be mentioned in passing.

Quality control for microarrays

Microarrays are a recent technology in biological and
biochemical research. The basic idea is: you want
to assess the abundance of some component of a
sample . You prepare a more or less well defined
probe which binds chemically to this specific com-
ponent. You bring probe and sample into contact,
measure the amount of bound component and infer
the amount in the original sample.

So far, this is a classical technique in science. But
technology has advanced and allows high through-
put. Instead of applying samples to probes one by
one, we can spot many probes on a chip (a micro-
scope slide or some other carrier) and apply the sam-
ple to all of them simultaneously and under identi-
cal conditions. Depending on the mechanics and ad-
hesion conditions, today we can spot 10,000–50,000
probes on a chip in well-separated positions. So one
sample (or a mixture of some samples) can give infor-
mation about the response for many probes. These
are not i.i.d. observations, but the probes are selected
and placed on the chip by our choice, and response as
well as errors usually are correlated. The data have
to be considered as high dimensional response vec-
tors.

Various approaches how to analyze this kind of
data are discussed in the literature. We will concen-
trate on base level data analysis. Of course any seri-
ous analysis does specify diagnostic checks for vali-
dating its underlying assumptions. Or, to put it the
other way, an approach without diagnostics for its
underlying assumptions may be hardly considered
serious. The relevant assumptions to be checked de-
pend on the statistical methods applied, and we face
the usual problem that any residual diagnostic is in-
fluenced by the choice of methods which is used to
define fit and hence residuals. However there are
some elementary assumptions to check which are rel-
evant to all methods. If you prefer, you can name it
quality control.

We use R for quality control of microarrays. We
simplify and specialize the problem to keep the pre-
sentation short. So for now the aim is to imple-

ment an early diagnostic to support quality control
for microarrays in a routine laboratory environment
- something like a scatterplot matrix, but adapted to
the problem at hand.

Some background on DNA hybri-
dization

Proteins are chemical components of interest in bio-
chemical research. But these are very delicate to han-
dle, and specific probes have to be developed in-
dividually protein by protein. As a substitute, the
genes controlling the protein production can be stud-
ied. The genes are encoded in DNA, and in the syn-
thesis process these are transcribed to RNA which
then enters to the protein production. DNA and
transcribed RNA come in complementary pairs, and
the complementary pairs bind specifically (hybridi-
zation). So for each specific DNA segment the com-
plementary chain gives a convenient probe.

In old Lackmus paper, the probe on the paper
provides colour as visible indicator. In hybridization
experiments, we have to add an indicator. In DNA/
RNA hybridization experiments the DNA is used as
a probe. The indicator now is associated with the
sample: the RNA sample is transcribed to cDNA
(which is more stable) and marked, using dyes or
a radioactive marker. For simplicity, we will con-
centrate on colour markers. After probe and sample
have been hybridized in contact and unbound mate-
rial has been washed off, the amount of observable
marker will reflect the amount of bound sample.

Data is collected by scanning. The raw data are
intensities by scan pixel, either for an isolated scan
channel (frequency band) or for a series of chan-
nels. Conventionally these data are pre-processed
by image analysis software. Spots are identified by
segmentation, and an intensity level is reported for
each spot. Additionally, estimates for the local back-
ground intensities are reported.

In our specific case, our partner is the Molecular
Genome Analysis Department of the German can-
cer research center (DKFZ). Cancer research has var-
ious aspects. We simplify strongly in this presenta-
tion and consider the restricted question as to which
genes are significantly more (or significantly less) ac-
tive in cancer cell, in comparison to non-cancerous
“normal” cells. Which genes are relevant in cancer?
Thinking in terms of classical experiments leads to
taking normal and tumor cell samples from each in-
dividual and applying a paired comparison. Detect-
ing differentially expressed genes is a very different
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challenge from classical comparison. Gene expres-
sion analysis is a search problem in a high dimen-
sional structured data set, while classical paired com-
parison deals with independent pairs of samples in
a univariate context. But in the core gene expres-
sion analysis benefits from scores which may be mo-
tivated by a classical paired comparison.

Statistical routine immediately asks for factors
and variance components. Of course there will be
a major variation between persons. But there will
be also a major contribution from the chip and hy-
bridizations: the amount of sample provided, the
sample preparations, hybridization conditions (e.g.,
temperature) and the peculiarities of the scanning
process which is needed to determine the marker in-
tensity by spot, among others are prone to vary from
chip to chip. To control these factors or variance com-
ponents, sometimes a paired design may be used by
applying tumor and normal tissue samples on the
same chip, using different markers (e.g., green and
red dye). This is the basic design in the fundamental
experiments.

The challenge is to find the genes that are rel-
evant. The typical experiment has a large number
of probes with a high variation in response between
samples from different individuals. But only a small
number of genes is expected to be differentially ex-
pressed (“many genes few differentials”).

To get an idea of how to evaluate the data, we can
think of the structure we would use in a linear gaus-
sian model to check for differences in the foreground
( f g). We would implement the background (bg) as a
nuisance covariable and in principle use a statistics
based upon something like

∆ = (Ytumor −Ynormal)

where e.g.,

Ytumor = ln(Y f g tumor −Ybg tumor)
Ynormal = ln(Y f g normal −Ybg normal)

given or taken some transformation and scaling. Us-
ing log intensities is a crude first approach. Find-
ing the appropriate transformations and scaling as
a topic of its own, see e.g. Huber et al. (2002). The
next non-trivial step is combining spot by spot in-
formation to gene information, taking into account
background and unknown transformations. Details
give an even more complex picture: background cor-
rection and transformation may be partly integrated
in image processing, or may use information from
other spots. But there is an idea of the general struc-
ture, and together with statistical folklore it suggests
how to do an early diagnostics.

We hope that up to choice of scale ∆ covers the
essential information of the experiment. We hope
we can ignore all other possible covariates and for
each spot we can concentrate on Y f g tumor, Ybg tumor,
Y f g normal , Ybg normal as source of information. Up to

choice of scale, (Y f g tumor − Y f g normal) represents the
raw “effect” and a scatter plot of Y f g tumor vs Y f g normal
is the obvious raw graphic tool.

Unfortunately this tool is stale. Since tumor and
normal sample may have different markers (or may
be placed on different slides in single dye experi-
ments) there may be unknown transformations in-
volved going from our target, the amount of bound
probe specific sample, to the reported intensities Y.
Since it is the most direct raw plot of the effect, the
scatterplot is worth being inspected. But more con-
siderations may be necessary.

Diagnostics may be sharper if we know what we
are looking for. We want diagnostics that highlight
the effect, and we want diagnostics that warn against
covariates or violation of critical assumptions. For
now, we pick out one example: spatial variation. As
with all data collected from a physical carrier, posi-
tion on the carrier may be an important covariate. We
do hope that this is not the case, so that we can omit
it from our model. But before running into artifacts,
we should check for spatial homogeneity.

Diagnostic for spatial effects

For illustration, we use a paired comparison between
tumor and normal samples. After segmentation and
image pre-processing we have some intensity in-
formation Y f g tumor, Ybg tumor, Y f g normal , Ybg normal per
spot. A cheap first step is to visualize these for
each component by position (row and column) on
the chip. With R, the immediate idea is to organize
each of these vectors as a matrix with dimensions
corresponding to the physical chip layout and to use
image().

As usual, some fine tuning is needed. As has been
discussed many times, in S and R different concepts
of coordinate orientation are used for matrices and
plots and hence the image appears rotated. Second,
we want an aspect ratio corresponding to the geo-
metric while image follows the layout of R’s graph-
ics regions. A wrapper imagem() around image() is
used as a convenient solution for these details (and
offers some additional general services which may
be helpful when representing a matrix graphically).

Using red and green color palettes for a paired
comparison experiment gives a graphical represen-
tation which separates the four information channels
and is directly comparable to the raw scanned im-
age. An example of these images is in http://www.
statlab.uni-hd.de/projects/genex/.

The next step is to enhance accessibility of the in-
formation. The measured marker intensity is only an
indirect indicator of the gene activity. The relation is
influenced by many factors, such as sample amount,
variation between chips, scanner settings. Internal
scanner calibration in the scan machine (which may
automatically adjust between scans) and settings of
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the image processing software are notorious sources
of (possibly nonlinear) distortions. So we want to
make a paired comparison, but each of both sides
undergoes an unknown transformation. Here spe-
cific details of the experiment come to help. We can-
not assume that both samples in a pair undergo the
same transformation. But while we do not know the
details of the transformations, we hope that at least
each is guaranteed to be monotonous.

At least for experiments with “many genes - few
differentials”, this gives one of the rare situations
where we see a bless of high dimensions, not a curse.
The many spots scanned under comparable condi-
tions provide ranks for the measured intensity which
are a stable indicator for the rank of the original ac-
tivity of each. So we apply imagem() to the ranks,
where the ranks are taken separately for the four
components and within each scan run.

The rest is psychology. Green and red are com-
monly used as dyes in these experiments or in pre-
sentations, but these are not the best choice for visu-
alization. If it comes to judging quantitative differ-
ences, both colour scales are full of pitfalls. Instead
we use a colour palette going from blue to yellow,
with more lightness in the middle value range.

To add some sugar, background is compared be-
tween the channels representing tumor and normal.
If we want a paired comparison, background may be
ignorable if it is of the same order for both because
it balances in differences. But if we have spots for
which the background values differ drastically, back-
ground correction may be critical. If these points
come in spatial clusters, a lot more work needs to
be done in the analysis. To draw attention to this,
spots with extremely high values compared to their
counterpart are highlighted. This highlighting is im-
plemented as an overlay. Since image() has the fa-
cility to leave undefined values as background, it is
enough to apply imagem() again with the uncritical
points marked as NA, using a fixed colour.

Wrapping it up

Rank transformation and image generation are
wrapped up in a single procedure showchip(). Since
the ranks cover all order information, but lose the
original scale, marginal scatterplots are provided as
well, on a fixed common logarithmic scale.

Misadjustment in the scanning is a known no-
torious problem. Estimated densities over all spots
within one scan run are provided for the four infor-
mation items, together with the gamma correction
exponent which would be needed to align the me-
dians.

If all conditions were fixed or only one data set
were used, this would be sufficient. The target envi-
ronment however is the laboratory front end where
the chip scanning is done as the chips come in. Ex-

perimental setup (including chip layout) and sam-
pling protocols are prone to vary. Passing the details
as single parameters is error prone, and passing the
data repeatedly is forbidding for efficiency reasons
due to the size of the data per case.

The relevant information is bundled instead. Bor-
rowing ideas from relational data bases, for each se-
ries of experiments one master list is kept which
keeps references to tables or lists which describe de-
tails of the experiment. These details go from de-
scription of the geometry, over a representation of the
actual experimental design to various lists which de-
scribe the association between spots and correspond-
ing probes. S always had facilities for a limited form
of object oriented programming, since functions are
first class members in S. Besides data slots, the mas-
ter list has list elements which are functions. Us-
ing enclosure techniques as described in Gentleman
and Ihaka (2000), it can extract and cache informa-
tion from the details. The proper data are kept in
separate tables, and methods of the master list can
invoke showchip() and other procedures with a min-
imum of parameter passing, while guaranteeing con-
sistency which would endangered if global variables
were used.

From the user perspective, a typical session may
introduce a new line of experiments. The structure of
the session is

curex <- NewGenex("<new project name>")

## create a new descriptor object from

## default. if an additional parameter is given,

## it is a model to be cloned.

curex$nsetspotdesc("<some descriptor name>")

## we access other lists by name.

## This is risky, but for the present purpose

## it does the job ...

## Possibly many more experimental details

curex$save()

## The current experiment descriptor saves

## itself as <new project name>.RData

Once an experimental layout has been specified,
it is attached to some specific data set as

curex$nsetdata("<some data name>")

## associates the data with the

## current experimental layout

Of course it would be preferable to set up a reference
from the data to the experiment descriptor. But we
have to take into account that the data may be used
in other evaluation software; so we should not add
elements to the low level data if we can avoid it.

When the association has been set up, application
is done as

curex$showchip(<some chip identification>)

## names or indices of chip/chips to show.
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This is a poor man’s version of object oriented pro-
gramming in R. For a full grown model of object ori-
ented programming in R, see Chambers and Lang
(2001).

Looking at the output

We cannot expect a spatially uniform distribution of
the signals over the spots. The probes do not fall
at random on the chip, but they are placed, and the
placement may reflect some strategy or some tradi-
tion. In the sample output (Figure 1), we see a gradi-
ent from top to bottom. If we look closer, there may
be a separation between upper and lower part. In
fact these mirror the source of the genes spotted here.
This particular chip is designed for investigations on
kidney cancer. About half of the genes come from
a “clone library” of kidney related genes, the other
from genes generally expected to be cancer related.
This feature is apparent in all chips from this spe-
cial data series. The immediate warning to note is:
it might be appropriate to use a model which takes
into account this as a factor. On some lines, the spots
did not carry an active probe. These unused spots
provide an excellent possibility to study the null dis-
tribution. The vertical band structure corresponds
to the plates in which the probes are provides; the
square blocks come from characteristics of the print
head. These design factors are well known, and need
to taken into account in a formal analysis.

Of course these known features can be taken into
account in an adapted version of showchip, and all
this information is accessible in the lists mentioned
above. In a true application this would be used to
specialize showchip(). For now let us have another
look at the unadapted plot shown in Figure 1.

Background is more diffuse than foreground—
good, since we expect some smooth spatial variation
of the background while we expect a grainy struc-
ture in the foreground reflecting the spot probes.
High background spots have a left-right antisymme-
try. This is a possible problem in this sample pair if
it were unnoticed (it is is an isolated problem on this
one chip specimen).

As in the foreground, there is some top/bottom
gradient. This had good reason for the foreground
signal. But for the background, there is no special
asymmetry. As this feature runs through all data of
this series of experiments, it seems to indicate a sys-
tematic effect (possibly a definition of “background”
in the image processing software which picks up too
much foreground signal).

Conclusion

showchip() is used for the first steps in data process-

ing. It works on minimal assumptions and is used
to give some first pilot information. For any evalu-
ation strategy, it can be adapted easily if the critical
statistics can be identified on spot level. For a fixed
evaluation strategy, it then can be fine tuned to in-
clude information on the spatial distribution of the
fit and residual contributions of each spot. This is
where the real application lies, once proper models
are fixed, or while discussing model alternatives for
array data analysis.

An outline of how showchip() is integrated in a
general rank based analysis strategy is given in Sa-
witzki (2001).

P.S. And of course there is one spot out.
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Figure 1: Output of qcshowhip(). This example compares tumor center material with tumor progression front.
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Bioconductor
Open source bioinformatics using R

by Robert Gentleman and Vincent Carey

Introduction

One of the interesting statistical challenges of the
early 21st century is the analysis of genomic data.
This field is already producing large complex data
sets that hold the promise of answering important
questions about how different organisms function.
Of particular interest is the ability to study diseases
at a new level of resolution.

While the rewards appear substantial there are
large hurdles to overcome. The size and complex-
ity of the data may prevent many statisticians from
getting involved. The need to understand a reason-
able (or unreasonable) amount of biology in order to
be effective will also be a barrier to entry for some.

We have recently begun a new initiative to de-
velop software tools to make the analysis of these
data sets easier and we hope to substantially lower
the barrier to entry for statisticians. The project
is called Bioconductor, www.bioconductor.org. We
chose the name to be suggestive of cooperation and
we very much hope that it will be a collaborative
project developed in much the same spirit as R.

In this article we will consider three of the Bio-
conductor packages and the problems that they were
designed to address. We will concentrate on the anal-
ysis of DNA microarray data. This has been the focus
of our initial efforts. We hope to expand our offerings
to cover a much wider set of problems and data in the
future. The problems that we will consider are:

• data complexity: the basic strategy here is
to combine object oriented programming with
appropriate data structures. The package is
Biobase.

• utilizing biological meta data: the basic strat-
egy here is to use databases and hash tables to
link symbols. The package is annotate.

• gene selection: given a set of expression data
(generally thousands of genes) how do we se-
lect a small subset that might be of more in-
terest? This is equivalent to ranking genes or
groups of genes in some order. The package is
genefilter.

• documentation: as we build a collection of in-
terdependent but conceptually distinct pack-
ages, how do we ensure durable interopera-
tion? We describe a vignette documentation
concept, implemented using Sweave (a new
function in R contributed by F. Leisch).

An overview of this area, provided by the Eu-
ropean Bioinformatics Institute, may be found at
http://industry.ebi.ac.uk/~brazma/Biointro/
biology.html Also, a recent issue of the Journal of
the American Medical Association (November 14,
2001) has a useful series of pedagogic and interpre-
tive papers.

Handling data complexity

Most microarray experiments consists of some num-
ber of samples, usually less than 100, on which ex-
pression of messenger RNA (mRNA) has been mea-
sured. While there are substantial interesting statis-
tical problems involving the design and processing
of the raw data we will concentrate on the data that
have been processed to the point that we have com-
parable expression data for a set of genes for each
of our samples. For simplicity of exposition we will
consider a clinical setting where the samples corre-
spond to patients.

Our primary genomic data resource then consists
of an expression array which has several thousand
rows (representing genes) and columns represent-
ing patients. In addition we have data on the pa-
tients, such as age, gender, disease status, duration
of symptoms and so on. These data are conceptually
and often administratively distinct from the expres-
sion data (which may be managed in a completely
different database). We will use the term phenotypic
data to refer to this resource, acknowledging that it
may include information on demographics or ther-
apeutic conditions that are not really about pheno-
type.

What are efficient approaches for coordinating ac-
cess to genomic and phenotypic data as described
here? It is possible to couple the genomic and phe-
notypic data for each patient as a row in a single
data frame, but this seems unnatural. We recog-
nize that the general content and structure of expres-
sion data and phenotype data may evolve in differ-
ent ways as biological technology and research direc-
tions also change, and that the corresponding types
of information will seldom be treated in the sym-
metric fashion implied by storing them in a com-
mon data frame. Our approach to data structure de-
sign for this problem preserves the conceptual inde-
pendence of these distinct information types and ex-
ploits the formal methods and classes in the package
methods which was developed by J. M. Chambers.

Class exprSet and its methods

The methods package provides a substantial ba-
sis for object-oriented programming in R. Object-
oriented programming has long been a tool for deal-
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ing with complexity. If we can find a suitable repre-
sentation for our data then we can think of it as an
object. This object is then passed to various routines
that are designed to deal with the special structure in
the objects.

An object has slots that represent its different
components. To coordinate access to the genomic
and phenotypic data generated in a typical microar-
ray experiment, we defined a class of objects called
exprSet. An instance of this class has the following
slots:

exprs An array that contains the estimated expres-
sion values, with columns representing sam-
ples and rows representing genes.

se.exprs An array of the same size as exprs con-
taining estimated standard errors. This may be
NULL.

phenoData An instance of the phenoData class
which contains the sample level variables for
this experiment. This class is described subse-
quently.

description A character variable describing the ex-
periment. This will probably change to some
form of documentation object when and if we
adopt a more standard mechanism for docu-
mentation.

annotation This is a character string indicating the
name of the annotation data that can be used
for this exprSet.

notes A character string for notes regarding the
analysis or for any other purpose.

Once we have defined the class we may create in-
stances of it. A particular data set stored in this for-
mat would be called an instance of the class. While
we should technically always say something like: x is
an instance of the exprSet class, we will often simply
say that x is an exprSet.

We have implemented a number of methods for
the exprSet and phenoData classes. Most of these
are preliminary and some will evolve as our under-
standing and the data analytic processing involved
mature. The reader is directed to the documentation
in our packages for definitive descriptions.

We would like to say a few words here about the
subsetting methods. By implementing special sub-
setting methods we are able to ensure that the data
remain correctly aligned. So, if x is an instance of
an exprSet, we may ask for x[,1:5]. The second
index in this subscripting expression refers to tissue
samples. The value of this expression is an exprSet
whose contents are restricted to the first five sam-
ples in x. The new exprSet’s exprs element con-
tains the first five columns of x’s expr array. The new
exprSet’s se.exprs array is similarly restricted. But
the phenoData must also have a subset made and for

it we want the first five rows of x’s phenoData data
frame, since it is in the more standard format where
columns are variables and rows are cases.

Notice that by representing our data with a for-
mal class we have removed a great deal of the com-
plexity associated with the data. We believe that this
representation relieves the data analyst of complex
tasks of coordination and checking of diverse data
resources and makes working with exprSets much
simpler than working with the raw data.

We have also defined the $ operator to work on
exprSets. This operator selects variables of the ap-
propriate name from the phenoData component of
the exprSet.

The phenoData class was designed to hold the
phenotypic (or sample level) data. Instances of this
class have the following slots:

pData This is a data.frame with samples as the
rows and the phenotypic variables as the
columns.

varLabels This is a list with one element per pheno-
typic variable. Names of list elements are the
variable names; list element values are charac-
ter strings with brief textual descriptions of the
associated variables.

We find it very helpful to keep descriptions of the
variables associated with the data themselves. Such
a construct could be helpful for all data.frames.

Example

The golubEsets package includes exprSets embody-
ing the leukemia data of the celebrated Science pa-
per of T. Golub and colleagues (Science 286:531-537,
1999). Upon attaching the golubTrain element of the
package, we perform the following operations.

Show the data. This gives a concise report.

> golubTrain

Expression Set (exprSet) with

7129 genes

38 samples

phenoData object with 11 variables and 38 cases

varLabels

Samples: Sample index

ALL.AML: Factor, indicating ALL or AML

BM.PB: Factor, sample from marrow or \

peripheral blood

T.B.cell: Factor, T cell or B cell leuk.

FAB: Factor, FAB classification

Date: Date sample obtained

Gender: Factor, gender of patient

pctBlasts: pct of cells that are blasts

Treatment: response to treatment

PS: Prediction strength

Source: Source of sample
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Subset expression values. This gives a matrix.
Note the gene annotation, in Affymetrix ID format.

> exprs(golubTrain)[1:4,1:3]

[,1] [,2] [,3]

AFFX-BioB-5_at -214 -139 -76

AFFX-BioB-M_at -153 -73 -49

AFFX-BioB-3_at -58 -1 -307

AFFX-BioC-5_at 88 283 309

Tabulate stratum membership. This exploits the
redefined $ operator.

> table(golubTrain$ALL.AML)

ALL AML

27 11

Restrict to the ALL patients. We obtain the dimen-
sions after restriction to patients whose phenoData
indicates that they have acute lymphocytic leukemia.

> print(dim(exprs(golubTrain[ ,

golubTrain$ALL.AML=="ALL"])))

[1] 7129 27

Other tools for working with exprSets are pro-
vided, including methods for iterating over genes
with function application, and sampling from pa-
tients in an exprSet (with or without replacement).
The latter method returns an exprSet.

Annotation

Relating the genes to various biological data re-
sources is essential. While there is much to be
learned and many of the biological databases are
very incomplete it is never the less essential to start
employing these data. Again our approach is quite
simple but it has proven effective and we are able to
both analyse the data we encounter and to provide
resources to others.

Our approach has been to divide the process into
two components. One process is the building and
collation of annotation data from public databases,
and the other process is the extraction and formatting
of the collated data for analysis reporting. Data ana-
lysts using Bioconductor will typically simply obtain
a set of annotation tables for the chip data they are
using. Given the appropriate tables they can select
genes according to certain conditions such as func-
tional group, or biological process or chromosomal
location.

The process of building annotation data sets is
carried out by the AnnBuilder package. We dis-
tribute this but most users will not want to build
their own annotation. They will want instead to
have access to specific annotation for their chip.
AnnBuilder relies on several R packages (available

from CRAN) including D. Temple Lang’s XML and
T. Keitt’s RPgSQL.

Typically the annotation data available are a com-
plete set for all genomes or a complete set for a spe-
cific genome, such as yeast or humans. Since this is
typically much larger than what is currently avail-
able on any microarray and in the interest of perfor-
mance we have found that producing annotation col-
lections at the level of a chip has been quite success-
ful.

The data analyst simply needs to ensure that they
have an annotation collection suitable for their chip.
A number of these are available from the Biocon-
ductor web page and given the appropriate reference
data we can provide custom made collections within
a few days.

Currently these collections arrive as a set of
comma separated files. The first entry in each row
is the identification name or label for the gene. This
should correspond to the row names of the expr
value in the exprSet that is being analysed. The an-
notation filenames should have their first five letters
identical to the value in the annotation slot of the
exprSet since this is used to align the two. This pack-
age will become more object oriented in the near fu-
ture and the distribution mechanism will change.

Affymetrix Inc. produces several chips for the
human genome. The most popular in current use
are the U95v2 chips (with version A being used
most often). The probes that are arrayed here have
Affymetrix identifiers. We provide functions that
map the Affymetrix identifiers to a number of other
identifiers such as the Locus Link value, the Gen-
Bank value. In addition we have mapped most
probes to their Genome Ontology (GO) values http:
//www.geneontology.org. GO is an attempt to pro-
vide standardized descriptions of the biological rele-
vance of genes into the following three categories:

• Biological process

• Cellular component

• Molecular function

Within a category the set of terms forms a directed
acyclic graph. Genes typically get a specific value for
each of these three categories. We trace each gene to
the top (root node) and report the last three nodes in
its path to the root of the tree. These top three nodes
provide general groupings that may be used to ex-
amine the data for related patterns of expression.

Additional data, such as chromosomal location,
is also available. As data become available we will
be adding it to our offerings. Readers with knowl-
edge of data that we have not included are invited to
submit this information to us.

The annotation files are read in to R as environ-
ments and used as if they were hash tables. Typ-
ically the name they are stored under is the iden-
tifier (but that does not need to be the case). The
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value is can then be accessed using get. Since we
often want to get or put multiple values (if we have
100 genes we would like to get chromosome loca-
tion for all of them) there are functions multiget and
multiassign.

Often researchers are interested in finding out
more about their genes. For example they would like
to look at the different resources at NCBI. We can eas-
ily produce HTML pages with active links to the dif-
ferent online resources. ll.htmlpage is an example
of a function designed to provide links to the Locus
Link web page for a list of genes.

It is also possible using connections and the XML
package to open http connections and read the data
from the web sites directly. It could then be pro-
cessed using other R tools. For example if ab-
stracts or full text searchable articles were available
these could be downloaded and searched for rele-
vant terms.

The remainder of this section involves reference
to Web sites and R functionality that may change in
the future. This portion of the project and the un-
derlying data are in a state of near constant change.
An up-to-date version of the material in this sec-
tion, along with relevant scripts and data images,
will be maintained at http://www.bioconductor.
org/rnews0102.html. If you have problems with
any of the commands described below, please con-
sult this URL.

To illustrate how one can get started analyzing
publicly distributed expression data with R, the fol-
lowing commands lead to a matrix numExprs con-
taining the Golub training data, and a character vec-
tor of Affymetrix expression tags accTags:

golURL <-

url(paste("http://www-genome.wi.mit.edu/",

"mpr/data_set_ALL_AML_train.txt",

sep = ""),

"r")

golVec <- scan(golURL, sep = "\t", what = "")

## next command patches up a missing blank

golVec <- c(golVec[1:78], "", golVec[-(1:78)])

golMat <- t(matrix(golVec, nr = 79))

accTags <- golMat[-1, 2]

cExprs <- golMat[-1, seq(3, 78, 2)]

numExprs <- t(apply(cExprs, 1, as.numeric))

Let’s see what the Affymetrix tags look like:

t(t(accTags[c(10,20,30)]))

[,1]

[1,] "AFFX-BioB-5_st"

[2,] "AFFX-DapX-5_at"

[3,] "AFFX-ThrX-M_at"

Using the annotate package of Bioconductor, we can
map these tags to GenBank identifiers:

library(annotate)

library(Biobase)

HGu952genBank() # set up map

multiget(accTags[c(10,20,30)],

env=HGu95togenBank)

The result is a list of GenBank identifiers:

$"AFFX-BioB-5_st"

[1] "J04423"

$"AFFX-DapX-5_at"

[1] "L38424"

$"AFFX-ThrX-M_at"

[1] "X04603"

Upon submitting the tag "J04423" to GenBank, we
find that this gene is from E. coli, and is related to
biotin biosynthesis.

A long range objective of the Bioconductor
project is to facilitate the production and collation of
interpretive biological information of this sort at any
stage of the process of filtering and modeling expres-
sion data.

Gene filtering

In this section we consider the process of selecting
genes that are associated with clinical variables of in-
terest. The package genefilter is one approach to this
problem. We think of the selection process as the se-
quential application of filters. If a gene passes all of
the filters then we deem it interesting and select it.

For example, genes are potentially interesting if
they show some variation across the samples that we
have. They are potentially interesting if they have es-
timated expression levels that are high enough for us
to believe that the gene is actually expressed. These
are both examples of non-specific filters; we have not
made any reference to a covariate. Covariate-based
filters specify conditions of magnitude or variation
in expression within or between strata defined by co-
variates that must be satisfied by a gene in order that
it be retained for subsequent filtering and analysis.

Closures for non-specific filters

A filter function will usually have some context-
specific parameters to define its behavior. To make
it easy to associate the correct settings with a filter
function we have used R lexical scoping rules. Here
is the function kOverA that filters genes by requiring
that at least k of the samples have expression values
larger than A.

kOverA <- function(k, A=100, na.rm = TRUE) {

function(x) {

if(na.rm)

x <- x[!is.na(x)]

sum( x > A ) > k

}

}

To define a filter that requires a minimum of five
samples to have expression level at least 150, we sim-
ply evaluate the expression
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myK <- kOverA(5, 150)

Now myK is a function, since that is what kOverA re-
turns. myK takes a single argument, x, which will
be a vector of gene expressions (one expression level
for each sample) and evaluates the body of the inner
function in kOverA. In that body A, k and na.rm are
unbound symbols. They will obtain their values as
those that we specified when we created the closure
(the coupling of the function body with its enclosing
environment) myK. If es is an exprSet, the result of
apply(exprs(es),1,myK) is a logical vector with gth
element TRUE if gene g (with expression levels stored
in row g of the exprs slot of es) has expression level
at least 150 in 5 of the samples, and FALSE otherwise.

Another more interesting non-specific filter is the
gap filter. It selects genes using a function that has
three parameters. The first is the gap, the second
is the IQR and the third is a proportion. To apply
this filter the (positive) expression levels for the gene
are sorted and the proportion indicated are removed
from both tails. If in the remainder of the data there is
a gap between adjacent values of at least the amount
specified by the gap parameter then the gene will
pass the filter. Otherwise, if the IQR based on all val-
ues is larger than the specified IQR the gene passes
the filter. The purpose of this filter is to select genes
that have some variation in their expression values
and hence might have something interesting to say.

Covariate-dependent filters

An advantage to this method is that any statisti-
cal test can be implemented as a filter. Functions
implementing covariate-dependent filters are built
through closures, have the same appearance as sim-
pler non-specific filters, and are apply’d to expres-
sion level data in precisely the same way as described
above.

Here is a filter-building function that uses the par-
tial likelihood ratio to test for an association between
a censored survival time and gene expression levels.

coxfilter <- function (surt, cens, p)

{

autoload("coxph", "survival")

function(x) {

srvd <- try(coxph(Surv(surt, cens) ~ x))

if (inherits(srvd, "try-error"))

return(FALSE)

ltest <- -2 * (srvd$loglik[1] -

srvd$loglik[2])

pv <- 1 - pchisq(ltest, 1)

if (pv < p)

return(TRUE)

return(FALSE)

}

}

To use this method, we must create the closure by
establishing bindings for the survival time, censor-
ing indicator, and significance level for declaring an

association. Ordinarily, the survival data will be cap-
tured in the phenoData slot of an expression set, say
es, so we will see something like

myCox <- coxfilter( es$stime, es$event, 0.05 )

Now apply(exprs(es), 1, myCox) is a logical vec-
tor with element TRUE at index g whenever gene g is
associated with survival, and FALSE otherwise.

We have provided other simple filters such as a
t-test filter and an ANOVA filter. One can simply
set up the test and require that the p-value of the
test when applied to the appropriate covariate (from
the phenoData slot) is smaller than some prespeci-
fied value.

In one designed experiment we used testing
within gene-specific non-linear mixed effects models
to measure the association between gene expression
and a continuous outcome. The amount of program-
ming required was minimal. Filtering in this sim-
ple way provides us with a very natural paradigm
and tool in which to carry out gene selection. Note
however, that in some situations we will need to deal
with more than one gene at a time.

Equipped with the lexical scoping rules, we have
separated the processes of generic filter specifica-
tion (filter building routines supplied in the gene-
filter package), selection of detailed filter parameters
(binding of parameters when the closure is obtained
from the filter builder), and application of filters over
large numbers of genes. For the latter process we
have given examples of “manual” use of apply, but
more efficient tools for sequential filtering are sup-
plied through the filterfun and genefilter func-
tions in the package.

A word of warning is in order for those who have
not worked extensively with function closures. It is
easy to forget that the function is a closure and has
some variables captured. Seemingly correct results
can obtain if you are not careful. The alternative is
to specify all parameters and strata at filtering time.
But we find that makes the filtering code much more
complicated and less intuitive.

Documentation

We are embarked on the production of packages and
protocols to facilitate greater involvement of statisti-
cians in bioinformatics, and to support smoother col-
laboration between statisticians, biologists and pro-
grammers when working with genomic data. Docu-
mentation of data structures, methods, and analysis
procedures must be correct, thorough, and accessible
if this project is to succeed.

R has a number of unique and highly effective
protocols for the creation (prompt) and use of doc-
uments at the function and package level that facili-
tate simple interactive demonstration of function be-
haviors (the example function, which applies to help
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topics) and unit testing of functions and packages at
build time (the testing carried out by R CMD check).

We have introduced two new documentation
protocols as we grow the Bioconductor project.

promptClass

A revised promptClass function has been developed
which produces a template that illustrates instantia-
tion of classes (using the new function) and searches
through the searchlist to obtain information on for-
mal methods that apply to the class being docu-
mented. Thus the creator of a new class is motivated
to describe not only the structure of the class being
created, but also the family of methods that may be
used to work with this class.

The vignette protocol

The intent of the CMD check unit testing protocols of
R is to establish that the elements of a package func-
tion in accordance with the description in the manual
pages. The Bioconductor project has two additional
unit testing requirements. First, packages must work
together in well-defined ways: examples involving
multiple packages and diverse data structures must
interoperate correctly and continuously while evolv-
ing. Second, users will require ‘higher-level’ views of
programming processes than are typically afforded
by package man pages. Users will need to be taken
through the steps of data structure creation, search-
list extension, and then through the details of any
particular data processing or inference procedure,
with considerable narrative guidance.

Sweave allows integrated session narration, shell
monitoring, and graphics incorporation in docu-
ments that are specified in LATEX and are render-
able using PDF. We propose that Sweave documents
(with suffix ‘.Rnw’) and PDF compilations of them
be kept in the ‘inst/doc’ subdirectory of packages re-
lated to the Bioconductor project.

Conclusions

Analytical computing for bioinformatics has been
characterized to date by the proliferation of sepa-
rated binaries or scripts that implement various anal-
ysis methods in very easy to use formats (e.g., Mi-
croSoft Excel modules, Java applets). This paradigm
has a number of drawbacks, including frequent re-
liance upon idiosyncratic data input and output for-
mats, high costs of establishing interoperability, diffi-
culties of incorporating new methodological insights

into existing programs, minimal infrastructure to
verify procedure portability, and non-standard doc-
umentation.

The Bioconductor project is based on the award-
winning interactive programming language S, as de-
ployed in the open-source statistical computing en-
vironment R. An interactive programming language
provides an ideal platform for prototyping imple-
mentations of new ideas and comparing the new ap-
proaches to well-established older approaches. The
language basis confers well-defined paths to exten-
sion and interoperation of any routines. Procedures
that are too intensive to work routinely in the inter-
active environment may be coded in any higher-level
language and loaded dynamically in R for higher
performance with no change to the user interface.
The object-oriented programming facilities provide
access to state-of-the-art methods in data structure
and software design that help to control code com-
plexity and reduce obstacles to smooth interoper-
ation of diverse procedures. The intersystems in-
terfacing initiative at www.omegahat.org provides
tools to permit smooth interoperation of Bioconduc-
tor routines with completely foreign systems such as
relational databases, browsers, or other virtual ma-
chines.

The role of R in bioinformatics research has been
substantial, with contributions already present on
CRAN (sma, GeneSOM, etc.) and its use in many
projects for functional genomics. It is our hope that
the Bioconductor project will aid in the federation
of programming efforts to support progress in many
different areas of biology and clinical research. Those
who are interested in this project should visit our
web site and consider subscribing to the bioconduc-
tor mailing list.
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AnalyzeFMRI: An R package for the
exploration and analysis of MRI and fMRI
datasets
by Jonathan Marchini

AnalyzeFMRI is a developing package for the explo-
ration and analysis of large MRI and fMRI datasets.
In this article we give a short introduction to MRI
and fMRI and describe how we have used R when
working with these large datasets. We describe the
current version of the package using examples, de-
scribe our own approach for fMRI analysis and out-
line our plans for future functionality in the package.

MRI and fMRI

Magnetic Resonance Imaging (MRI) is a non-
invasive medical imaging technique that provides
images that represent slices of (brain) tissue. Es-
sentially, measurements occur within each slice
on a grid of cube-like volume elements (vox-
els). These measurements reflect the chemical
and magnetic properties of the tissue in each
small voxel and result in structural MRI im-
ages that show detailed contrast between differ-
ent tissue types (see http://www.stats.ox.ac.uk/
~marchini/pictures/high.res/gif). Variations of
the imaging parameters sensitize the images to dif-
ferent chemical and physical properties of interest.

The relationship between functional MRI (fMRI)
and structural MRI is analogous to the relationship
between still photography and movies. In simple
terms fMRI is fast, repeated structural MRI and can
be carried out in such a way so as to be sensitive to
local changes in levels of brain activity. Increases in
local brain activity increase the local levels of blood
oxygen. This in turn causes the measured signal to
increase. Thus the images produced are said to be
Blood Oxygenation Level Dependent (BOLD). Through
the BOLD mechanism we can use fMRI datasets to
localize specific areas or networks of the brain that
are responsible for cognitive functions of interest. In
this fashion fMRI has revolutionized the area of neu-
roscience over the last 10 years. An excellent intro-
duction to this area is given by Matthews et al. (2001)

In a typical fMRI experiment the subject is repeat-
edly imaged whilst performing a task(s) or receiving
certain stimuli designed to elicit the cognitive func-
tion of interest. Traditionally, tasks/stimuli are ap-
plied in alternating blocks of 20–30 seconds. More
recently, ‘event-related’ designs in which the stimu-
lus is applied for short bursts in a stochastic manner
have become popular.

In those areas of the brain that are activated by

the tasks/stimuli we will observe that the voxel time
series are correlated with the design of the experi-
ment (see Figure 1). Focus usually centers on delin-
eating those areas (clusters of voxels) of the brain that
exhibit a significant response. Most often we will
wish to make inferences using a group of subjects.
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Figure 1: A real voxel time series (solid line) in
an area of the brain activated by an alternating
‘OFF/ON’ visual stimulus (dotted line).

Figure 2: A functional MRI image

The resolution of fMRI datasets is very good.
Typically datasets obtained using this technique con-
sist of whole brain scans (≈ 20 images) repeated
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every 2-3 seconds. Usually each image consists of
64×64 voxels of size (4mm)3 (see Figure 2).

In summary, an fMRI dataset consists of a 3D
grid of voxels, each containing a time series of mea-
surements that reflect brain activity. Out of roughly
15,000 voxels that lie inside the brain we wish to
identify those that were activated.

Using R for fMRI datasets

In order to analyze fMRI experiments we need to be
able to manipulate and visualize the large amounts
of data in a relatively easy fashion. This in turn
allows us to implement and evaluate existing ap-
proaches and develop new methods of analysis. The
analysis will often involve several computationally
intensive steps and so it is also important to keep an
eye on the efficiency of the code.

The high level environment that R provides has
allowed us to implement and test our methods
quickly and reliably. During this process we have
used profiling facilities to identify areas of our code
that can be speeded up (Venables, 2001) and where
necessary we have written C and Fortran code to
achieve this (Venables and Ripley, 2000). We have
often found that the memory overheads of carrying
out all calculation within R can be high. For this rea-
son we have often used R simply to pass file names
and analysis parameters to C code. All file I/O and
computations are carried out in C before writing the
results to a new data file. In addition we have found
it useful to write simple Graphical User Interface’s
(GUI’s) using the tcltk package. This allows analyses
to be set up and run without recourse to command
line functions.

The ANALYZE format and I/O

The ANALYZE image format is a general medical
image format developed by the Mayo Clinic1 that is
commonly used within the brain imaging commu-
nity. The format consists of an image file (‘foo.img’)
together with a header file (‘foo.hdr’). The header file
details the binary storage type of the image file, di-
mensions of the dataset and certain imaging parame-
ters used during acquisition. In addition the endian-
ness of the image and header files can be detected
by reading the first 4 bytes of the header file, as they
contain the constant header file size (348 bytes). The
size of a typical fMRI dataset stored in this format is
30Mb.

The package provides read and write capabilities
for the ANALYZE format. For example, a simple
summary of the dataset is available.

> f.analyze.file.summary("./ex.img")

File name: ./ex.img

Data dimension: 4-D

X dimension: 64

Y dimension: 64

Z dimension: 21

Time dimension: 1 time points

Voxel dimensions: 4 mm x 4 mm x 6 mm

Data type: signed short

(16 bits per voxel)

Functions of the form f.read.analyze.* allow
whole or parts of the dataset to be read into R, i.e.,

> a <- f.read.analyze.volume("./ex.img")

> dim(a)

[1] 64 64 21 1

The function f.write.analyze allows an array to
be written into a new ANALYZE format file, i.e.,

> a <- matrix(rnorm(1000),dim=rep(10,3))

> f.write.analyze(a, file="./ex2", size="float")

In addition f.basic.hdr.list.create and
f.write.list.to.hdr allow the user to store cus-
tom information in the header files.

Exploratory Data Analysis

fMRI datasets are large and can contain significant
noise structure and imaging artifacts. The quality
of datasets can vary widely from scanner to scan-
ner and even from day to day on the same scanner.
For these reasons it is important to regularly ‘eye-
ball’ the datasets to examine their quality. The pack-
age provides two methods of examining the struc-
ture present in each fMRI dataset.

The first is a simple spectral summary of the
dataset produced using f.spectral.summary. This
function calculates the periodogram of each voxel
time series normalized by the median periodogram
ordinate. A plot is produced that shows the quantiles
of the normalized periodogram ordinates at each fre-
quency. This provides a fast look at a fMRI dataset to
identify any artifacts that reside at single frequencies.
Figure 3 shows the results of applying this function
to a real fMRI dataset. The spike at frequency 18 is
consistent with the frequency of the periodic stim-
ulus of the experiment. The spike at frequency 60
highlights the existence of a Nyquist ghost image ar-
tifact that can occur in fMRI datasets.

> f.spectral.summary(file="ex3.img",

mask.file="ex3.m.img",

ret.flag=FALSE)

Processing slices... [1] [2] [3] [4] [5] [6] [7]

[8] [9] [10] [11] [12] [13] [14] [15] [16] [17]

[18] [19] [20] [21]

1http://www.mayo.edu/bir/PDF/ANALYZE75.pdf
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Figure 3: Spectral summary plot of an fMRI dataset.

We provide a GUI that allows visualization of in-
dividual voxel time-series, images of specific slices
and functional volumes, movies through time of spe-
cific slices and spectral summary plots. This GUI is
invoke through the function f.analyzeFMRI.gui.

Secondly, we have applied Independent Compo-
nent Analysis (ICA) to fMRI datasets and found that
the extracted components are extremely useful in un-
covering otherwise hidden structure. In ICA the
data matrix X is considered to be a linear combi-
nation of non-Gaussian (independent) components,
i.e., X = SA where columns of S contain the inde-
pendent components and A is a linear mixing ma-
trix. In short ICA attempts to ‘un-mix’ the data by
estimating an un-mixing matrix W where XW = S.

Under this generative model the measured ‘sig-
nals’ in X will tend to be ‘more Gaussian’ than the
source components (in S) due to the Central Limit
Theorem. Thus, in order to extract the independent
components/sources we search for an un-mixing
matrix W that maximizes the non-Gaussianity of the
sources. It is useful to note that in the absence of a
generative model for the data the algorithm used is
equivalent to Projection Pursuit. We use the Fast ICA
algorithm (Hyvarinen, 1999) implemented in pack-
age fastICA to estimate the sources (see that package
for more details).

For fMRI data we concatenate the dataset into a
data matrix so that each row of X represents one
voxel time series. Using this formulation allows us
to estimate spatially independent sources that occur
in the dataset. The function f.ica.fmri calls C code
that reads the data directly from the ANALYZE im-
age file, carries out the ICA decomposition and re-
turns the results into R. We also provide a GUI writ-
ten using tcltk that allows a fast way of visualizing
the results of the ICA decomposition. This GUI is
invoked through the function f.ica.fmri.gui (see

Figure 4).
Figure 5 shows one of the estimated components

(columns of S) plotted in its spatial configuration to-
gether with its associated weighting through time
(row of A). This particular component shows the
high frequency Nyquist ghosting artifact suggested
by the spectral summary plot.

Figure 4: The GUI for spatial ICA for fMRI datasets.

Analysis

The most widely used strategy for the analysis of
fMRI experiments is carried out using a two-stage
approach. In the first stage a linear model with cor-
related errors is used for each individual voxel time-
series Y. That is,

Y = Xβ +ε ε ∼ N(0,σ2V) (1)

where the design matrix X contains terms that model
the BOLD response to the stimuli and non-linear
trends that are often observed in fMRI voxel time-
series.

Once this model has been fitted at each voxel,
summary statistics (typically t and F statistics) are
calculated that reflect the components of the re-
sponse under study. For example, we might calculate
an F statistic that reflects the variance component at-
tributable to the BOLD response. In the context of a
group study the statistic at each voxel is calculated
from the model fits of all the subjects. These statis-
tic values can then be plotted spatially as a statistic
image (see figure 8). The second stage then focuses
on the analysis of the statistic image in order to iden-
tify those areas of the brain that were activated by the
stimuli.

Time-series modelling

In general, the linear model (1) used at each voxel
will contain three main components. These being (i)
non-linear trends, (ii) the BOLD response to the stim-
ulus, and (iii) auto-correlated noise.
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Figure 5: An extracted spatial ICA component showing a high frequency Nyquist ghosting artifact.

Trends are commonly modelled using polyno-
mial, cosine or spline basis terms. Alternatively
the trends can be removed from the data before
analysis by applying an appropriate filter/smoother.
We have found a Gaussian weighted running lines
smoother reliably removes the non-linear trends
(Friedman, 1984). For efficiency we avoid multiple
calls to smoothing functions (such as supsmu) by ini-
tially calculating a smoothing matrix S and applying
it at each voxel.

The nature of the BOLD response implies that
in areas of activation we will observe a delayed

and blurred version of the stimulus design. This is
commonly modelled through the convolution of the
stimulus design x(t)2 with a Haemodyanmic Response
Function (HRF), h(t). That is,

BOLD(t) = ∑
s

h(t− s)x(s) = h⊗ x(t) (2)

Suggested forms for the HRF include discretized
Poisson, Gamma and Gaussian density functions. To
allow for spatial variation in the HRF at each voxel
a small set of basis HRF’s can be used that vary in
the amount they blur and delay the stimulus design

2normally a vector of 1’s and 0’s that specify the times when the stimulus is ‘ON’ and ‘OFF’ respectively.
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(Friston et al., 1995). Each HRF is convolved with the
design to make one column of the design matrix X.

The final component in the linear model is the
auto-correlated noise term. The auto-correlation
structure varies considerably throughout the brain
and the chosen model should be chosen to reflect
this fact. Suggested models include AR(p) (Bull-
more et al., 1996), ARMA models (Locascio et al.,
1997) and non-parametric spectral density estimates
(Lange and Zeger, 1997). Alternatively, Worsley and
Friston (1995) suggest imposing a known correlation
structure on the model (using a low-pass filter) be-
fore using OLS to fit the model at each voxel. The
authors point out that this scheme works for periodic
designs3 but is inefficient for more interesting event-
related designs.

In general the chosen noise model should be flex-
ible enough to capture the spatially varying levels of
correlation throughout the brain. The model should
provide well-calibrated levels of significance for es-
timated responses and be resistant to commonly oc-
curring image artifacts.

A spectral domain approach

For periodic designs the specification of the HRF and
noise model at each voxel time-series is greatly sim-
plified by working in the spectral domain (Marchini
and Ripley, 2000). The simplest example of a peri-
odic design involves c repeats of a block which con-
sists of b volumes scanned during a baseline stimula-
tion, followed by b volumes scanned during a stimu-
lus/task of interest. For such designs the majority of
the power of the BOLD response will lie at just one
frequency ωc = 2πc/n and will result in a spike at
that frequency in the periodogram of the voxel time-
series, i.e. the spike at the 18th frequency in Figure 6.
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Figure 6: Periodogram and spectral density estimate.

The asymptotic distribution of the periodogram

ordinate I(ωc) is given by

I(ωc) ∼
1
2

f (ωc).χ2
2, (3)

where f(ω) represents the non-normalized spectral
density of the (second order stationary) noise pro-
cess. This suggests that a test for an unusually
large component at frequency ωc can be constructed
through the use of the statistic Rc where

Rc =
I(ωc)

f̂ (ωc)
, (4)

where f̂ (ωc) is an estimate of the non-normalized
spectral density. If we can obtain a sufficiently accu-
rate estimate of f (ωc) then Rc will have a standard
exponential distribution.

Spectral density estimation

Lange and Zeger (1997) used a rectangular smooth-
ing kernel in both space and frequency to estimate
f (ω). This approach tends to produce biased es-
timates at boundaries between obviously different
spectral densities.

We use a smoothing spline to estimate the spec-
tral density from the log-periodogram of the voxel
time-series (Wahba, 1980). One advantage of work-
ing on log-scale is that large high frequency artifacts
are down weighted and thus avoids the biased esti-
mates exhibited by other methods.

To improve the estimation we use a spatially
anisotropic filter that only smooths spectral density
estimates that are similar. Specifically we use a mul-
tivariate normal approximation to the difference be-
tween two independent4 spectral density estimates.
This allows us to decide when two estimates are close
enough that they can be smoothed. We have also ex-
tended this approach to the case of event-related de-
signs by working with the Fourier transform of the
time-series as opposed to just the periodogram (Mar-
chini, 2001).

Calibration

One nice property of this method is that we can cal-
culate R j at all the other frequencies at which we
know there to be no response. Under the null model
of no activation all these statistics should have the
same distribution and can be used to self-calibrate
the method.

Figure 7 illustrates the results of our calibra-
tion experiments. We applied the method to 6 null
datasets5 with (blue lines) and without (red lines)
spatial smoothing. We compared the distribution of

3when the columns of the design matrix are close to being eigenvectors of the low-pass filter.
4the approximation works well even with the spatial correlation that exists between estimates
5datasets in which there is no activation because no stimulus was applied to the subject.
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the statistic values at both the design frequency (dot-
ted lines) and at a range of other frequencies (solid
lines) to the theoretical exponential distribution. The
statistic values are shown on − log10(p–value) scale
to focus on the tails of the distribution. The line at
45o represents exact agreement with the theoretical
distribution. This plot shows how spatial smooth-
ing provides a more accurate estimate of f (ω). This
method of calibration also allows us to choose the
smoothing spline parameter in an objective fashion.
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Figure 7: Calibration results

10−4

10−5

10−6

10−7

10−8

10−9

10−10

Figure 8: p-value image using spline smoothing
spectral density estimation.

Figures 8 and 9 show statistic images pro-
duced by using a smoothing spline and an AR(1)
model (Bullmore et al., 1996) for the spectral den-
sity at each voxel. The images are shown on
p-value scale, thresholded to show only values

below 10−4 and overlaid onto an image of the
slice. The spline smoothing approach shows ac-
tivation just in the visual cortex. The AR(1)
approach identifies the same areas but with ad-
ditional amounts of false positive activation in-
dicating that this approach is poorly calibrated.
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Figure 9: p-value image using AR(1) spectral density
estimation.

We have implemented our approach using a mix-
ture of R, C and FORTRAN code. We are currently
working on incorporating this method into the Ana-
lyzeFMRI package.

Identifying areas of activation statistic

Many different methods are available for the analysis
of fMRI statistic images. The most widely used ap-
proaches are based on thresholding the statistic map
(Worsley and Friston, 1995). The level of the thresh-
old is chosen to protect against false positive activa-
tion under the null hypothesis of no activation any-
where in the image. Results from Random Field the-
ory are used to set the appropriate threshold.

This approach tends to attract alot of criticism.
In some experiments we know the effect will occur
somewhere and we want to estimate the location of
the response rather than use a hypothesis test to see
if it’s there. Also, to validate assumptions required
by the Random Field theory results the datasets are
significantly spatially smoothed. This tends to blurs
the good resolution fMRI affords.

Despite these criticisms this approach has been
very successful in answering the questions that neu-
roscientists want to ask. In addition, for group stud-
ies, the resolution is limited by structural variability
between individuals. Thus using a small amount of
smoothing doesn’t matter and can in fact help detec-
tion of a response.

More attractive approaches are based on mixture
models for levels of activation (Everitt and Bullmore,
1999; Hartvig and Jensen, 2000). It has been sug-
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gested that such an approach provides a less arbi-
trary way of delineating areas of activation although
(so far) they have only been used with a 0-1 loss func-
tion. It will be interesting and important to investi-
gate the effect of varying the loss function.

More recently it has been suggested that thresh-
olds be defined by controlling the False Discovery
Rate (FDR) (Genovese et al., 2001). This approach is
more focussed on modelling the areas of activation
as it is based on controlling the amount of false pos-
itive tests compared to all positive tests. In this way
the method shares a property of mixture model ap-
proaches in that the threshold adapts to the proper-
ties of the statistic image.

We are currently in the process of implementing
these approaches into the AnalyzeFMRI package.

Future plans

The long term goal of the AnalyzeFMRI package is
to provide a comprehensive software package for the
analysis of fMRI and MRI images. We aim to take
full advantage of the existing (and future) graphics
facilities of R by providing fast interfaces to widely
used medical image formats and several graphical
exploratory tools for fMRI and MRI datasets. In
this way we hope to provide a valuable resource for
statisticians working in this field. Hopefully this will
negate the need for replication of coding effort and
allow researchers new to the field to quickly famil-
iarize themselves with many of the current methods
of analysis.
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Using R for the Analysis of DNA
Microarray Data
by Sandrine Dudoit, Yee Hwa Yang, and Ben Bolstad

Overview

Microarray experiments generate large and com-
plex multivariate datasets. Careful statistical design
and analysis are essential to improve the efficiency
and reliability of microarray experiments, from the
early design and pre-processing stages to higher-
level analyses. Access to an efficient, portable, and
distributed statistical computing environment is a
related and equally critical aspect of the analysis
of gene expression data. As part of the Biocon-
ductor project, we are working on the development
of R packages implementing statistical methods for
the design and analysis of DNA microarray experi-
ments. An early effort is found in the sma (Statistics
for Microarray Analysis) package which we wrote
in the Fall of 2000. This small package was initially
built to allow the sharing of software with our col-
laborators, both statisticians and biologists, for pre-
processing tasks such as normalization and diagnos-
tic plots. We are in the process of expanding the
scope of this package by implementing new meth-
ods for microarray experimental design, normaliza-
tion, estimation, multiple testing, cluster analysis,
and discriminant analysis.

This short article begins with a brief introduc-
tion to the biology and technology of DNA microar-
ray experiments. Next, we illustrate some of the
main steps in the analysis of microarray gene ex-
pression data, using the apo AI experiment as a case
study. Additional details can be found in Dudoit
et al. (2002b). Although we focus primarily on two-
color cDNA microarrays, a number of the proposed
methods and implementations extend to other plat-
forms as well (e.g., Affymetrix oligonucleotide chips,
nylon membrane arrays). Finally, we discuss ongo-
ing revisions and extensions to sma as part of the
Bioconductor project. This project aims more gen-
erally to produce an open source and open devel-
opment computing environment for biologists and
statisticians working on the analysis of genomic data.
More information on Bioconductor can be found at
http://www.bioconductor.org.

Background on DNA microarrays

The ever-increasing rate at which genomes are be-
ing sequenced has opened a new area of genome re-
search, functional genomics, which is concerned with
assigning biological function to DNA sequences.

With the availability of the DNA sequences of many
genomes (e.g., the yeast Saccharomyces cerevisae, the
round worm Caenorhabditis elegans, the fruit fly
Drosophila melanogaster, and numerous bacteria) and
the recent release of the first draft of the human
genome, an essential and formidable task is to define
the role of each gene and elucidate interactions be-
tween sets of genes. Innovative approaches, such as
the cDNA and oligonucleotide microarray technolo-
gies, have been developed to exploit DNA sequence
data and yield information about gene expression
levels for entire genomes.

Different aspects of gene expression can be stud-
ied using microarrays, such as expression at the tran-
scription or translation level, subcellular localization
of gene products, and protein binding sites on DNA.
To date, attention has focused primarily on expres-
sion at the transcription stage, i.e., on mRNA or tran-
script levels. There are several types of microarray
systems, including the two-color cDNA microarrays
developed in the Brown and Botstein labs at Stanford
and the high-density oligonucleotide chips from the
Affymetrix company; the brief description below fo-
cuses on the former.

cDNA microarrays consist of thousands of in-
dividual DNA sequences printed in a high-density
array on a glass microscope slide using a robotic
printer or arrayer. The relative abundance of these
spotted DNA sequences in two DNA or RNA sam-
ples may be assessed by monitoring the differential
hybridization of the two samples to the sequences
on the array. For mRNA samples, the two sam-
ples or targets are reverse-transcribed into cDNA,
labeled using different fluorescent dyes (usually a
red-fluorescent dye, Cyanine 5 or Cy5, and a green-
fluorescent dye, Cyanine 3 or Cy3), then mixed in
equal proportions and hybridized with the arrayed
DNA sequences or probes (following the definition
of probe and target adopted in “The Chipping Fore-
cast”, a January 1999 supplement to Nature Genet-
ics). After this competitive hybridization, the slides
are imaged using a scanner and fluorescence mea-
surements are made separately for each dye at each
spot on the array. The ratio of the red and green flu-
orescence intensities for each spot is indicative of the
relative abundance of the corresponding DNA probe
in the two nucleic acid target samples. See Brown
and Botstein (1999) for a more detailed introduction
to the biology and technology of cDNA microarrays.

DNA microarray experiments raise numerous
statistical questions, in fields as diverse as experi-
mental design, image analysis, multiple testing, clus-
ter analysis, and discriminant analysis. The main
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steps in the statistical design and analysis of a mi-
croarray experiment are summarized in Figure 1.
Each step in this process depends critically on the
availability of an efficient, portable, and distributed
statistical computing environment.

Figure 1: Main steps in the statistical design and
analysis of a DNA microarray experiment (solid
boxes).

Sample microarray dataset

We will illustrate some of the main steps in the anal-
ysis of a microarray experiment using gene expres-
sion data from the apo AI experiment described in
detail in Callow et al. (2000). Apolipoprotein AI (apo
AI) is a gene known to play a pivotal role in HDL
metabolism, and mice with the apo AI gene knocked-
out have very low HDL cholesterol levels. The goal
of this experiment was to identify genes with al-
tered expression in the livers of apo AI knock-out
mice compared to inbred control mice. The treat-
ment group consisted of eight mice with the apo
AI gene knocked-out and the control group con-
sisted of eight control C57Bl/6 mice. For each of
these sixteen mice, target cDNA was obtained from
mRNA by reverse transcription and labeled using
a red-fluorescent dye, Cy5. The reference sample
used in all hybridizations was prepared by pooling
cDNA from the eight control mice and was labeled
with a green-fluorescent dye, Cy3. Target cDNA was
hybridized to microarrays containing 6, 384 DNA
probes, including 257 related to lipid metabolism.
Microarrays were printed using 4× 4 print-tips and
are thus partitioned into a 4 × 4 grid matrix (the
terms grid, sector, and print-tip group are used inter-
changeably in the microarray literature). Each grid
consists of a 19 × 21 spot matrix that was printed
with a single print-tip.

Raw images and background corrected Cy3 and
Cy5 fluorescence intensities for all sixteen hybridiza-
tions are available at http://www.stat.berkeley.
edu/users/terry/zarray/Html/apodata.html.
Fluorescence intensity data from processed images
for six of the sixteen hybridizations (three knock-
out mice and three control mice) were also included

in the sma package and can be accessed with the
command data(MouseArray). Figure 2 displays
an RGB overlay of the Cy3 and Cy5 images for
one of the sixteen arrays (files 1230ko1G.tif.marray
and 1230ko1R.tif.marray corresponding to knock-
out mouse 1, i.e., mouse4 array in the dataset
MouseArray). Analyses described below were per-
formed using sma version 0.5.7 and R version 1.3.1.

Figure 2: RGB overlay of the Cy3 and Cy5 images for
knock-out mouse 1, i.e., mouse4 array in the dataset
MouseArray.

Pre-processing

Image analysis

The raw data from a microarray experiment are the
image files produced by the scanner; these are typi-
cally pairs of 16-bit tagged image file format (TIFF)
files, one for each fluorescent dye (the images for the
apo AI experiment are about 2MB in size; more re-
cent images produced from higher resolution scans
are around 10 to 20 MB). Image analysis is required
to extract foreground and background fluorescence
intensity measurements for each spotted DNA se-
quence. Widely used commercial image process-
ing software packages include GenePix for the Axon
scanner and ImaGene from BioDiscovery; freely
available software includes ScanAlyze. Image pro-
cessing is beyond the scope of this article, and the
reader is referred to Yang et al. (2002a) for a detailed
discussion of microarray image analysis and addi-
tional references.

For the apo AI experiment, each of the sixteen hy-
bridizations produced a pair of 16-bit images. These
images were processed using the software package
Spot (Buckley, 2000). Spot is built on R and is a spe-
cialized version of another R package called VOIR,
which is being developed by the CSIRO Image Anal-
ysis Group (http://www.cmis.csiro.au/iap/spot.
htm). The segmentation component, based on a
seeded region growing algorithm, places no restric-
tion on the size or shape of the spots. The back-
ground adjustment method relies on morphological
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opening to generate an image of the estimated back-
ground intensity for the entire slide. The results of an
analysis by Spot of microarray images are returned
as a data frame and can thus immediately be dis-
played, manipulated, and analyzed in a number of
ways within R. The rows of this data frame corre-
spond to the spots on the array and the columns
to different spot statistics: e.g., grid row and col-
umn coordinates, spot row and column coordinates,
red and green foreground intensities, red and green
background intensities for different background ad-
justment methods, spot area, perimeter. The six data
frames mouse1, . . . , mouse6, in MouseArray contain
Spot output for three control mice and three knock-
out mice, respectively. In what follows, we use R and
G to denote the background corrected red and green
fluorescence intensities of a particular spot, and M to
denote the corresponding base-2 log-ratio, log2 R/G.

Reading in data

In general, microarray image processing results
are stored in ASCII files and can be loaded into
R using specialized functions like read.spot and
read.genepix for Spot and GenePix output, respec-
tively. These functions are simply wrapper functions
around read.table, which take into account the spe-
cific file format for output from different image pro-
cessing software packages.

We have written a number of initialization func-
tions to manipulate the image analysis output for
batches of arrays, i.e., collections of slides with the
same spot layout. The function init.grid is an in-
teractive function for specifying the dimensions of
the spot and grid matrices. These parameters are de-
termined by the printing layout of the array, and are
used for the spatial representation of spot statistics
in the function plot.spatial and the within-print-
tip-group normalization procedure implemented in
stat.ma. The function init.data is an interactive
function which creates a data structure for multi-
slide microarray experiments. The data structure is a
list of four matrices, storing raw red and green fore-
ground intensities, and red and green background
intensities. The rows of the matrices correspond
to spotted DNA sequences and the columns to hy-
bridizations (i.e., arrays or slides). The function
also allows the user to add hybridization data to
an existing list. The following commands may be
used to extract red and green fluorescence intensi-
ties from the image analysis output for the six arrays
in MouseArray, and compute intensity log-ratios and
average log-intensities.

data(MouseArray)

mouse.setup <- init.grid()

mouse.data <- init.data()

mouse.MA0 <- stat.ma(mouse.data, mouse.setup,

norm="n")

Eventually, we would like to retrieve the image
analysis results directly from a laboratory database.
In addition, to allow more general and systematic
representation and manipulation of microarray data,
we are working on the definition of new classes of
R objects for microarrays using the class/method
mechanism in the methods package (cf. section on
ongoing projects).

Diagnostic plots

Before proceeding to normalization or any higher-
level analysis, it is instructive to look at diagnos-
tic plots of spot statistics, such as red and green
foreground and background log-intensities, intensity
log-ratio, area, etc.

Spatial plots of spot statistics. The sma function
plot.spatial creates an image of shades of gray or
colors that represents the values of a statistic for each
spot on the array. This function can be used to ex-
plore whether there are any spatial effects in the data,
for example, print-tip or cover-slip effects. The com-
mands

M <- stat.ma(mouse.data, mouse.setup,

norm="n")$M[,4]

plot.spatial(M, mouse.setup, crit1=1)

produce an image of the pre-normalization log-ratios
M for the array mouse4. To display only the spots
having the highest and lowest 5% pre-normalization
log-ratios M, set the argument crit1 to 0.05. Figure 3
clearly indicates that the lowest row of grids has high
red intensities compared to green, and thus suggests
the existence of spatially-dependent dye biases.

Figure 3: Image of the pre-normalization inten-
sity log-ratios for the mouse4 array using the
heat.colors palette (plot.spatial output).

Boxplots. Boxplots of spot statistics by plate, sec-
tor, or slide can also be useful to identify spot or hy-
bridization artifacts. The boxplots in Figure 4 again
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suggest the existence of spatially-dependent dye bi-
ases.
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Figure 4: Boxplots by sector of the pre-normalization
intensity log-ratios for the mouse4 array. The pairs
(i, j), i, j = 1, . . . , 4, refer to sector or grid coordi-
nates in the 4× 4 grid matrix shown in Figure 2.

Figure 5: Pre-normalization MA-plot for the mouse4
array, highlighting spots with the highest and lowest
0.5% log-ratios (plot.mva output).

MA-plots. Single-slide expression data are typi-
cally displayed by plotting the log-intensity log2 R
in the red channel vs. the log-intensity log2 G in the
green channel. Such plots tend to give an unrealis-
tic sense of concordance between the red and green
intensities and can mask interesting features of the
data. We thus prefer to plot the intensity log-ratio
M = log2 R/G vs. the mean log intensity A =
log2

√
RG. An MA-plot amounts to a 45o counter-

clockwise rotation of the (log2 G, log2 R)-coordinate
system, followed by scaling of the coordinates. It
is thus another representation of the (R, G) data in
terms of the log-ratios M which directly measure dif-
ferences between the red and green channels and are
the quantities of interest to most investigators. We
have found MA-plots to be more revealing than their
log2 R vs. log2 G counterparts in terms of identifying
spot artifacts and for normalization purposes (Du-
doit et al., 2002b; Yang et al., 2001, 2002b). For the
apo AI experiment,

plot.mva(mouse.data,mouse.setup,norm="l",

image.id=4,extra.type="tci",plot.type="r",

crit1=0.005,col.ex="purple",pch=20)

title("Mouse 4")

produces an MA-plot for the mouse4 array, highlight-
ing spots with the highest and lowest 0.5% log-ratios
using the corresponding row number in mouse.data
(Figure 5).

Normalization

The purpose of normalization is to identify and re-
move sources of systematic variation, other than dif-
ferential expression, in the measured fluorescence
intensities (e.g., different labeling efficiencies and
scanning properties of the Cy3 and Cy5 dyes; dif-
ferent scanning parameters, such as PMT settings;
print-tip, spatial, or plate effects). It is necessary
to normalize the fluorescence intensities before any
analysis which involves comparing expression lev-
els within or between slides (e.g., clustering, multi-
ple testing). The need for normalization can be seen
most clearly in self-self experiments, in which two
identical mRNA samples are labeled with different
dyes and hybridized to the same slide (Dudoit et al.,
2002b). Although there is no differential expression
and one expects the red and green intensities to be
equal, the red intensities often tend to be lower than
the green intensities. Furthermore, the imbalance in
the red and green intensities is usually not constant
across the spots within and between arrays, and can
vary according to overall spot intensity, location on
the array, plate origin, and possibly other variables.
Figure 6 displays the pre-normalization MA-plot for
the mouse4 array, with the sixteen lowess fits for
each of the print-tip-groups (using a smoother span
f = 0.3 for the lowess function). The plot was pro-
duced using the function plot.print.tip.lowess

col <- sort(rep(2:5,4))

lty <- rep(1:4,4)

labs <- paste("(",sort(rep(1:4,4)),",",

rep(1:4,4),")",sep="")

plot.print.tip.lowess(mouse.data,mouse.setup,

norm="n",image.id=4,pch=20,lwd=3,

palette=col,lty.palette=lty,cex=0.6)

legend(10.5,-2.5,legend=labs[order(lty,col)],

col=col[order(lty,col)],

lty=lty[order(lty,col)], ncol=4,lwd=2)

title("Mouse 4")

Figure 6 illustrates the non-linear dependence of
the log-ratio M on the overall spot intensity A and
thus suggests that an intensity or A-dependent nor-
malization method is preferable to a global one (e.g.,
median normalization). Also, four lowess curves
clearly stand out from the remaining twelve curves,
suggesting strong print-tip or spatial effects. The
four curves correspond to the last row of grids in the
4× 4 grid matrix.
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Figure 6: Pre-normalization MA-plot for the mouse4
array, with the lowess fits for individual print-
tips or sectors. Different colors are used to rep-
resent lowess curves for print-tips from different
rows, and different line types are used to represent
lowess curves for print-tips from different columns
(plot.print.tip.lowess output).

We have developed location and scale normaliza-
tion methods which correct for intensity and spatial
dye biases using robust local regression (Yang et al.,
2001, 2002b). These procedures are implemented in
the sma function stat.ma, which uses the R func-
tion lowess to perform robust local regression of
the log-ratio M on spot intensity A. Five methods
are currently available for normalizing the log-ratios;
the method is specified using the norm argument of
the function stat.ma. These five options are: "n"
for no normalization between the two channels; "m"
for global median normalization, which sets the me-
dian of the intensity log-ratios M to zero; "l" for
global lowess normalization, i.e., regression of M on
A for all spots; "p" for within-print-tip-group lowess
normalization; and "s" for scaled within-print-tip-
group normalization. For the "s" option, scaling is
done by the median absolute deviation (MAD) of the
lowess location normalized log-ratios for each print-
tip-group. The code

mouse.lratio <-

stat.ma(mouse.data, mouse.setup, norm="p")

performs within-print-tip-group lowess location nor-
malization for the six slides in MouseArray, and
returns normalized log-ratios M and average log-
intensities A. For the apo AI experiment, only a small
proportion of the spots were expected to vary in in-
tensity between the two channels; normalization was
thus performed using all 6, 384 probes. The function
returns a list with two components: M, a matrix of
normalized log-ratios, and A, a matrix of average log-
intensities. The rows of these matrices correspond to
spotted DNA sequences and the columns to the dif-
ferent slides.

Image analysis and normalization are the two
main pre-processing steps required in any microar-
ray experiment. For our purpose, normalized mi-

croarray data consist primarily of pairs (M, A) of in-
tensity log-ratios and average log-intensities for each
spot in each of several slides. In addition to these ba-
sic statistics, we are planning on deriving spot and
slide quality statistics and incorporating these in fur-
ther analyses (cf. section on ongoing projects).

Main statistical analysis

The phrase “main statistical analysis” refers to the
application of statistical methodology to normal-
ized intensity data in order to answer the biological
question for which the microarray experiment was
designed. Appropriate statistical methods depend
largely on the question of interest to the investiga-
tor and in general can span the entire field of Statis-
tics. For model organisms such as mice or yeast, bio-
logical questions of interest might include the identi-
fication of differentially expressed genes in factorial
experiments studying the simultaneous gene expres-
sion response to factors such as drug treatment, cell
type, spatial location of tissues, and time. In hu-
man cancer microarray studies, one may be inter-
ested in the discovery of new tumor subclasses, or
in the identification of genes that are good predictors
of clinical outcomes such as survival or response to
treatment. There is clearly no general “next step” in
the analysis of microarray data, and the implementa-
tion of statistical methodology will require the devel-
opment of question specific R packages (cf. section
on ongoing projects). Next, we discuss differential
expression, an important and common question in
microarray experiments.

Differential expression

Differentially expressed genes are genes whose ex-
pression levels are associated with a response or co-
variate of interest. In general, the covariates could
be either polytomous (e.g., treatment/control status,
cell type, drug type) or continuous (e.g., dose of a
drug, time). Similarly, the responses could be either
polytomous or continuous, for example, tumor type,
response to treatment, or censored survival time in
clinical applications of microarrays. An approach to
the identification of differentially expressed genes is
to compute, for each gene, a statistic assessing the
strength of the association between the expression
levels and responses or covariates. In such one gene
at a time approaches, genes are ranked based on
these statistics and a subset is typically selected for
further biological verification. This gene subset may
be chosen based on either the number of genes that
can be conveniently followed-up (and subject matter
knowledge), or statistical significance as described in
the next section. The package sma contains a number
of functions for computing and plotting frequentist
and Bayesian statistics for each gene in a microarray
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experiment.

Single-slide methods. Single-slide experiments
aim to compare transcript abundance in two mRNA
samples, the red and green labeled mRNA samples
hybridized to the same slide. The sma functions
stat.Chen, stat.Newton, and stat.ChurSap imple-
ment, respectively, the single-slide methods of Chen
et al. (1997), Newton et al. (2001), and Sapir and
Churchill (2000). These methods are based on as-
sumed parametric models for the (R, G) intensity
pairs (e.g., Gamma or Gaussian models). The re-
sulting model-dependent rules amount to drawing
two curves in the (R, G)-plane and calling a gene
differentially expressed if its (R, G) measured in-
tensities fall outside the region between the two
curves. The above three functions can be applied
individually, with options for producing MA-plots
showing the model cut-offs. Alternatively, the three
methods can be compared graphically as in Fig-
ure 7, by calling plot.single.slide(mouse.data,
mouse.setup, norm="p", image.id=4). This pro-
duces an MA-plot, print-tip-group lowess location
normalized, for the mouse4 array with cut-offs from
each of the three single-slide methods. Black curves
correspond to 1:1, 1:10, 1:100 log-odds ratios for the
Newton et al. method; dashed lines are the 95% and
99% confidence limits from the Chen et al. method;
dotted lines are the 95% and 99% posterior probabil-
ity cut-offs from the Sapir and Churchill method.

Figure 7: MA-plot with cut-offs for three single-
slide methods applied to the mouse4 array
(plot.single.slide output).

Multiple-slide methods. Multiple-slide experi-
ments typically involve the comparison of transcript
abundance in two or more types of mRNA sam-
ples hybridized to different slides. sma functions
for multiple-slide analyses include: stat.bayesian,
which computes odds of differential expression un-
der a Bayesian model for gene expression; stat.t2,
which computes two-sample t-statistics for compar-
ing the expression response in two groups of mRNA

samples. The multiple testing package multtest con-
tains additional functions for computing test statis-
tics (paired t-statistics, F-statistics, etc.) and asso-
ciated permutation adjusted p-values for each gene
on the array (see next section). For the apo AI data,
the following commands implement two possible
approaches for comparing expression levels in the
livers of knock-out and control mice.

## Two-sample Welch t-statistics

## Comparison of the expression levels of the

## three control and three knock-out mice

## (data from mouse1, ..., mouse6)

cl <- c(rep(1,3), rep(2,3))

mouse.t2 <- stat.t2(mouse.lratio, cl)

plot.t2(mouse.t2, "Apo AI experiment, six mice")

## Bayesian odds ratio

## Comparison of the expression levels of the

## three knock-out mice to the polled controls

## (data from mouse4, mouse5, mouse6)

mouse.bayesian <-

stat.bayesian(M=mouse.lratio$M[,4:6])

plot(mouse.bayesian$Xprep$Mbar,

mouse.bayesian$lods)

Multiple testing

The biological question of differential expression can
be restated as a problem in multiple hypothesis test-
ing: the simultaneous test for each gene of the null
hypothesis of no association between the expression
levels and the responses or covariates. As a typical
microarray experiment measures expression levels
for thousands of genes simultaneously, we are faced
with an extreme form of multiple testing when as-
sessing the statistical significance of the results.

The multtest package implements a number of
resampling-based multiple testing procedures. It
includes procedures for controlling the family-wise
Type I error rate (FWER): Bonferroni, Hochberg,
Holm, Šidák, Westfall and Young minP and maxT
procedures. The Westfall and Young procedures take
into account the joint distribution of the test statis-
tics and are thus in general less conservative than the
other four procedures. The multtest package also in-
cludes procedures for controlling the false discovery
rate (FDR): Benjamini and Hochberg and Benjamini
and Yekutieli step-up procedures (see Dudoit et al.
(2002a) for a review of multiple testing procedures
and complete references). These procedures are im-
plemented for tests based on t-statistics, F-statistics,
paired t-statistics, block F-statistics, Wilcoxon statis-
tics. The results of the procedures are summarized
using adjusted p-values, which reflect for each gene
the overall experiment Type I error rate when genes
with a smaller p-value are declared differentially ex-
pressed. The p-values may be obtained either from
the nominal distribution of the test statistics or by
permutation.
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For the apo AI experiment, differentially ex-
pressed genes between the eight knock-out and eight
control mice were identified by computing two-
sample Welch’s t-statistics for each gene. In or-
der to assess the statistical significance of the re-
sults, four multiple testing procedures (Holm, West-
fall and Young maxT, Benjamini and Hochberg FDR,
Benjamini and Yekutieli FDR) were considered, and
unadjusted and adjusted p-values were estimated
based on all possible (16

8 ) = 12, 870 permutations
of the knock-out/control labels. Figure 8 displays
plots of the ordered adjusted p-values for these four
multiple testing procedures. The functions mt.maxT,
mt.rawp2adjp, and mt.plot from the multtest pack-
age were used to compute and display adjusted p-
values.
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Figure 8: Plot of sorted adjusted p-values for the apo
AI experiment (multtest package, mt.plot output).

Biological verification

In the apo AI experiment, eight spotted DNA se-
quences clearly stood out from the remaining se-
quences and had maxT adjusted p-values less than
0.01. These eight sequences correspond to only four
distinct genes: apo AI (3 copies), apo CIII (2 copies),
sterol C5 desaturase (2 copies), and a novel EST
(1 copy). All changes were confirmed by real-time
quantitative PCR (RT-PCR) as described in Callow
et al. (2000). The presence of apo AI among the
differentially expressed genes is to be expected, as
this is the gene that was knocked out in the treat-
ment mice. The apo CIII gene, also associated with
lipoprotein metabolism, is located very close to the
apo AI locus; Callow et al. (2000) showed that the
down-regulation of apo CIII was actually due to ge-
netic polymorphism rather than lack of apo AI. The
presence of apo AI and apo CIII among the differ-
entially expressed genes thus provides a check of
the statistical method, if not a biologically interest-
ing finding. Sterol C5 desaturase is an enzyme which

catalyzes one of the terminal steps in cholesterol syn-
thesis and the novel EST shares sequence similarity
to a family of ATPases. Note that the application
of single-slide methods to array data from individ-
ual knock-out mice generally produced a large num-
ber of false positives, while at the same time missing
some of the confirmed genes.

Ongoing projects

The sma package represents a preliminary and lim-
ited effort toward the goal of providing a statistical
computing environment for the analysis of microar-
ray data. Modifications and extensions to sma will
be done within the Bioconductor project (http://
www.bioconductor.org). The Bioconductor project
aims more generally to produce an open source and
open development computing environment for biol-
ogists and statisticians working on the analysis of ge-
nomic data. Important changes include the use of the
class/method mechanism in the R methods package
to allow more general and systematic representation
and manipulation of microarray data (Bioconductor
Biobase package). In addition, we are in the process
of splitting and expanding the sma package into the
following task specific packages.

Experimental design (MarrayDesign)

This package will include functions for: setting
up a design matrix for a given experimental
design (this design matrix can be used to effi-
ciently combine data across slides with func-
tions similar to lm or glm); searching for opti-
mal designs; and creating graphical represen-
tations of the design choices.

Spot quality (MarrayQual)

Building upon our previous work on image
analysis and normalization, we plan to devise
spot and slide quality statistics and incorporate
these statistics in further analyses of the fluo-
rescence intensity data, by weighting the con-
tribution of each spot based on its quality.

Normalization (MarrayNorm)

This package contains functions for diagnos-
tic plots and normalization procedures based
on robust local regression. Normalization
procedures were extended to accommodate a
broader class of dye biases and the use of con-
trol sequences spotted on the array and possi-
bly spiked in the target cDNA samples.

Cluster analysis (MarrayClust)

R already has an extensive collection of clus-
tering procedures in packages such as clus-
ter, mva, and GeneSOM. Building upon these
existing packages, we are implementing new
methods which are useful for the clustering
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of microarray data, genes or mRNA samples.
These include resampling based-methods for
estimating the number of clusters, for improv-
ing the accuracy of a clustering procedure, and
for assessing the accuracy of cluster assign-
ments for individual observations (Fridlyand
and Dudoit, 2001).

Class prediction (MarrayPred)

This package builds upon existing R packages
such as class and rpart and contains func-
tions for bagging and boosting classifiers. The
functions also return estimates of misclassifi-
cation rates and measures assessing the con-
fidence of predictions for individual observa-
tions. Resampling-based procedures for vari-
able selection as described in Breiman (1999)
will also be implemented in the package.

Affymetrix chips (affy)

Low-level analysis of Affymetrix data, such
as normalization and calculation of expression
estimates, is being handled by the affy pack-
age http://biosun01.biostat.jhsph.edu/
~ririzarr/Raffy/index.html.

The packages MarrayNorm, affy, and Mar-
rayPred are closest to being released. Required de-
velopments to increase the effectiveness of these R
packages within a biological context include the fol-
lowing.

Links to biological databases: An important aspect
of the analysis of microarray experiments
is the seamless access to biological infor-
mation resources such as the National Cen-
ter for Biotechnology Information (NCBI) En-
trez system (http://www.ncbi.nlm.nih.gov/
Entrez/) or the Gene Ontology (GO) Consor-
tium (http://www.geneontology.org). The
Bioconductor annotate package developed by
Robert Gentleman already provides browser
access to LocusLink and GenBank.

GUI: Not all biologist users will feel comfortable
with the command line R environment. To
accommodate a broad class of users and al-
low easy access to the statistical methodology,
the computing environment should provide a
graphical user interface.

Documentation: We envision two main classes of
users for these packages: biologists perform-
ing microarray experiments, and researchers
involved in the development of statistical
methodology for microarray experiments. The
former, will be primarily users of a standard
set of functions from these packages. They will
need guidance in deciding which statistical ap-
proaches and packages may be appropriate for

their experiments, in choosing among the var-
ious options provided by the functions, and in
correctly interpreting the results of their visual-
izations and statistical analyses. Extended tu-
torials, with step-by-step analyses of microar-
ray experiments, will be provided. The Sweave
package to be included in R 1.5 will be used for
automatic report generation mixing text and R
code. Researchers in the second group, will
likely be interested in writing their own func-
tions and packages, in addition to using exist-
ing functions. The Bioconductor project will
provide a framework for integrating their ef-
forts.

Thanks to Natalie Thorne, Ingrid Lönnstedt, and
Jessica Mar for their contributions to the sma pack-
age.
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Changes in R 1.4.0
by the R Core Team

The ‘NEWS’ file of the R sources and hence this arti-
cle have been reorganized into several sections (user-
visible changes, new features, deprecated & defunct,
documentation changes, utilities, C-level facilities,
bug fixes) in order to provide a better overview of
all the changes in R 1.4.0.

User-visible changes

This is a new section to highlight changes in be-
haviour, which may be given in more detail in the fol-
lowing sections. Many bug fixes are also user-visible
changes.

• The default save format has been changed, so
saved workspaces and objects cannot (by de-
fault) be read in earlier versions of R.

• The number of bins selected by default in a his-
togram uses the correct version of Sturges’ for-
mula and will usually be one larger.

• data.frame() no longer converts logical argu-
ments to factors (following S4 rather than S3).

• read.table() has new arguments ‘nrows’ and
‘colClasses’. If the latter is NA (the default),
conversion is attempted to logical, integer, nu-
meric or complex, not just to numeric.

• model.matrix() treats logical variables as a
factors with levels c(FALSE, TRUE) (rather

than 0-1 valued numerical variables). This
makes R compatible with all S versions.

• Transparency is now supported on most graph-
ics devices. This means that using par("bg"),
for example in legend(), will by default give a
transparent rather than opaque background.

• [dpqr]gamma now has third argument ‘rate’
for S-compatibility (and for compatibility with
exponentials). Calls which use positional
matching may need to be altered.

• The meaning of spar = 0 in smooth.spline()
has changed.

• substring() and substring<-() do nothing
silently on a character vector of length 0, rather
than generating an error. This is consistent
with other functions and with S.

• For compatibility with S4, any arithmetic op-
eration using a zero-length vector has a zero-
length result. (This was already true for logi-
cal operations, which were compatible with S4
rather than S3.)

• undoc() and codoc() have been moved to the
new package tools.

• The name of the site profile now defaults to
‘R HOME/etc/Rprofile.site’.
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• The startup process for setting environment
variables now first searches for a site environ-
ment file (given by the environment variable
R_ENVIRON if set or ‘R HOME/etc/Renviron.site’
if not), and then for a user ‘.Renviron’ file in the
current or the user’s home directory.

• Former stars(*, colors = v) must now be
stars(*, col.segments = v).

• The default methods for La.svd and La.eigen
have changed and so there may be sign
changes in singular/eigen vectors, including
in cancor, cmdscale, factanal, princomp, and
varimax.

New features

• Transparency is now supported on most graph-
ics devices. Internally colors include an al-
pha channel for opacity, but at present there
is only visible support for transparent/opaque.
The new color ‘"transparent"’ (or ‘NA’ or
‘"NA"’) is transparent, and is the default back-
ground color for most devices. Those devices
(postscript, XFig, PDF, Windows metafile and
printer) that previously treated ‘bg = "white"’
as transparent now have ‘"transparent"’ as
the default and will actually print ‘"white"’.
(NB: you may have ‘bg = "white"’ saved in
.Postscript.options in your workspace.)

• A package methods has been added, contain-
ing formal classes and methods (“S4” meth-
ods), implementing the description in the book
“Programming with Data”. See ?Methods and
the references there for more information.

– In support of this, the ‘@’ operator has
been added to the grammar.

– Method dispatch for formal methods (the
standardGeneric function), is now a
primitive. Aside from efficiency issues,
this allows S3-style generics to also have
formal methods (not really recommended
in the long run, but it should at least
work). The C-level dispatch is now im-
plemented for primitives that use either
DispatchGroup or DispatchOrEval inter-
nally.

– A version of the function plot in the
methods package has arguments x and y,
to allow methods for either or both. See
?setMethod for examples of such meth-
ods.

– The methods package now uses C-level
code (from within DispatchOrEval) to
dispatch any methods defined for prim-
itive functions. As with S3-style meth-
ods, methods can only be defined if the

first argument satisfies is.object(x) (not
strictly required for formal methods, but
imposed for now for simplicity and effi-
ciency).

• Changes to the tcltk package:

– New interface for accessing Tcl variables,
effectively making the R representations
lexically scoped. The old form is being
deprecated.

– Callbacks can now be expressions, with
slightly unorthodox semantics. In particu-
lar this allows bindings to contain ‘break’
expressions (this is necessary to bind code
to e.g. Alt-x without having the key com-
bination also insert an ‘x’ in a text widget.)

– A bunch of file handling and dialog func-
tions (previously only available via tkcmd)
have been added.

• The ‘?’ operator is now an actual function. It
can be used (as always) as a unary operator
(‘?plot’) and the grammar now allows it as a
binary operator, planned to allow differentiat-
ing documentation on the same name but dif-
ferent type (‘class?matrix,’ for example). So far,
no such documentation exists.

• New methods AIC.default() and logLik.glm(),
also fixing the AIC method for glm objects.

• axis.POSIXct() allows the label date/times to
be specified via the new ‘at’ argument.

• arrows() now allows ‘length = 0’ (and draws
no arrowheads).

• Modifications to the access functions for more
consistency with S: arguments ‘name’, ‘pos’
and ‘where’ are more flexible in assign(),
exists(), get(), ls(), objects(), remove()
and rm().

• Three new primitive functions have been
added to base: dataClass(), objWithClass(),
and as.environment(). The first two
are support routines for class() and
class<-() in package methods. The third re-
places pos.to.env() in the functions get(),
exists(), and friends.

• barplot() now respects an inline ‘cex.axis’ ar-
gument and has a separate ‘cex.names’ argu-
ment so names and the numeric axis labels can
be scaled separately. Also, graphics parameters
intended for axis() such as ‘las’ can now be
used.

• Shading by lines added to functions
barplot(), hist(), legend(), piechart(),
polygon() and rect().
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• bxp() has a show.names argument allow-
ing labels on a single boxplot; it and hence
boxplot() now makes use of ‘pch’, ‘cex’, and
‘bg’ for outlier points().

bxp() and boxplot() also have an argument
‘outline’ to suppress outlier drawing S-Plus
compatibly.

• New capabilities() options ‘"GNOME"’ and
‘"IEEE754"’.

• New function casefold(), a wrapper for
tolower/toupper provided for compatibility
with S-Plus.

• contour() is now generic.

• cor.test() in package ctest now also gives an
asymptotic confidence interval for the Pearson
product moment correlation coefficient.

• data(), demo() and library() now also return
the information about available data sets, de-
mos or packages. Similarly, help.search() re-
turns its results.

• density() allows ‘bw’ or ‘width’ to specify
a rule to choose the bandwidth, and rules
‘"nrd0"’ (the previous default), ‘"nrd"’, ‘"ucv"’,
‘"bcv"’, ‘"SJ-ste"’ and ‘"SJ-dpi"’ are supplied
(based on functions in package MASS).

• df.residual() now has a default method,
used for classes ‘"lm"’ and ‘"glm"’.

• New argument ‘cacheOK’ to download.file()
to request cache flushing.

All methods for download.file() do tilde-
expansion on the path name.

The internal download.file() etc now allow
URLs of the form ‘ftp://user@foo.bar/’ and
‘ftp://user:pass@foo.bar/’

• duplicated() and unique() are now generic
functions with methods for data frames (as
well as atomic vectors).

• factanal() and princomp() use napredict()
on their scores, so ‘na.action = na.exclude’ is
supported.

• Function getNativeSymbolInfo() returns de-
tails about a native routine, potentially includ-
ing its address, the library in which it is located,
the interface by which it can be called and the
number of parameters.

• Functions such as help() which perform li-
brary or package index searches now use
NULL as default for their ‘lib.loc’ argument so
that missingness can be propagated more eas-
ily. The default corresponds to all currently
known libraries as before.

• Added function file.rename().

• hist.default() allows ‘breaks’ to specify a
rule to choose the number of classes, and
rules ‘"Sturges"’ (the previous default), ‘"Scott"’
and ‘"FD"’ (Freedman-Diaconis) are supplied
(based on package MASS).

• Function identical(), a fast and reliable way
to test for exact equality of two objects.

• New generic function is.na<-(), from S4. This
is by default equivalent to ‘x[value] <- NA’ but
may differ, e.g., for factors where ‘"NA"’ is a
level.

• is.xxx reached through do_is are now
generic.

• La.eigen() and La.svd() have new default
methods to use later (and often much faster)
LAPACK routines. The difference is most no-
ticeable on systems with optimized BLAS li-
braries.

• length() is now generic.

• New function .libPaths() for getting or set-
ting the paths to the library trees R knows
about. This is still stored in ‘.lib.loc’, which
however should no longer be accessed directly.

• Using lm/glm/. . . with ‘data’ a matrix rather
than a data frame now gives a specific error
message.

• loess(), lqs(), nls() and ppr() use the stan-
dard NA-handling and so support ‘na.action =
na.exclude’.

• mahalanobis() now has a ‘tol’ argument to be
passed to solve().

• mean() has a ‘data.frame’ method applying
mean column-by-column. When applied to
non-numeric data mean() now returns ‘NA’
rather than a confusing error message (for com-
patibility with S4). Logicals are still coerced to
numeric.

• The formula interface to mosaicplot() now al-
lows a contingency table as data argument.

• new.env() is now internal and allows you
to set hashing. Also, parent.env() and
parent.env<-() are included to provide direct
access to setting and retrieving environments.

• Function nsl() to look up IP addresses of
hosts: intended as a way to test for internet
connectivity.
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• Ops(), cbind(), diff() and na.omit() meth-
ods for time series objects moved from package
ts to package base.

• New option ‘download.file.method’ can
be used to set the default method for
download.file() and functions which use it
such as update.packages().

• order() and sort.list() now implement
‘na.last = FALSE’ and ‘na.last = NA’.

• Started work on new package management
system: packageStatus() and friends.

• page() has a new ‘method’ argument allowing
‘method = print’.

• png(), jpeg() and bmp() devices now have a
‘bg’ argument to set the background color: use-
ful to set ‘"transparent"’ on png().

• Changes to the postscript() device:

– The symbol font can now be set on a
postscript() device, and support has
been added for using Computer Mod-
ern type-1 fonts (including for symbols).
(Contributed by Brian D’Urso.)

– There is now support for URW font fam-
ilies: this will give access to more char-
acters and more appropriate metrics on
PostScript devices using URW fonts (such
as ghostscript).

– %%IncludeResource comments have been
added to the output. (Contributed by
Brian D’Urso.)

• predict.ppr() now predicts on ‘newdata’
containing NAs.

• princomp() now has a formula interface.

• readChar() now returns what is available if
fewer characters than requested are on the file.

• readline() allows up to 256 chars for the
prompt.

• read.table(), scan() and count.fields()
have a new argument ‘comment.char’, default
‘#’, that can be used to start comments on a line.

• New function reg.finalizer() to provide R
interface to finalization.

• reshape() extends reshapeLong and
reshapeWide, which are deprecated.

• rle() now returns a classed object, has a print
method and an inverse.

• Changes to save() and friends:

– save() now takes an ‘envir’ argument for
specifying where items to be saved are to
be found.

– A new default format for saved
workspaces has been introduced. This
format provides support for some new in-
ternal data types, produces smaller save
files when saving code, and provides a ba-
sis for a more flexible serialization mecha-
nism.

– Modified ‘save’ internals to improve per-
formance when saving large collections of
code.

– save() and save.image() now take
a ‘version’ argument to specify the
workspace file-format version to use. The
version used from R 0.99.0 to 1.3.1 is ver-
sion 1. The new default format is ver-
sion 2. load() can read a version 2 saved
workspace if it is compressed.

– save() and save.image() now take a
‘compress’ argument to specify that the
saved image should be written using the
zlib compression facilities.

– save.image() now takes an argument
‘ascii’.

– save.image() now takes an argument
‘safe’. If ‘TRUE’, the default, a tempo-
rary file is used for creating the saved
workspace. The temporary file is renamed
if the save succeeds. This preserves an ex-
isting workspace if the save fails, but at
the cost of using extra disk space during
the save.

– save.image() default arguments can be
specified in the ‘save.image.defaults’ op-
tion. These specifications are used when
save.image() is called from q() or GUI
analogs.

• scan() allows unlimited (by R) lengths of in-
put lines, instead of a limit of 8190 chars.

• smooth.spline() has a new ‘control.spar’ ar-
gument and returns ‘lambda’ besides ‘spar’.
‘spar’ ≤ 0 is now valid and allows to go more
closely towards interpolation (lambda → 0)
than before. This also fixes smooth.spline()
behavior for ‘df ≈ n - 2’. Better error messages
in several situations.

Note that spar = 0 is no longer the default and
no longer entails cross-validation.

• stars() has been enhanced; new ‘mar’ argu-
ment uses smaller mar(gins) by default; fur-
ther ‘nrow’ and ‘ncol’ as S-Plus, ‘frame.plot’,
‘flip.labels’, ‘lty’ and explicit ‘main’, ‘sub’,
‘xlab’ and ‘ylab’. Note that ‘colors’ has been
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replaced by ‘col.segments’ and there’s a new
‘col.stars’.

stars() now returns the locations invisibly.

• step() is now closer to stepAIC() and so han-
dles a wider range of objects (but stepAIC [in
MASS] is still more powerful).

• symbols() now has automatic xlab and ylab
and a main argument which eliminates an
incorrect warning. It better checks wrongly
scaled arguments.

• Sys.setlocale() now issues a warning if it
fails.

• An enhanced function type.convert() is now
a documented function, rather than just inter-
nal to read.table().

• warning() allows multiple arguments, follow-
ing S4’s style.

• New function with() for evaluating expres-
sions in environments constructed from data.

• Unix x11() devices can now have a canvas
color set, which can help to distinguish plotting
‘"white"’ from plotting ‘"transparent"’.

• On Unix, X11(), png() and jpeg() now give
informative warnings if they fail to open the
device.

• The startup processing now interprets escapes
in the values of environment variables set in
‘R HOME/etc/Renviron’ in a similar way to
most shells.

• The operator ‘=’ is now allowed as an assign-
ment operator in the grammar, for consistency
with other languages, including recent ver-
sions of S-Plus. Assignments with ‘=’ are ba-
sically allowed only at top-level and in braced
or parenthesized expressions, to make famous
errors such as if(x=0) 1 else 2 illegal in the
grammar. (There is a plan to gradually elimi-
nate the underscore as an assignment in future
versions of R.)

• Finalizers can be registered to be run on system
exit for both reachable and unreachable objects.

• integer addition, subtraction, and multiplica-
tion now return NA’s on overflow and issue a
warning.

• Printing factors with both level ‘"NA"’ and
missing values uses ‘<NA>’ for the missing
values to distinguish them.

• Added an experimental interface for locking
environments and individual bindings. Also
added support for “active bindings” that link
a variable to a function (useful for example for
linking an R variable to an internal C global).

• GNOME interface now has separate colours for
input and output text (like the windows GUI).
These can be modified via the properties dia-
logue.

• Output from the GNOME console is block
buffered for increased speed

• The GNOME console inherits standard emacs-
style keyboard shortcuts from the GtkText wid-
get for cursor motion, editing and selection.
These have been modified to allow for the
prompt at the beginning of the command line.

• One can register R functions and C rou-
tines to be called at the end of the suc-
cessful evaluation of each top-level expres-
sion, for example to perform auto-saves, up-
date displays, etc. See addTaskCallback()
and taskCallbackManager(). See http:
//developer.r-project.org/TaskHandlers.
pdf.

Deprecated & defunct

• .Alias has been removed from all R sources
and deprecated.

• reshapeLong() and reshapeWide() are depre-
cated in favour of reshape().

• Previously deprecated functions httpclient(),
parse.dcf(), read.table.url(), scan.url(),
and source.url() are defunct. Method
‘"socket"’ for download.file() no longer ex-
ists.

Documentation changes

• Writing R Extensions has a new chapter on
generic/method functions.

Utilities

• New package tools for package development
and administration tools, containing the QA
tools checkFF(), codoc() and undoc() previ-
ously in package base, as well as the following
new ones:

– checkAssignFuns() for checking whether
the final argument of assignment func-
tions in a package is named ‘value’.

R News ISSN 1609-3631

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf


Vol. 2/1, March 2002 37

– checkDocArgs() for checking whether all
arguments shown in \usage of Rd files
are documented in the corresponding
\arguments.

– checkMethods() for checking whether all
methods defined in a package have all ar-
guments of their generic.

– checkTnF() for finding expressions con-
taining the symbols ‘T’ and ‘F’.

• R CMD Rd2dvi has more convenient defaults
for its output file.

• R CMD check now also fully checks the ‘De-
pends’ field in the package ‘DESCRIPTION’ file.
It also tests for syntax errors in the R code,
whether all methods in the code have all ar-
guments of the corresponding generic, for ar-
guments shown in \usage but not documented
in \arguments, and whether assignment func-
tions have their final argument named ‘value’.

C-level facilities

• arraySubscript and vectorSubscript are
now available to package users. All “array-
like” packages can use a standard method for
calculating subscripts.

• The C routine type2symbol, similar to
type2str, returns a symbol corresponding to
the type supplied as an argument.

• The macro SHLIB_EXT now includes ‘.’, e.g.
‘".so"’ or ‘".dll"’, since the Mac uses "Lib" with-
out a ‘.’.

• New FORTRAN entry points rwarn() and
rexit() for warnings and error exits from
compiled Fortran code.

• A new serialization mechanism is available
that can be used to serialize R objects to con-
nections or to strings. This mechanism is used
for the version 2 save format. For now, only an
internal C interface is available.

• R_tryEval() added for evaluating expressions
from C code with errors handled but guaran-
teed to return to the calling C routine. This is
used in embedding R in other applications and
languages.

• Support for attach()’ing user-defined tables
of variables is available and accessed via the
RObjectTables package currently at http://
www.omegahat.org/RObjectTables.

Bug fixes

• Fixed ‘share/perl/massage-examples.pl’ to detect
instances of par() at the very start of a line.

• Fixed Pearson residuals for glms with non-
canonical link.(PR#1123). Fixed them again
for weights (PR#1175).

• Fixed an inconsistency in the evaluation con-
text for on.exit expressions between explicit
calls to ‘return’ and falling off the end returns.

• The code in model.matrix.default() han-
dling contrasts was assuming a response was
present, and so without a response was failing
to record the contrasts for the first variable if it
was a factor.

• diffinv() could get the time base wrong in
some cases.

• file.append() was opening all files in text
mode: mattered on Windows and classic Mac-
intosh. (PR#1085)

• f[] <- g now works for factor f.

• substr<-() was misbehaving if the replace-
ment was too short.

• The version of ‘packages.html’ generated when
building R or installing packages had an incor-
rect link to the style sheet. The version used by
help.start() was correct. (PR#1090)

• rowsum() now gives character (not factor
codes) as rownames. (PR#1092)

• plot.POSIXct and plot.POSIXlt now respect
the ‘xaxt’ parameter.

• It is now possible to predict from
an intercept-only model: previously
model.matrix.default() objected to a 0-
column model frame.

• c.POSIXct was not setting the right classes in
1.3.x.

• cor(*, use = "all.obs")≤ 1 is now guaran-
teed which ensures that sqrt(1 - r^2) is al-
ways ok in cor.test(). (PR#1099)

• anova.glm() had a missing ‘drop=FALSE’ and
so failed for some intercept-less models.

• predict.arima0() now accepts vector as well
as matrix ‘newxreg’ arguments.

• cbind(d,f) now works for 0-column
dataframes. This fixes PR#1102.

• plot(ts(0:99), log = "y") now works.

• method ‘"gnudoit"’ of bug.report() was
incorrectly documented as ‘"gnuclient"’
(PR#1108)
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• saving with ‘ascii=TRUE’ mangled back-
slashes. (PR#1115)

• frac(,) and others now adds a gap appropri-
ately. (PR#1101)

• logLik.lm() now uses the correct ‘"df"’ (nlme
legacy code).

• closeAllConnections() works again, and
closes all sink() diversions.

• sink(type="message") works again.

• sink.number was (accidentally) returning the
result invisibly.

• as.POSIXct("NA") (or ..lt) now work;
hence, merge(*, all=TRUE) now works with
dataframes containing POSIXt date columns.

• integer(23̂0+1) and similar ones do not seg-
fault anymore but duly report allocation errors.

• seq(0, 0, 1) now works (PR#1133).

• reshapeWide() got it wrong if the ‘"i"’ factor
was not sorted (the function is now depre-
cated since reshape() is there, but the bug still
needed fixing . . . )

• PR#757 was fixed incorrectly, causing improper
subsetting of ‘pch’ etc. in plot.formula().

• library() no longer removes environments
of functions that are not defined in the top-
level package scope. Also, packages loaded
by require() when sourcing package code are
now visible in the remaining source evalua-
tions.

• names(d) <- v now works (again) for ‘"dist"’
objects d. (PR#1129)

• Workarounds for problems with incompletely
specified date-times in strptime() which were
seen only on glibc-based systems (PR#1155).

• promax() was returning the wrong rotation
matrix. (PR#1146)

• The [pqr]signrank and [pqr]wilcox functions
failed to check that memory has been allocated
(PR#1149), and had (often large) memory leaks
if interrupted. They now can be interrupted on
Windows and MacOS and don’t leak memory.

• range(numeric(0)) is now c(NA, NA) not NA.

• round(x, digits) for digits ≤ 0 always
gives an integral answer. Previously it
might not due to rounding errors in fround.
(PR#1138/9)

• Several memory leaks on interrupting func-
tions have been circumvented. Functions
lqs() and mve() can now be interrupted on
Windows and MacOS.

• image() was finding incorrect breakpoints
from irregularly-spaced midpoints. (PR#1160)

• Use fuzz in the 2-sample Kolmogorov-Smirnov
test in package ctest to avoid rounding errors
(PR#1004, follow-up).

• Use exact Hodges-Lehmann estimators for the
Wilcoxon tests in package ctest (PR#1150).

• Arithmetic which coerced types could lose the
class information, for example ‘table - real’ had
a class attribute but was not treated as a classed
object.

• Internal ftp client could crash R under error
conditions such as failing to parse the URL.

• Internal clipping code for circles could attempt
to allocate a vector of length −1 (related to
PR#1174)

• The hash function used internally in match(),
unique() and duplicated() was very ineffi-
cient for integers stored as numeric, on little-
endian chips. It was failing to hash the imagi-
nary part of complex numbers.

• fifo() no longer tries to truncate on opening
in modes including ‘"w"’. (Caused the fifo ex-
ample to fail on HP-UX.)

• Output over 1024 characters was discarded
from the GNOME console.

• rug() now correctly warns about clipped val-
ues also for logarithmic axes and has a ‘quiet’
argument for suppressing these (PR#1188).

• model.matrix.default was not handling cor-
rectly ‘contrasts.arg’ which did not supply a
full set of contrasts (PR#1187).

• The ‘width’ argument of density() was only
compatible with S for a Gaussian kernel: now
it is compatible in all cases.

• The rbinom() C code had a transcription er-
ror from the original Fortran which led to a
small deviation from the intended distribution.
(PR#1190)

• pt(t, , ncp=0) was wrong if t was +/-Inf.

• Subsetting grouping factors gave incorrect de-
grees of freedom for some tests in package
ctest. (PR#1124)

• writeBin() had a memory leak.

• qbeta(0.25, 0.143891, 0.05) was (incor-
rectly) 3e-308. (PR#1201)
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• Fixed alignment problem in ‘ppr.f’ on Irix.
(PR#1002, 1026)

• glm() failed on null binomial models.
(PR#1216)

• La.svd() with ‘nu’ = 0 or ‘nv’ = 0 could fail as
the matrix passed to DGESVD was not of di-
mension at least one (it was a vector).

• Rownames in ‘xcoef’ and ‘ycoef’ of cancor()
were wrong if ‘x’ or ‘y’ was rank-deficient.

• lqs() could give warnings if there was an ex-
act fit. (PR#1184)

• aov() didn’t find free-floating variables for
Error() terms when called from inside another
function.

• write.table() failed if asked to quote a nu-
merical matrix with no row names. (PR#1219)

• rlnorm( *, *, sd=0) now returns the mean,
rnbinom(*, *, prob=1) gives 0, (PR#1218).

Changes in R 1.4.1
by the R Core Team

Bug fixes

• scan(multi.line = FALSE) now always gives
an immediate error message if a line is incom-
plete. (As requested in PR#1210)

• read.table() is no longer very slow in pro-
cessing comments: moved to C code and fewer
lines checked.

• type.convert() could give stack imbalance
warnings if used with ‘as.is = TRUE’.

• predict.mlm ignored newdata (PR#1226) and
also offsets.

• demo(tkttest) was inadvertently changed in
1.4.0 so that it would evaluate the requested
test, but not display the result.

• stars(scale = TRUE) (the default) now works
as documented (and as S does). Previously it
only scaled the maximum to 1. (PR#1230)

• d0 <- data.frame(a = 0); data.matrix(d0[0,
0]) and data.matrix(d0[, 0]) now work.

• plot(multiple time series, plot.type =
"single") was computing ‘ylim’ from the first
series only.

• plot.acf() has a new ‘xpd = par("xpd")’ ar-
gument which by default does clipping (of the
horizontal lines) as desired (‘xpd’ = NA was
used before, erroneously in most cases).

• predict(smooth.spline(.), deriv = 1)
now works.

• identify() failed when x is a struc-
ture/matrix. (PR#1238)

• getMethod() returns NULL when ‘op-
tional=TRUE’ as promised in the documen-
tation.

• setMethod() allows ... to be one of the argu-
ments omitted in the method definition (but so
far no check for ... being missing)

• Allow round() to work again on very large
numbers (introduced in fixing PR#1138).
(PR#1254)

• ‘Rinternals.h’ is now accepted by a C++ com-
piler.

• type.convert() was failing to detect integer
overflow.

• piechart() was defaulting to foreground
colour (black) fills rather than background (as
used in 1.3.1 and earlier). Now background is
used, but be aware that as from 1.4.0 this may
be transparent.

• La.eigen(*, only.values=TRUE) does not
segfault anymore in one branch (PR#1262).

• cut() now produces correct default labels even
when ‘include.lowest = TRUE’ (PR#1263).

• reformulate() works properly with a re-
sponse.

• cmdscale(*, k = 1) now works properly.

• Options ‘by = "month"’ and ‘by = "year"’
to seq.POSIXt() will always take account of
changes to/from daylight savings time: this
was not working on some platforms.

• glm.fit.null() now accepts all the arguments
of glm.fit() (it could be called from glm.fit
with arguments it did not accept), and is now
documented.

• cov.wt(cbind(1), cor = TRUE) now works.

• predict(glm.object, se.fit = TRUE) was
failing if the fit involved an offset.
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• detach() on ‘"package:base"’ would crash R.
(PR#1271)

• print or summary on a manova() object with no
terms, no names on the response and ‘intercept
= FALSE’ (which is not sensible) would give an
error.

• seek() on file connections was ignoring the
‘origin’ argument.

• Fixed new environment handling in library()
to avoid forcing promises created by delay().

• arima0() could leak memory: now released
via on.exit().

• qr.coef(qr,*) now keeps the names of qr$qr.

• read.00Index() no longer fails on data in-
dexes not generated by Rdindex (PR#1274).

Changes on CRAN
by Kurt Hornik and Friedrich Leisch

CRAN packages

The following extension packages from ‘src/contrib’
were added since the last newsletter.

Bhat Functions for MLE, MCMC, CIs (originally in
Fortran). By E. Georg Luebeck.

CircStats Circular Statistics, from ‘Topics in circu-
lar Statistics’ by S. Rao Jammalamadaka and A.
SenGupta, World Scientific (2001). S original by
Ulric Lund, R port by Claudio Agostinelli.

ROracle Oracle Database Interface driver for R.
Uses the ProC/C++ embedded SQL. By David
A. James and Jake Luciani.

RQuantLib The RQuantLib packages provides ac-
cess to (some) of the QuantLib functions from
within R. It is currently limited to some Option
pricing and analysis functions. The QuantLib
project aims to provide a comprehensive soft-
ware framework for quantitative finance. The
goal is to provide a standard free/open source
library to quantitative analysts and develop-
ers for modeling, trading, and risk manage-
ment of financial assets. By Dirk Eddel-
buettel for the R interface, and the QuantLib
group for QuantLib (http://www.quantlib.
org/html/group.html).

RSQLite Database Interface R driver for SQLite.
Embeds the SQLite database engine in R. By
David A. James.

RadioSonde RadioSonde is a collection of programs
for reading and plotting SKEW-T,log p dia-
grams and wind profiles for data collected
by radiosondes (the typical weather balloon-
borne instrument). By Tim Hoar, Eric Gille-
land, and Doug Nychka.

agce Contains some simple functions for the analy-
sis of growth curve experiments. By Raphael
Gottardo.

aws Contains R functions to perform the adap-
tive weights smoothing (AWS) procedure de-
scribed in Polzehl und Spokoiny (2000), Adap-
tive weights smoothing with applications to
image restoration, Journal of the Royal Statistical
Society, Ser. B, 62, 2, 335–354. By Joerg Polzehl.

combinat Routines for combinatorics. By Scott
Chasalow.

deldir Calculates the Delaunay triangulation and
the Dirichlet or Voronoi tesselation (with re-
spect to the entire plane) of a planar point set.
By Rolf Turner.

dr Functions, methods, and datasets for fitting di-
mension reduction regression, including pHd
and inverse regression methods SIR and SAVE.
These methods are described, for example, in
R. D. Cook (1998), Regression Graphics, Wiley,
New York. Also included is code for comput-
ing permutation tests of dimension. By Sanford
Weisberg.

emplik empirical likelihood ratio for means, quan-
tiles, and hazards from possibly right censored
data. By Mai Zhou and Art Owen.

evd Extends simulation, distribution, quantile and
density functions to univariate, bivariate and
(for simulation) multivariate parametric ex-
treme value distributions, and provides fitting
functions which calculate maximum likelihood
estimates for univariate and bivariate models.
By Alec Stephenson.

g.data Create and maintain delayed-data packages
(DDP’s). Data stored in a DDP are avail-
able on demand, but do not take up mem-
ory until requested. You attach a DDP with
g.data.attach(), then read from it and assign
to it in a manner similar to S-Plus, except that
you must run g.data.save() to actually com-
mit to disk. By David Brahm.
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geoRglm Functions for inference in generalised lin-
ear spatial models. By Ole F. Christensen and
Paulo J. Ribeiro Jr.

grid A rewrite of the graphics layout capabilities,
plus some support for interaction. By Paul
Murrell.

hdf5 Interface to the NCSA HDF5 library. By Mar-
cus G. Daniels.

ifs Iterated Function Systems distribution function
estimator. By S. M. Iacus.

lasso2 Routines and documentation for solving re-
gression problems while imposing an L1 con-
straint on the estimates, based on the algorithm
of Osborne et al. (1998). By Justin Lokhorst, Bill
Venables and Berwin Turlach; first port to R by
Martin Maechler.

lattice Implementation of Trellis Graphics. By Deep-
ayan Sarkar.

moc Fits a variety of mixtures models for multi-
variate observations with user-defined distri-
butions and curves. By Bernard Boulerice.

pastecs Regulation, decomposition and analysis of
space-time series. By Frederic Ibanez, Philippe
Grosjean & Michele Etienne.

pear Package for estimating periodic autoregressive
models. Also includes methods for plotting
periodic time series data. S original by A. I.
McLeod, R port by Mehmet Balcilar.

qtl Analysis of experimental crosses to identify
genes (called quantitative trait loci, QTLs) con-
tributing to variation in quantitative traits.

By Karl W Broman, with ideas from Gary
Churchill and Saunak Sen and contributions
from Hao Wu.

spatstat Data analysis and modelling of two-
dimensional point patterns, including multi-
type points and spatial covariates. By Adrian
Baddeley and Rolf Turner.

spsarlm Functions for estimating spatial simultane-
ous autoregressive (SAR) models. By Roger Bi-
vand.

New country mirrors

We now also have CRAN country mirrors in
Brazil (thanks to Paulo Justiniano Ribeiro Jr
p.ribeiro@lancaster.ac.uk) and in Germany.

New submission email

The email address for submissions to CRAN now
is cran@r-project.org (the old address no longer
works). Uploads still go to ftp://cran.r-project.
org/incoming/.

Kurt Hornik
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Technische Universität Wien, Austria
Kurt.Hornik@R-project.org
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