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Editorial
by Kurt Hornik and Friedrich Leisch

Welcome to the second issue of R News, the newslet-
ter of the R project for statistical computing. First we
would like to thank for all the positive feedback we
got on the first volume, which encourages us very
much to continue with this online magazine.

A lot has happened since the first volume ap-
peared last January, especially the workshop “DSC
2001” comes to mind. More on this remarkable event
can be found in the new regular column “Recent
Events”. During DSC 2001 the R Core Team was
happy to announce Stefano Iacus (who created the
Macintosh port of R) as a new member of R Core:
Welcome aboard, Stefano!

We have started collecting an annotated R bibli-
ography, see http://www.R-project.org/doc/bib/
R-publications.html. It will list books, journal ar-
ticles, . . . that may be useful to the R user community
(and are related to R or S). If you are aware of any
publications that should be included in the bibliog-
raphy, please send email to R-core@R-project.org.

To make citation easier we have registered an
ISSN number for this newsletter: ISSN 1609-3631.
Please use this number together with the home
page of the newsletter (http://cran.R-project.
org/doc/Rnews/) when citing articles from R News.

We are now planning to have 4 issues of R News

per year, scheduled for March/April, June/July,
September/October and December/January, respec-
tively. This should fit nicely into the calendar of the
(Austrian) academic year and allow the editors to do
most of the production work for at least 3 issues dur-
ing semester breaks or holidays (remember that cur-
rently, all of the R project including this newsletter is
volunteer work). Hence, the next issue is due after
(northern hemisphere) summer: all contributions are
welcome!

R 1.3.0 has just been released, and its new features
are described in “Changes in R”. Alongside, several
add-on packages from CRAN have been categorized
as recommended and will be available in all binary dis-
tributions of R in the future (“Changes on CRAN”
has more details). R News will provide introductory
articles on each recommended package, starting in
this issue with “mgcv: GAMs and Generalized Ridge
Regression for R”.
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Changes in R
by the R Core Team

New features in version 1.3.0

• Changes to connections:

– New function url() to read from URLs.
file() will also accept URL specifica-
tions, as will all the functions which use
it.

– File connections can now be opened for
both reading and writing.

– Anonymous file connections (via file())
are now supported.

– New function gzfile() to read from /
write to compressed files.

– New function fifo() for connections to /
from fifos (on Unix).

– Text input from file, pipe, fifo, gzfile and
url connections can be read with a user-
specified encoding.

– New functions readChar() to read char-
acter strings with known lengths and no
terminators, and writeChar() to write
user-specified lengths from strings.

– sink() now has a stack of output connec-
tions, following S4.

– sink() can also be applied to the message
stream, to capture error messages to a con-
nection. Use carefully!

– seek() has a new ‘origin’ argument.
– New function truncate() to truncate a

connection open for writing at the current
position.

– New function socketConnection() for
socket connections.

– The ‘blocking’ argument for file, fifo and
socket connections is now operational.

• Changes to date/time classes and functions:

– Date/time objects now all inherit from
class "POSIXt".

– New function difftime() and corre-
sponding class for date/time differences,
and a round() method.

– Subtraction and logical comparison of ob-
jects from different date/time classes is
now supported. NB: the format for the
difference of two objects of the same
date/time class has changed, but only
for objects generated by this version, not
those generated by earlier ones.

– Methods for cut(), seq(), round() and
trunc() for date/time classes.

– Convenience generic functions julian(),
weekdays(), months(), and quarters()
with methods for "POSIXt" objects.

• Coercion from real to integer now gives NA for
out-of-range values, rather than the most ex-
treme integer of the same sign.

• The Ansari-Bradley, Bartlett, Fligner-Killeen,
Friedman, Kruskal-Wallis, Mood, Quade, t,
and Wilcoxon tests as well as var.test() in
package ctest now have formula interfaces.

• The matrix multiplication functions %*% and
crossprod() now use a level-3 BLAS routine
dgemm. When R is linked with the ATLAS or
other enhanced BLAS libraries this can be sub-
stantially faster than the previous code.

• New functions La.eigen() and La.svd() for
eigenvector and singular value decomposi-
tions, based on LAPACK. These are preferred
to eigen() and svd() for new projects and
can make use of enhanced BLAS routines
such as ATLAS. They are used in cancor(),
cmdscale(), factanal() and princomp() and
this may lead to sign reversals in some of the
output of those functions.

• Provided the FORTRAN compiler can handle
COMPLEX*16, the following routines now han-
dle complex arguments, based on LAPACK
code: qr(), qr.coef(), qr.solve(), qr.qy(),
qr.qty(), solve.default(), svd(), La.svd().

• aperm() uses strides in the internal C code and
so is substantially faster (by Jonathan Rougier).

• The four bessel[IJKY](x,nu) functions are
now defined for nu < 0.

• [dpqr]nbinom() also accept an alternative
parametrization via the mean and the disper-
sion parameter (thanks to Ben Bolker).

• New generalised “birthday paradox” functions
[pq]birthday().

• boxplot() and bxp() have a new argument
‘at’.

• New function capabilities() to report op-
tional capabilities such as jpeg, png, tcltk, gzfile
and url support.

• New function checkFF() for checking foreign
function calls.
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• New function col2rgb() for color conversion
of names, hex, or integer.

• coplot() has a new argument ‘bar.bg’ (color of
conditioning bars), gives nicer plots when the
conditioners are factors, and allows factors for
x and y (treated almost as if unclass()ed) us-
ing new argument ‘axlabels’. [Original ideas by
Thomas Baummann]

• ‘hessian’ argument added to deriv() and its
methods. A new function deriv3() provides
identical capabilities to deriv() except that
‘hessian’ is TRUE by default. deriv(*, *, func
= TRUE) for convenience.

• New dev.interactive() function, useful for
setting defaults for par(ask=*) in multifigure
plots.

• dist() in package mva can now handle miss-
ing values, and zeroes in the Canberra distance.

• The default method for download.file()
(and functions which use it such as
update.packages()) is now "internal", and
uses code compiled into R.

• eigen() tests for symmetry with a numerical
tolerance.

• New function formatDL() for formatting de-
scription lists.

• New argument ‘nsmall’ to format.default(),
for S-PLUS compatibility (and used in various
packages).

• ?/help() now advertises help.search() if it
fails to find a topic.

• image() is now a generic function.

• New function integrate() with S-compatible
call.

• New function is.unsorted() the C version of
which also speeds up .Internal(sort()) for
sorted input.

• is.loaded() accepts an argument ‘PACKAGE’
to search within a specific DLL/shared library.

• Exact p-values are available for the two-sided
two-sample Kolmogorov-Smirnov test.

• lm() now passes ‘. . . ’ to the low level functions
for regression fitting.

• Generic functions logLik() and AIC() moved
from packages nls and nlme to base, as well as
their lm methods.

• New components in .Machine give the sizes of
long, long long and long double C types (or
0 if they do not exist).

• merge.data.frame() has new arguments,
‘all[.xy]’ and ‘suffixes’, for S compatibility.

• model.frame() now calls na.action with the
terms attribute set on the data frame (needed
to distiguish the response, for example).

• New generic functions naprint(), naresid(),
and napredict() (formerly in packages MASS
and survival5, also used in package rpart).
Also na.exclude(), a variant on na.omit()
that is handled differently by naresid() and
napredict().

The default, lm and glm methods for fitted(),
residuals(), predict() and weights() make
use of these.

• New function oneway.test() in package ctest
for testing for equal means in a one-way layout,
assuming normality but not necessarily equal
variances.

• options(error) accepts a function, as an alter-
native to an expression. (The Blue Book only
allows a function; current S-PLUS a function or
an expression.)

• outer() has a speed-up in the default case of a
matrix outer product (by Jonathan Rougier).

• package.skeleton() helps with creating new
packages.

• New pdf() graphics driver.

• persp() is now a generic function.

• plot.acf() makes better use of white space
for ‘nser > 2’, has new optional arguments and
uses a much better layout when more than one
page of plots is produced.

• plot.mts() has a new argument ‘panel’ pro-
viding the same functionality as in coplot().

• postscript() allows user-specified encoding,
with encoding files supplied for Windows,
Mac, Unicode and various others, and with an
appropriate platform-specific default.

• print.htest() can now handle test names that
are longer than one line.

• prompt() improved for data sets, particularly
non-dataframes.

• qqnorm() is now a generic function.

• read.fwf() has a new argument ‘n’ for speci-
fying the number of records (lines) read in.

• read.table() now uses a single pass through
the dataset.
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• rep() now handles lists (as generic vectors).

• scan() has a new argument ‘multi.line’ for S
compatibility, but the default remains the op-
posite of S (records can cross line boundaries
by default).

• sort(x) now produces an error when x is not
atomic instead of just returning x.

• split() now allows splitting on a list of fac-
tors in which case their interaction defines the
grouping.

• stl() has more optional arguments for fine
tuning, a summary() and an improved plot()
method.

• New function strwrap() for formatting char-
acter strings into paragraphs.

• New replacement functions substr<-() and
substring<-().

• Dataset swiss now has row names.

• Arguments ‘pkg’ and ‘lib’ of system.file()
have been renamed to ‘package’ and ‘lib.loc’,
respectively, to be consistent with related func-
tions. The old names are deprecated. Argu-
ment ‘package’ must now specify a single pack-
age.

• The Wilcoxon and Ansari-Bradley tests now re-
turn point estimators of the location or scale pa-
rameter of interest along with confidence inter-
vals for these.

• New function write.dcf() for writing data
in Debian Control File format. parse.dcf()
has been replaced by (much faster) internal
read.dcf().

• Contingency tables created by xtabs() or
table() now have a summary() method.

• Functions httpclient(), read.table.url(),
scan.url() and source.url() are now dep-
recated, and hence ‘method="socket"’ in
download.file() is. Use url connections in-
stead: in particular URLs can be specified for
read.table(), scan() and source().

• Formerly deprecated function getenv() is now
defunct.

• Support for package-specific demo scripts (R
code). demo() now has new arguments to spec-
ify the location of demos and to allow for run-
ning base demos as part of ‘make check’.

• If not explicitly given a library tree to install to
or remove from, respectively, R CMD INSTALL
and R CMD REMOVE now operate on the first di-
rectory given in R_LIBS if this is set and non-
null, and the default library otherwise.

• R CMD INSTALL and package.description()
fix some common problems of ‘DESCRIPTION’
files (blank lines, . . . ).

• The INSTALL command for package installation
allows a ‘--save’ option. Using it causes a bi-
nary image of the package contents to be cre-
ated at install time and loaded when the pack-
age is attached. This saves time, but also uses a
more standard way of source-ing the package.
Packages that do more than just assign object
definitions may need to install with ‘--save’.
Putting a file ‘install.R’ in the package directory
makes ‘--save’ the default behavior. If that
file is not empty, its contents should be R com-
mands executed at the end of creating the im-
age.

There is also a new command line option
‘--configure-vals’ for passing variables to
the configure script of a package.

• R CMD check now also checks the keyword en-
tries against the list of standard keywords,
for code/documentation mismatches (this can
be turned off by the command line option
‘--no-codoc’), and for sufficient file permis-
sions (Unix only). There is a new check for the
correct usage of library.dynam().

It also has a new command line option
‘--use-gct’ to use ‘gctorture(TRUE)’ when
running R code.

• R CMD Rd2dvi has better support for produc-
ing reference manuals for packages and pack-
age bundles.

• configure now tests for the versions of jpeg
(≥ 6b), libpng (≥ 1.0.5) and zlib (≥ 1.1.3). It
no longer checks for the CXML/DXML BLAS
libraries on Alphas.

• Perl scripts now use Cwd::cwd() in place of
Cwd::getcwd(), as cwd() can be much faster.

• ‘R::Dcf.pm’ can now also handle files with more
than one record and checks (a little bit) for con-
tinuation lines without leading whitespace.

• New manual ‘R Installation and Administra-
tion’ with fuller details on the installation pro-
cess: file ‘INSTALL’ is now a brief introduction
referencing that manual.

• New keyword ‘internal’ which can be used to
hide objects that are not part of the API from
indices like the alphabetical lists in the HTML
help system.

R News ISSN 1609-3631



Vol. 1/2, June 2001 5

• Under Unix, shlib modules for add-on pack-
ages are now linked against R as a shared li-
brary (‘libR’) if this exists. (This allows for
improved embedding of R into other applica-
tions.)

• New mechanism for explicitly registering na-
tive routines in a DLL/shared library ac-
cessible via .C(), .Call(), .Fortran() and
.External(). This is potentially more ro-
bust than the existing dynamic lookup, since it
checks the number of arguments, type of the
routine.

• New mechanism allowing registration of C
routines for converting R objects to C pointers
in .C() calls. Useful for references to data in
other languages and libraries (e.g. C and hdf5).

• The internal ftp/http access code maintains the
event loop, so you can download whilst run-
ning tcltk or Rggobi, say. It can be hooked into
package XML too.

New features in version 1.2.3

• Support for configuration and building the
Unix version of R under Mac OS X. (The ‘clas-
sic’ Macintosh port is ‘Carbonized’ and also
runs under that OS.)

• dotchart() and stripchart() become
the preferred names for dotplot() and
stripplot(), respectively. The old names are
now deprecated.

• Functions in package ctest now consistently
use +/-Inf rather than NA for one-sided confi-
dence intervals.

New features in version 1.2.2

• The Macintosh port becomes a full member of
the R family and its sources are incorporated as
from this release. See ‘src/macintosh/INSTALL’
for how that port is built.

• The API header files and export files ‘R.exp’ are
released under LGPL rather than GPL to allow
dynamically loaded code to be distributed un-
der licences other than GPL.

• postscript() and xfig() devices now make
use of genuine Adobe afm files, and warn if
characters are used in string width or height
calculations that are not in the afm files.

• Configure now uses a much expanded search
list for finding a FORTRAN 77 compiler, and no
longer disallows wrapper scripts for this com-
piler.

• New Rd markup \method{GENERIC}{CLASS}
for indicating the usage of methods.

• print.ftable() and write.ftable() now
have a ‘digits’ argument.

• undoc() has a new ‘lib.loc’ argument, and its
first argument is now called ‘package’.

Changes on CRAN
by Kurt Hornik and Friedrich Leisch

CRAN packages

The following extension packages from ‘src/contrib’
were added since the last newsletter.

AnalyzeIO Functions for I/O of ANALYZE image
format files. By Jonathan L Marchini.

CoCoAn Two functions to compute correspondence
analysis and constrained correspondence anal-
ysis and to make the associated graphical rep-
resentation. By Stephane Dray.

GLMMGibbs Generalised Linear Mixed Models are
an extension of Generalised Linear Models
to include non-independent responses. This
package allows them to be fitted by including

functions for declaring factors to be random ef-
fects, for fitting models and generic functions
for examining the fits. By Jonathan Myles and
David Clayton.

GeneSOM Clustering Genes using Self-Organizing
Map. By Jun Yan.

Oarray Generalise the starting point of the array in-
dex, e.g. to allow x[0, 0, 0] to be the first el-
ement of x. By Jonathan Rougier.

PTAk A multiway method to decompose a tensor
(array) of any order, as a generalisation of SVD
also supporting non-identity metrics and pe-
nalisations. 2-way SVD with these extensions
is also available. The package includes also
some other multiway methods: PCAn (Tucker-
n) and PARAFAC/CANDECOMP with these
extensions. By Didier Leibovici.
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RArcInfo This package uses the functions written
by Daniel Morissette (danmo@videotron.ca) to
read geographical information in Arc/Info V
7.x format to import the coverages into R vari-
ables. By Virgilio Gómez-Rubio.

RMySQL DataBase Interface and MySQL driver for
R. By David A. James and Saikat DebRoy.

RandomFields Simulating and analysing random
fields using various methods. By Martin
Schlather.

SuppDists Ten distributions supplementing those
built into R. Inverse Gauss, Kruskal-Wallis,
Kendall’s Tau, Friedman’s chi squared, Spear-
man’s rho, maximum F ratio, the Pearson
product moment correlation coefficiant, John-
son distributions, normal scores and general-
ized hypergeometric distributions. In addi-
tion two random number generators of George
Marsaglia are included. By Bob Wheeler.

adapt Adaptive quadrature in up to 20 dimensions.
By Thomas Lumley.

blighty Function for drawing the coastline of the
United Kingdom. By David Lucy.

bqtl QTL mapping toolkit for inbred crosses and re-
combinant inbred lines. Includes maximum
likelihood and Bayesian tools. By Charles C.
Berry.

cramer Provides R routine for the multivariate non-
parametric Cramer-Test. By Carsten Franz.

event.chart The function event.chart creates an
event chart on the current graphics device. S
original by J. Lee, K. Hess and J. Dubin. R port
by Laura Pontiggia.

geoR Functions to perform geostatistical analysis in-
cluding model-based methods. By Paulo J.
Ribeiro Jr and Peter J. Diggle.

gregmisc Misc Functions written/maintained by
Gregory R. Warnes. By Gregory R. Warnes. In-
cludes code provided by William Venables and
Ben Bolker.

lgtdl A very simple implementation of a class for
longitudinal data. See the corresponding paper
in the DSC-2001 proceedings. By Robert Gen-
tleman.

lokern Kernel regression smoothing with adaptive
local or global plug-in bandwidth selection., By
Eva Herrmann (FORTRAN 77 & S original);
Packaged for R by Martin Maechler.

lpridge lpridge and lpepa provide local poly-
nomial regression algorithms including local
bandwidth use. By Burkhardt Seifert (S origi-
nal); packaged for R by Martin Maechler.

maxstat Maximally selected rank and Gauss statis-
tics with several p-value approximations. By
Torsten Hothorn and Berthold Lausen.

meanscore The Mean Score method for missing and
auxiliary covariate data is described in the pa-
per by Reilly & Pepe in Biometrika 1995. This
likelihood-based method allows an analysis us-
ing all available cases and hence will give more
efficient estimates. The method is applicable to
cohort or case-control designs. By Marie Reilly
PhD and Agus Salim.

netCDF Read data from netCDF files. By Thomas
Lumley, based on code by Steve Oncley and
Gordon Maclean.

nlrq Nonlinear quantile regression routines. By
Roger Koenker and Philippe Grosjean.

odesolve This package provides an interface for the
ODE solver lsoda. ODEs are expressed as R
functions. By R. Woodrow Setzer with fixups
by Martin Maechler.

panel Functions and datasets for fitting models to
Panel data. By Robert Gentleman.

permax Functions intended to facilitate certain ba-
sic analyses of DNA array data, especially with
regard to comparing expression levels between
two types of tissue. By Robert J. Gray.

pinktoe Converts S tree objects into HTML/perl
files. These web files can be used to interac-
tively traverse the tree on a web browser. This
web based approach to traversing trees is espe-
cially useful for large trees or for trees where
the text for each variable is verbose. By Guy
Nason.

sma The package contains some simple functions for
exploratory microarray analysis. By Sandrine
Dudoit, Yee Hwa (Jean) Yang and Benjamin
Milo Bolstad, with contributions from Natalie
Thorne, Ingrid Lönnstedt, and Jessica Mar.

sna A range of tools for social network analysis, in-
cluding node and graph-level indices, struc-
tural distance and covariance methods, struc-
tural equivalence detection, p∗ modeling, and
network visualization. By Carter T. Butts.

strucchange Testing on structural change in lin-
ear regression relationships. It features
tests/methods from the generalized fluctua-
tion test framework as well as from the F test
(Chow test) framework. This includes meth-
ods to fit, plot and test fluctuation processes
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(e.g., CUSUM, MOSUM, recursive/moving es-
timates) and F statistics, respectively. Further-
more it is possible to monitor incoming data
online. By Achim Zeileis, Friedrich Leisch,
Bruce Hansen, Kurt Hornik, Christian Kleiber,
and Andrea Peters.

twostage Functions for optimal design of two-stage-
studies using the Mean Score method. By
Marie Reilly PhD and Agus Salim.

CRAN mirrors the R packages from the Omega-
hat project in directory ‘src/contrib/Omegahat’. The
following are recent additions:

OOP OOP style classes and methods for R and S-
Plus. Object references and class-based method
definition are supported in the style of lan-
guages such as Java and C++. By John Cham-
bers and Duncan Temple Lang.

RGnumeric A plugin for the Gnumeric spreadsheet
that allows R functions to be called from cells
within the sheet, automatic recalculation, etc.
By Duncan Temple Lang.

RJavaDevice A graphics device for R that uses Java
components and graphics APIs. By Duncan
Temple Lang.

RSPython Allows Python programs to invoke S
functions, methods, etc. and S code to call
Python functionality. This uses a general for-
eign reference mechanism to avoid copying
and translating object contents and definitions.
By Duncan Temple Lang.

SLanguage Functions and C support utilities to sup-
port S language programming that can work in
both R and S-Plus. By John Chambers.

SNetscape R running within Netscape for dynamic,
statistical documents, with an interface to and
from JavaScript and other plugins. By Duncan
Temple Lang.

SXalan Process XML documents using XSL func-
tions implemented in R and dynamically sub-
stituting output from R. By Duncan Temple
Lang.

Slcc Parses C source code, allowing one to analyze
and automatically generate interfaces from S
to that code, including the table of S-accessible
native symbols, parameter count and type in-
formation, S constructors from C objects, call
graphs, etc. By Duncan Temple Lang.

Recommended packages

The number of packages on CRAN has grown over
100 recently, ranging from big toolboxes with a long

history in the S community (like nlme or survival)
to more specialized smaller packages (like the geo-
statistical packages described later in this volume of
R News). To make orientation for users, package de-
velopers and providers of binary distributions easier
we have decided to start categorizing the contributed
packages on CRAN.

Up to now there have been 2 categories of pack-
ages: Packages with priority base that come directly
with the sources of R (like ctest, mva or ts) and all the
rest. As a start for finer granularity we have intro-
duced the new priority recommended for the follow-
ing packages: KernSmooth, VR (bundle of MASS,
class, nnet, spatial), boot, cluster, foreign, mgcv,
nlme, rpart and survival.

Criteria for priority recommended are:

• Actively maintained and good quality code
that can be installed on all (major) platforms.

• Useful for a wider audience in the sense that
users “would expect this functionality” from a
general purpose statistics environment like R.

• Depend only on packages with priority base or
recommended.

All binary distributions of R (that are available
from CRAN) will at least include the recommended
packages in the future. Hence, if you write a package
that depends on a recommended package it should
be no problem for users of your package to meet this
requirement (as most likely the recommended pack-
ages are installed anyway). In some sense the “min-
imum typical R installation” is the base system plus
the recommended packages.

A final note: This is of course no judgement at
all about the quality of all the other packages on
CRAN. It is just the (subjective) opinion of the R Core
Team what a minimum R installation should include.
The criterion we used most for compiling the list of
recommended packages was whether we thought a
package was useful for a wide audience.

MacOS and MacOS X

Starting from release 1.3.0 of R two different versions
of R for Macintosh are available at CRAN in two sep-
arate folders: ‘bin/macos’ and ‘bin/macosx’.

The ‘bin/macos’ folder contains a version in-
tended to run on Macintosh machines running Sys-
tem 8.6 to 9.1 and which will run on MacOS X as a
carbon application, thus natively. The folder has the
same structure as it was for release 1.2.x. Now the
base distribution is available as two versions:

‘rm130.sit’ contains the base R distribution without
the recommended packages;

‘rm130 FULL.sit’ contains the base distribution
along with all recommended packages.

R News ISSN 1609-3631



Vol. 1/2, June 2001 8

It is possible at a later time to download the archive
‘recommended.sit’ that contains the additional rec-
ommended packages not included in the base-only
package. As usual the other contributed packages
can be found in a separate folder.

The ‘bin/macosx’ folder contains a MacOS X spe-
cific build that will run on a X11 server and it is
based on the Darwin kernel, i.e., it is a Unix build
that runs on MacOS X. This is provided by Jan de
Leeuw (deleeuw@stat.ucla.edu). It comes in three
versions:

‘R-1.3.0-OSX-base.tar.gz’ has the R base distribution.
It has Tcl/Tk support, but no support for
GNOME.

‘R-1.3.0-OSX-recommended.tar.gz’ has the R base dis-
tribution plus the recommended packages.
It has Tcl/Tk support, but no support for
GNOME.

‘R-1.3.0-OSX-full.tar.gz’ has the R base distribution
plus 134 compiled packages. It is compiled
with both GNOME and Tcl/Tk support.

The ‘bin/macosx’ folder contains two folders, one
containing some additional dynamic libraries upon

on which this port is based upon, and another giving
replacements parts complied with the ATLAS opti-
mized BLAS.

‘ReadMe.txt’ files are provided for both versions.

Other changes

GNU a2ps is a fairly versatile any-text-to-postscript
processor, useful for typesetting source code from
a wide variety of programming languages. ‘s.ssh’,
‘rd.ssh’ and ‘st.ssh’ are a2ps style sheets for S code,
Rd documentation format, and S transscripts, respec-
tively. These will be included in the next a2ps re-
lease and are currently available from the “Other
Software” page on CRAN.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Technische Universität Wien, Austria
Kurt.Hornik@R-project.org

Friedrich Leisch
Technische Universität Wien, Austria
Friedrich.Leisch@ci.tuwien.ac.at

Date-Time Classes
by Brian D. Ripley and Kurt Hornik

Data in the form of date and/or times are common
in some fields, for example times of diagnosis and
death in survival analysis, trading days and times in
financial time series, and dates of files. We had been
considering for some time how best to handle such
data in R, and it was the last of these examples that
forced us to the decision to include classes for dates
and times in R version 1.2.0, as part of the base pack-
age.

We were adding the function file.info. Finding
information about files looks easy: Unix users take
for granted listings like the following (abbreviated to
fit the column width):

auk% ls -l

total 1189

... 948 Mar 20 14:12 AUTHORS

... 9737 Apr 24 06:44 BUGS

... 17992 Oct 7 1999 COPYING

... 26532 Feb 2 18:38 COPYING.LIB

... 4092 Feb 4 16:00 COPYRIGHTS

but there are a number of subtle issues that hopefully
the operating system has taken care of. (The example
was generated in the UK in April 2001 on a machine
set to the C locale.)

• The format. Two formats are used in the extract
above, one for files less than 6 months’ old and

one for older files. Date formats have an in-
ternational standard (ISO 8601), and this is not
it! In the ISO standard the first date is 2001-
03-20 14.12. However, the format is not even
that commonly used in the UK, which would
be 20 Mar 2001 14:12. The month names indi-
cate that this output was designed for an an-
glophone reader. In short, the format should
depend on the locale.

• Time zones. Hopefully the times are in the time
zone of the computer reading the files, and take
daylight saving time into account, so the first
time is in GMT and the second in BST. Some-
what more hopefully, this will be the case even
if the files have been mounted from a machine
on another continent.

Note that this can be an issue even if one is only
interested in survival times in days. Suppose a
patient is diagnosed in New Zealand and dies
during surgery in California?

We looked at existing solutions, the R packages
chron and date. These seem designed for dates of
the accuracy of a day (although chron allows partial
days), are US-centric and do not take account of time
zones. It was clear we had to look elsewhere for a
comprehensive solution.
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The most obvious solution was the operating sys-
tem itself: after all it knew enough about dates to
process the file dates in the example above. This was
the route we decided to take.

Another idea we had was to look at what the
database community uses. The SQL99 ISO stan-
dard (see Kline & Kline, 2001) has data types date,
time, time with time zone, timestamp, timestamp
with time zone and interval. The type timestamp
with time zone looks to be what we wanted. Un-
fortunately, what is implemented in the common
databases is quite different, and for example the
MySQL data type timestamp is for dates after 1970-
01-01 (according to Kline & Kline).

S-PLUS 5.x and 6.x have S4 classes "timeDate"
and "timeSpan" for date-times and for time inter-
vals. These store the data in whole days (since some
origin for "timeDate") and whole milliseconds past
midnight, together with a timezone and a preferred
printing format.

POSIX standards

We were aware that portability would be a problem
with using OS facilities, but not aware how much
of a headache it was going to be. The 1989 ISO C
standard has some limited support for times, which
are extended and made more precise in the ISO C99
standard. But there are few (if any) C99-conformant
compilers. The one set of standards we did have a
chance with was the POSIX set. Documentation on
POSIX standards is hard to come by, Lewine (1991)
being very useful if now rather old. Vendors do tend
to comply with POSIX (at least superficially) as it is
mandated for government computer purchases.

The basic POSIX measure of time, calendar time, is
the number of seconds since the beginning of 1970, in
the UTC timezone (GMT as described by the French).
Even that needs a little more precision. There have
been 22 leap seconds inserted since 1970 (see the R ob-
ject .leap.seconds), and these should be discarded.
Most machines would store the number as a signed
32-bit integer, which allows times from the early
years of the 20th century up to 2037. We decided this
was restrictive, and stored the number of seconds as
a C double. In principle this allows the storage of
times to sub-second accuracy, but that was an oppor-
tunity we overlooked. Note that there is little point in
allowing a much wider range of times: timezones are
a 19th century introduction, and countries changed
to the Gregorian calendar at different dates (Britain
and its colonies in September 1752). The correspond-
ing R class we called POSIXct.

The raw measure of time is not easily digestible,
and POSIX also provides a ‘broken-down time’ in a
struct tm structure. This gives the year, month, day

of the month, hour, minute and second, all as inte-
gers. Those members completely define the clock
time once the time zone is known 1. The other mem-
bers, the day of the week, the day of the year (0–365)
and a DST flag, can in principle be calculated from
the first six. Note that year has a baseline of 1900,
so years before 1970 are clearly intended to be used.
The corresponding R class we called POSIXlt (where
the ‘lt’ stands for “local time”), which is a list with
components as integer vectors, and so can represent
a vector of broken-down times. We wanted to keep
track of timezones, so where known the timezone is
given by an attribute "tzone", the name of the time-
zone.

Conversions

A high-level language such as R should handle the
conversion between classes automatically. For times
within the range handled by the operating system
we can use the POSIX functions mktime to go from
broken-down time to calendar time, and localtime
and gmtime to go from calendar time to broken-down
time, in the local timezone and UTC respectively.
The only way to do the conversion in an arbitrary
timezone is to set the timezone pro tem2. That proved
difficult!

We also want to be able to print out and scan in
date-times. POSIX provides a function strftime to
print a date-time in a wide range of formats. The
reverse function, strptime, to convert a character
string to a broken-down time, is not in POSIX but
is widely implemented.

Let us look again at the file dates, now using R:

> file.info(dir())[, "mtime", drop=FALSE]

mtime

AUTHORS 2001-03-20 14:12:22

BUGS 2001-04-24 06:44:10

COPYING 1999-10-07 19:09:39

COPYING.LIB 2001-02-02 18:38:32

COPYRIGHTS 2001-02-04 16:00:49

...

This gives the dates in the default (ISO standard) for-
mat, and has taken proper account of the timezone
change. (Note that this has been applied to a column
of a data frame.) When printing just a date-time ob-
ject the timezone is given, if known. We can easily
use other formats as we like.

> zz <- file.info(dir())[1:5, "mtime"]

> zz

[1] "2001-03-20 14:12:22 GMT"

[2] "2001-04-24 06:44:10 BST"

[3] "1999-10-07 19:09:39 BST"

[4] "2001-02-02 18:38:32 GMT"

[5] "2001-02-04 16:00:49 GMT"

> format(zz, format="%x %X")

1ISO C99 adds members tm_zone and tm_leapseconds in struct tmx. It represents both the time zone and the DST by an offset in
minutes, information that is not readily available in some of the platforms we looked at.

2C99 has functions zonetime and mkxtime which would avoid this.
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# locale specific: see also %c or %C.

[1] "03/20/01 14:12:22" "04/24/01 06:44:10"

[3] "10/07/99 19:09:39" "02/02/01 18:38:32"

[5] "02/04/01 16:00:49"

> Sys.setlocale(locale = "en_UK")

[1] "en_UK"

> format(zz, format="%x %X")

[1] "20/03/01 02:12:22 PM" "24/04/01 06:44:10 AM"

[3] "07/10/99 07:09:39 PM" "02/02/01 06:38:32 PM"

[5] "04/02/01 04:00:49 PM"

> format(zz, format="%b %d %Y")

[1] "Mar 20 2001" "Apr 24 2001" "Oct 07 1999"

[4] "Feb 02 2001" "Feb 04 2001"

> format(zz, format="%a %d %b %Y %H:%M")

[1] "Tue 20 Mar 2001 14:12"

[2] "Tue 24 Apr 2001 06:44"

[3] "Thu 07 Oct 1999 19:09"

[4] "Fri 02 Feb 2001 18:38"

[5] "Sun 04 Feb 2001 16:00"

It was easy to add conversions from the chron
and dates classes.

The implementation

The original implementation was written under So-
laris, and went very smoothly. It was the only OS for
which this was the case! Our idea was to use OS fa-
cilities where are these available, so we added simple
versions of mktime and gmtime to convert times far
into the past or the future ignoring timezones, and
then worked out the adjustment on the same day in
2000 in the current timezone.

One advantage of an Open Source project is the
ability to borrow from other projects, and we made
use of glibc’s version of strptime to provide one
for platforms which lacked it.

Coping with the vagaries of other platforms
proved to take far longer. According to POSIX,
mktime is supposed to return -1 (which is a valid
time) for out-of-range times, but on Windows it
crashed for times before 1970-01-01. Such times were
admittedly pre-Microsoft! Linux systems do not nor-
mally have a TZ environment variable set, and this
causes crashes in strftime when asked to print the
timezone, and also complications in temporarily set-
ting timezones (there is no way portably to unset an
environment variable from C). Some platforms were
confused if the DST flag was set to -1 (‘unknown’).
SGI’s strptime only works after 1970. And so on
. . . . The code became more and more complicated
as workarounds were added.

We provided a configure test of whether leap sec-
onds were ignored, and code to work around it if
they are not. We never found such a platform, but
we have since had a bug report which shows they do
exist and we did not get the code quite right first time
around.

Describing all the problems we found would
make a very long article. We did consider providing
all our own code based on glibc. In retrospect that

would have saved a lot of problems, but created oth-
ers. Managing a timezone database is really tedious,
and we would have had to find out for each OS how
to read the local timezone in terms that glibc would
understand.

Much later we found out that classic MacOS
does not really understand timezones, and so
workarounds had to be added for that port of R.

Extensions

The implementation we put in version 1.2.0 was not
fully complete. One issue which arose was the need
to form time differences (the SQL99 interval data
type). Subtraction of two POSIXct or two POSIXlt
times gave a number of seconds, but subtracting a
POSIXct time from a POSIXlt time failed.

Version 1.3.0 provides general facilities for han-
dling time differences, via a class "difftime" with
generator function difftime. This allows time units
of days or hours or minutes or seconds, and aims
to make a sensible choice automatically. To allow
subtraction to work within R’s method dispatch sys-
tem we needed to introduce a super-class "POSIXt",
and a method function -.POSIXt. Thus from
1.3.0, calendar-time objects have class c("POSIXt",
"POSIXct"), and broken-down-time objects have
class c("POSIXt", "POSIXlt"). Appending the new
class rather than prepending would not work, for
reasons we leave as an exercise for the reader.

Here is an example of the time intervals between
R releases:

> ISOdate(2001, 2, 26) - ISOdate(2001, 1, 15)

Time difference of 42 days

> ISOdate(2001, 4, 26) - ISOdate(2001, 2, 26)

Time difference of 59 days

The result is of class "difftime" and so printed as a
number of days: it is stored as a number of seconds.

One has to be slightly careful: compare the sec-
ond example with

> as.POSIXct("2001-04-26") -

as.POSIXct("2001-02-26")

Time difference of 58.95833 days

> c(as.POSIXct("2001-04-26"),

as.POSIXct("2001-02-26"))

[1] "2001-04-26 BST" "2001-02-26 GMT"

> c(ISOdate(2001, 4, 26), ISOdate(2001, 2, 26))

[1] "2001-04-26 13:00:00 BST"

[2] "2001-02-26 12:00:00 GMT"

The difference is that ISOdate chooses midday GMT
as the unspecified time of day, and as.POSIXct is us-
ing midnight in the timezone. As the UK changed to
DST between the releases, had the releases occurred
at the same time of day the interval would not have
been an exact multiple of a 24-hour day. The round
method can be useful here.

There are many more things one would like to do
with date-time objects. We want to know the cur-
rent time (Sys.time) and timezone (Sys.timezone).
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Methods for format provide very flexible ways to
convert them to character strings. We have an axis
method to use them to label graphs. Lots of meth-
ods are needed, for all.equal, as.character, c, cut,
mean, round, seq, str, . . . . And these need to check
for appropriateness, so for example sums of dates are
not well-defined, whereas means are.

We have also provided convenience functions
like weekdays, months and quarters, which either
extract information from the POSIXlt list or convert
using an appropriate format argument in a call to the
format method. The POSIXt method for the (new)
generic function julian converts to Julian dates (the
number of days since some origin, often 1970-01-01).

The future

We believe that the date-time classes in base R now
provide sufficient flexibility and facilities to cover al-
most all applications and hence that they should now
be used in preference to earlier and more limited sys-
tems. Perhaps most important is that these classes
be used in inter-system applications such as database

connectivity.
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Installing R under Windows
by Brian D. Ripley

Very few Windows users will have ever experienced
compiling a large system, as binary installations of
Windows software are universal. Further, users are
used to installing software by a point-and-click in-
terface with a minimum of reading of instructions,
most often none. The expectation is

Insert the CD.

If it doesn’t auto-run, double-click on a
file called Setup.exe in the top directory.

Go through a few ‘Wizard’ pages, then
watch a progress bar as files are installed,
then click on Finish.

Contrast this with ‘untar the sources, run
./configure, make then make install’. Each in its
own way is simple, but it is really horses for courses.

Every since Guido Masarotto put out a version of
R for Windows as a set of zip files we have been look-
ing for a way to install R in a style that experienced
Windows users will find natural. At last we believe
we have found one.

When I first looked at this a couple of years ago
most packages (even Open Source ones) used a com-
mercial installer such as InstallShield or Wise. Al-
though I had a copy of InstallShield, I was put off
by its size, complexity and the experiences I gleaned,

notably from Fabrice Popineau with his fptex instal-
lation.

Shortly afterwards, MicroSoft introduced their
own installer for their Office 2000 suite. This works
in almost the same way, except that one double-clicks
on a file with extension .msi. There is a development
kit for this installer and I had expected it to become
the installer of choice, but it seems rarely used. (The
Perl and now Tcl ports to Windows do use it.) That
makes one of its disadvantages serious: unless you
have a current version of Windows (ME or 2000) you
need to download the installer InstMsi.exe, which
is around 1.5Mb and whose installation needs privi-
leges an ordinary user may not have.

In May 1999 I decided to write a simple installer,
rwinst.exe, using the GraphApp toolkit that Guido
had used to write the R for Windows GUI, and this
has been in use since. But it was not ideal, for

• It did not use a completely standard ‘look-and-
feel’.

• It was hard to maintain, and mistakes in an in-
staller are ‘mission-critical’.

• Users found it hard to cope with needing sev-
eral files to do the installation.

The prospect of recommended packages at version
1.3.0 was going to require twice as many files, and
forced a re-think in early 2001. I had earlier looked at
Inno Setup by Jordan Russell (www.jrsoftware.org)
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(a) The ‘welcome’ screen (b) The licence – GPL2 of course

(c) Choose the installation folder (d) Select components as required

(e) There is a list of standard selections, plus ‘custom’ (f) Choose a group name for the Start menu
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(g) Do you want a desktop icon? (h) Installing the files

and had found it too limited. However, an enhanced
version 2 was by then in beta release and was used to
make an alternative installer for R 1.2.3. Inno Setup 2
is now released and has been adopted for the rec-
ommended installers for R 1.3.0. The figures show
the installation sequence using SetupR.exe for 1.3.0.
Note that there is a fair degree of control but with
sensible defaults. For example, the commercial in-
stallers do not usually offer the option not to add to
the start menu, nor to add a desktop icon (and that is
labelled by the R version number).

The SetupR.exe installation is a single file of
about 15Mb, which can conveniently be distributed
on CD-R or downloaded (over a fast enough Internet
connection).

One issue that had been a concern was that
it is thought that some users need to install R
from floppies, and the .zip files had been designed
where possible1 to fit on a single floppy. How
much demand there was/is is hard to gauge, and
such users almost by definition are unlikely to be
fairly represented by email contact. As R grew,
maintaining a division into floppy-sized pieces be-
came harder, and needed constant vigilance. For-
tunately Inno Setup provided a simple option to
produce (exactly) floppy-sized pieces, and we have
an alternative distribution consisting of miniR.exe
and miniR-1.bin which fit on one floppy, and
mini-2.bin to mini-6.bin which fit on five further
floppies. The six floppies are very full, and doubtless
the next release will need seven.

Inno Setup is a Delphi program which is freely
available (including source). It is programmed by a
script of instructions. For a project the size of R that
script needs to be a few thousand lines, but is gen-
erated automatically by a Perl script from the distri-
bution files. I had a workable installer running in a

couple of hours, have spent less than a day on it in
total, and future maintenance of this installer should
be a much easier task

Uninstalling

Surely you wouldn’t want to remove something as
useful as R?

One good reason to remove R is to clear space
before upgrading to a new version. In the past the
only way to do this was to delete the whole direc-
tory containing R, say c:\R\rw1021. That did re-
move everything, as R touched nothing else (it did
not use the Registry nor the system directories), but it
would also wipe out any customizations the user had
made, as well as all the add-on packages installed in
c:\R\rw1021\library.

Inno Setup automatically provides an uninstaller,
and an R installation made with setupR.exe or
miniR.exe can be removed via the R group on the
Start menu, from the Control Panel2 or by running
Uninst.exe in the top directory of the installation.
This does only uninstall the files it installed, so that
added packages are left. It also removes the Registry
entries it set.

This makes upgrading easy. Just uninstall the
old version, install the new one and move the
added packages across to c:\R\rw1030\library
(say). Note: some packages may need to be updated
to work with new versions of R, so as a final step run
update.packages(). Which brings us to . . .

Installing packages

Windows’ users have almost all expected to have
packages pre-compiled for them, and to have a

1this was never possible for the .zip file containing the 4.6Mb PDF version of the reference manual.
2for sufficiently privileged users only
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simple way to install them. Another function of
rwinst.exe was to provide a point-and-click way
to install pre-compiled packages. Now rwinst.exe
is no longer supported3, we needed another way to
ease the installation of packages. This is provided
by the Packages menu introduced in R 1.3.0. This
takes advantage of the new facilities to download
files from URLs to allow installation of packages ei-
ther from a local zip file or directly from a CRAN
node.

Other items on that menu provide shortcuts to
library() and update.packages().

Brian D. Ripley
University of Oxford, UK
ripley@stats.ox.ac.uk

Spatial Statistics in R
by Brian D. Ripley

The following two articles discuss two recent spatial
statistics packages for R, and the Editors suggest that
I write an overview of the area.

There are several packages available, almost all
of which originated as S code and from quite differ-
ent communities. As a result there is considerable
overlap in their functionality. Many are quite old
(pre-dating classes in S, for example, and from an
era of much lower levels of computing resources). In
roughly historical order there are

akima An R interface by Albrecht Gebhardt to
spatial spline interpolation Fortran code by
H. Akima. Closely modelled on the interp
function in S-PLUS.

tripack Delaunay triangulation of spatial data. An R
interface by Albrecht Gebhardt to Fortran code
by R. J. Renka.

spatial Now part of the VR bundle. Contains trend-
surface analysis, kriging and point-process
code originally written by B. D. Ripley in 1990–
1 for teaching support.
VR version 6.2-6 includes enhanced trend-
surface code contributed by Roger Bivand.

sgeostat Geostatistical modelling code written for S
by James J. Majure and ported to R by Albrecht
Gebhardt.

splancs Originally commercial code for spatial and
space-time point patterns by Barry Rowling-
son. Roger Bivand has made a GPL-ed version
available for R, with contributions from Gio-
vanni Petris.

spatstat Code for point pattern analysis origi-
nally written for S-PLUS 5.1 by Adrian Bad-
deley and Rolf Turner. The version on
the website (http://www.maths.uwa.edu.au/
~adrian/spatstat.html) is said to work with
R 1.0.1.

geoR Geostatistical code by Paulo J. Ribeiro. See the
next article. Paulo does not mention that he
also has a geoS.

RandomFields Specialized code to simulate from
continuous random fields by Martin Schlather.
See the next but one article.

Which should you use? Spatial statistics is not a
single subject, and it depends which part you want.
It is natural for me to use the classification of Ripley
(1981).

Smoothing and interpolation is still a range of
methods. Package akima provides one reasonable
interpolation method, and package spatial provides
the commonest of smoothing methods, trend sur-
faces. Kriging can be either interpolation or smooth-
ing, and is covered at various depths in spatial, sgeo-
stat and geoR.

For spatial autocorrelation there is nothing avail-
able yet. For spatial lattice process (e.g. CAR pro-
cesses) there is no specialized code, but gls from
nlme could be used.

For spatial point patterns, spatial provides the
basic tools, and methods to fit Strauss processes.
splancs handles polygonal boundaries, and it and
spatstat have a wider range of methods (by no means
all of which I would recommend).

3it can still be compiled from the sources.
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It is worth mentioning the commercial module
S+SpatialStats for S-PLUS, which covers all the ar-
eas mentioned here, and is not available for R. The
prospect of such a module, and later of further de-
velopment of it, has dampened enthusiasm for user-
contributed spatial statistics code over much of the
last decade. It is worth bearing in mind that a great
deal of the current wealth of packages for R emanates
from the work of users filling gaps they saw in S and
its commercial offspring.
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geoR: A Package for Geostatistical
Analysis
by Paulo J. Ribeiro Jr and Peter J. Diggle

geoR is a package to perform geostatistical data anal-
ysis and spatial prediction, expanding the set of cur-
rently available methods and tools for analysis of
spatial data in R. It has been developed at the De-
partment of Mathematics and Statistics, Lancaster
University, UK. A web site with further information
can be found at: http://www.maths.lancs.ac.uk/
~ribeiro/geoR.html.

Preliminary versions have been available on the
web for the last two years. Based on users’ feedback
and on our own experiences, we judge that the pack-
age has been used mainly to support teaching ma-
terial and to carry out data analysis and simulation
studies for scientific publications.

Package geoR differs from the other R tools for
geostatistical data analysis in following the model-
based inference methods described in (3).

Spatial statistics and geostatistics

Spatial statistics is the collection of statistical methods
in which spatial locations play an explicit role in the
analysis of data. The main aim of geostatistics is to
model continuous spatial variation assuming a basic
structure of the type Y(x) : x ∈ Rd, d = 1, 2 or 3 for a
random variable Y of interest over a region. Charac-
teristic features of geostatistical problems are:

• data consist of responses Yi associated with loca-
tions xi which may be non-stochastic, specified
by the sampling design (e.g. a lattice covering
the observation region A), or stochastic but se-
lected independently of the process Y(x).

• in principle, Y could be determined from any
location x within a continuous spatial region A.

• {Y(x) : x ∈ A} is related to an unobserved
stochastic process {S(x) : x ∈ A}, which we
call the signal.

• scientific objectives include prediction of one
or more functionals of the stochastic process
{S(x) : x ∈ A}.

Geostatistics has its origins in problems con-
nected with estimation of reserves in mineral ex-
ploration/mining (5). Its subsequent development,
initially by Matheron and colleagues at École des
Mines, Fontainebleau (8) was largely independent
of “mainstream” spatial statistics. The term “krig-
ing” was introduced to describe the resulting meth-
ods for spatial prediction. Earlier developments in-
clude work by Matérn (6, 7) and by Whittle (10). Rip-
ley (9) re-casts kriging in the terminology of stochas-
tic process prediction, and this was followed by sig-
nificant cross-fertilisation during 1980’s and 1990’s
(eg the variogram is now a standard statistical tool
for analysing correlated data in space and/or time).
However, there is still vigorous debate on practical
issues such as how to perform inference and predic-
tion, and the role of explicit probability models.

The Gaussian model

The currently available functions on geoR assume a
basic model specified by:

1. a signal S(·) which is a stationary Gaussian
process with

(a) E[S(x)] = 0,

(b) Var{S(x)} = σ2,

(c) Corr{S(x), S(x− u)} = ρ(u);

2. the conditional distribution of Yi given S(·) is
Gaussian with mean µ+ S(xi) and variance τ2;

3. Yi : i = 1, . . . , n are mutually independent, con-
ditional on S(·).
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Covariate information can be incorporated by as-
suming a non-constant mean µ = Fβ where F is a
matrix with elements of the type f j(xi), a measure-
ment of the jth covariate at the ith location. The model
can be made more flexible by incorporating the fam-
ily of Box-Cox transformations (1), in which case the
Gaussian model is assumed to hold for a transforma-
tion of the variable Y.

The basic model parameters are:

• β, the mean parameters,

• σ2, the variance of the signal,

• τ2, the variance of the noise,

• φ, the scale parameter of the correlation func-
tion.

Extra parameters provide greater flexibility:

• κ is an additional parameter, required by some
models for correlation functions, which con-
trols the smoothness of the field,

• (ψA,ψR) allows for geometric anisotropy,

• λ is the the Box-Cox transformation parameter.

Package features

The main features of the package are il-
lustrated in the PDF document installed at
‘geoR/docs/geoRintro.pdf’.
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Figure 1: Output from the function
points.geodata for the wolfcamp data.

There are functions available which can be used
at different stages of geostatistical data analysis.
Here we use the dataset wolfcamp, included in the
package distribution, for a brief illustration of the
package resources.

For exploratory data analysis, geoR uses R’s
graphical capabilities to produce plots of the data
including their spatial locations. The most relevant
functions are plot.geodata and points.geodata.
Figure 1 shows an output from the latter.

Empirical variograms are used to explore the
spatial structure of the data. Residual variograms
can be obtained from an ordinary least squares “de-
trend”, internal to the functions. Figure 2 shows
directional and omni-directional variograms for the
wolfcamp data assuming a first order polynomial
trend on the coordinates. The main function for em-
pirical variogram calculation is variog.
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Figure 2: Directional and omni-directional var-
iograms for the wolfcamp data.

Parameter estimation can be performed using
different paradigms. Likelihood-based estimation
(maximum and restricted maximum likelihood) is
implemented by the function likfit. Alternatively,
variogram-based estimation can be used. This con-
sists of fitting a chosen parametric model to the sam-
ple variogram. The fitting can be done by “eye”, or-
dinary least squares or weighted least squares. Fig-
ure 3 shows the empirical variogram and correlation
function models fitted by different methods.
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Figure 3: Directional and omni-directional var-
iograms of the wolfcamp data.

The function proflik computes 1-D and 2-D pro-
file likelihoods for the model parameters as illus-
trated by Figure 4. The profiles can be used to assess
the variability of the estimates.
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Figure 4: Profile likelihoods for the model pa-
rameters.

Spatial prediction by “plugging-in” the
model parameters is performed by the function
krige.conv. Depending on the input options the
results correspond to methods known as simple , or-
dinary, universal and external trend kriging.

Model validation tools are implemented by the
cross-validation function xvalid. Envelopes for the
empirical variograms are computed by the functions
variog.model.env and variog.mc.env.

Bayesian inference takes the parameter uncer-
tainty into account when performing spatial pre-
diction. Simulations of the posterior distribution
[S(x)|Y] allow inferences on linear and non-linear
functionals of the signal S(x) (Figure 5).
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Figure 5: Predicted values over the area (left
panel) and estimated probabilities of having
values greater than 850 (right panel). The
grey levels in right panel correspond to breaks
(0, 0.1, 0.5, 0.9, 1).

Simulation of (transformed) Gaussian random
fields can be obtained by using the function grf.
This function is intended for quick simulations with
a small number of data locations. For simulations
using large number of locations we recommend the
package RandomFields.

Typically, the methods functionality is used to plot
and/or print results returned by the main functions
in the package. Additional details on the package re-
sources can be found at the package’s web-page and
its documentation.

Future developments

The file ‘docs/ToDo.geoR’ is included in the package
distribution and contains a list of features for which
implementation is planned.

There is joint work with Ole Christensen (Aal-
borg University, Denmark) in progress to implement
the non-Gaussian spatial models proposed by Dig-
gle et al. (4). These models generalise the Gaussian
model previously mentioned in a similar way that
generalised linear models extend the classical linear
regression model.
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Simulation and Analysis of Random
Fields
by Martin Schlather

Random fields are the d-dimensional analogues of
the one-dimensional stochastic processes; they are
used to model spatial data as observed in environ-
mental, atmospheric, and geological sciences. They
are traditionally needed in mining and exploration to
model ore deposits, oil reservoirs, and related struc-
tures.

The contributed package RandomFields allows
for the simulation of Gaussian random fields defined
on Euclidean spaces up to dimension 3. It includes
some geostatistical tools and algorithms for the sim-
ulation of extreme-value random fields.

In the following two sections we give an example
of an application, and a summary of the features of
RandomFields.

A brief geostatistical analysis

To demonstrate key features we consider soil mois-
ture data collected by the Soil Physics Group at the
University of Bayreuth (see Figure 1), and perform a
simple geostatistical analysis.
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Figure 1: Measured soil moisture content (%)

The coordinates of the sample locations are as-
sumed to be stored in pts and the moisture measure-
ments in d. (See the example to the data set soil for
the complete code.)

In geostatistics the variogramγ is frequently used
to describe the spatial correlation structure. It can
be expressed in terms of the (auto-)covariance func-
tion C if the random field is stationary: γ(h) =
C(0)− C(h) for h ∈ Rd. We assume isotropy, i.e. γ
depends only on the distance |h|. Then, we can find
variogram values by

ev <- EmpiricalVariogram(pts, data=d,

grid=FALSE,

bin=c(-1, seq(0, 175, l=20)))

and select an appropriate model by

ShowModels(0:175, x=x, y=y, emp=ev)

see Figure 4 where x and y equal seq(-150, 150,
l=121). The parameters of the variogram model
(here the Whittle-Matérn model) might be fitted by
eye, but we prefer maximum likelihood,

p <- mleRF(pts, d, "whittle", param=rep(NA,5),

lower.k=0.01, upper.k=30).

Now,

Kriging("O", x=x, y=y, grid=TRUE,

model="whittle", par=p, given=pts,

data=d)

yields the expected moisture content on the grid
given by x and y (Figure 2).
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Figure 2: Kriged field

Conditional simulation, see Figure 3, allows for
further inference.
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Figure 3: Conditional simulation

For instance, we may ask for the conditional
probability, given the data at the respective locations,
that the maximal moisture content is not greater than
24%. To this end, a random sample, here of size 100,
is drawn from the conditional distribution

CondSimu("O", x=x, y=y, grid=TRUE, n=100,

model="whittle", param=p, given=pts,

data=d),

which yields an estimate of 40%.

Package features

The currently implemented methods for the simula-
tion of stationary and isotropic random fields include
circulant embedding, turning bands, and methods

based on matrix decomposition or Poisson point pro-
cesses. Important features of the package are

• User friendly interface: depending on his/her
preferences, the user can either specify the de-
sired simulation method, or the package will
automatically pick an appropriate technique,
according to the variogram model, the dimen-
sion of the space, and the spatial configuration
of the simulation domain (1).

• Increased speed if multiple simulations with
identical specifications are performed. To this
end, a specification is first compared to that of
the preceding simulation. In case the parame-
ters match, the stored results of the determin-
istic part of the algorithm are used instead of
being recalculated.

• The function ShowModels is an instructive tool
for teaching, which allows for the interactive
choice of variogram models and parameters.
For each specification the graph of the var-
iogram model and one- or two-dimensional
simulations are provided. ShowModels can also
be used to fit an empirical variogram by eye.
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Figure 4: Snapshot of the interactive plot
ShowModels

Further functionalities include:

• variogram analysis: calculation of the empiri-
cal variogram and MLE parameter estimation

• conditional simulation based on simple or or-
dinary kriging

• checks whether the parameter specifications
are compatible with the variogram model

• simulation of max-stable random fields
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Future extensions may provide further simulation
algorithms for Gaussian and non-Gaussian random
fields, and a basic toolbox for the analysis of geosta-
tistical and spatial extreme value data.

Use help(RandomFields) to obtain the main man
page. To start with, the examples in help(GaussRF)
are recommended.

Acknowledgement. The work has been supported
by the EU TMR network ERB-FMRX-CT96-0095 on
“Computational and statistical methods for the anal-
ysis of spatial data” and the German Federal Min-
istry of Research and Technology (BMFT) grant PT
BEO 51-0339476C. The author is thankful to Tilmann

Gneiting, Martin Mächler, and Paulo Ribeiro for
hints and discussions.

Bibliography

[1] M. Schlather. An introduction to positive definite
functions and to unconditional simulation of ran-
dom fields. Technical Report ST-99-10, Lancaster
University, 1999. 19

Martin Schlather
University of Bayreuth, Germany
Martin.Schlather@uni-bayreuth.de

mgcv: GAMs and Generalized Ridge
Regression for R
by Simon N. Wood

Generalized Additive Models (GAMs) have become
quite popular as a result of the work of Wahba
(1990) and co-workers and Hastie & Tibshirani
(1990). Package mgcv provides tools for GAMs and
other generalized ridge regression. This article de-
scribes how GAMs are implemented in mgcv: in
particular the innovative features intended to im-
prove the GAM approach. The package aims to
provide the convenience of GAM modelling in S-
PLUS, combined with much improved model se-
lection methodology. Specifically, the degrees of
freedom for each smooth term in the model are
chosen simultaneously as part of model fitting by
minimizing the Generalized Cross Validation (GCV)
score of the whole model (not just component wise
scores). At present mgcv only provides one dimen-
sional smooths, but multi-dimensional smooths will
be available from version 0.6, and future releases will
include anisotropic smooths. GAMs as implemented
in mgcv can be viewed as low rank approximations
to (some of) the generalized spline models imple-
mented in gss — the idea is to preserve most of the
practical advantages with which elegant underlying
theory endows the generalized smoothing spline ap-
proach, but without the formidable computational
burden that accompanies full gss models of moder-
ately large data sets.

GAMs in mgcv

GAMs are represented in mgcv as penalized gen-
eralized linear models (GLMs), where each smooth
term of a GAM is represented using an appropriate

set of basis functions and has an associated penalty
measuring its wiggliness: the weight given to each
penalty in the penalized likelihood is determined by
its “smoothing parameter”. Models are fitted by the
usual iteratively re-weighted least squares scheme
for GLMs, except that the least squares problem at
each iterate is replaced by a penalized least squares
problem, in which the set of smoothing parameters
must be estimated alongside the other model param-
eters: the smoothing parameters are chosen by GCV.
This section will sketch how this is done in a little
more detail.

A GLM relating a univariate response variable y
to a set of explanatory variables x1, x2, . . ., has the
general form:

g(µi) = β0 +β1x1i +β2x2i + · · · (9.1)

where E(yi) ≡ µi and the yi are independent ob-
servations on r.v.s all from the same member of the
exponential family. g is a smooth monotonic “link-
function” that allows a useful degree of non-linearity
into the model structure. The βi are model parame-
ters: likelihood theory provides the means for esti-
mation and inference about them. The r.h.s. of (9.1)
is the “linear predictor” of the GLM, and much of the
statistician’s modelling effort goes into finding an ap-
propriate form for this.

The wide applicability of GLMs in part relates to
the generality of the form of the of the linear pre-
dictor: the modeller is not restricted to including ex-
planatory variables in their original form, but can in-
clude transformations of explanatory variables and
dummy variables in whatever combinations are ap-
propriate. Hence the class of models is very rich, in-
cluding, for example, polynomial regression models
and models for designed experiments. However the
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standard methods for generalized linear modelling
can become unwieldy as models become more com-
plex. In particular, it is sometimes the case that prior
beliefs about appropriate model structure might best
be summarized as something like:

g(µi) = β0 + s1(x1i) + s2(x2i) + · · · (9.2)

i.e., the linear predictor should be given by a constant
plus a smooth function of x1 plus another smooth
function of x2 and so on (with some side condi-
tions on the si to ensure identifiability). It is pos-
sible to build this sort of model structure directly
within the GLM framework using, e.g. polynomials
or more stable bases to represent the smooth terms:
but such an approach becomes troublesome as the
number of smooths and their complexity increases.
The two main problems are that model selection be-
comes rather cumbersome (many models may need
to be compared, and it is not always easy to keep
them nested), and that the basis selected can have a
rather strong influence on the fitted model (e.g. re-
gression splines tend to be rather dependent on knot
placement, while polynomials can be very unstable).

An alternative approach for working with mod-
els like (9.2) represents the smooth functions using
linear smoothers, and performs estimation by back-
fitting (Hastie & Tibshirani, 1990) — this has the ad-
vantage that a very wide range of smoothers can
be used, but the disadvantage that model selection
(choosing the amount of smoothing to perform) is
still difficult.

In mgcv, smooth terms in models like (9.2) are
represented using penalized regression splines. That
is, the smooth functions are re-written using a suit-
ably chosen set of basis functions, and each has an as-
sociated penalty which enables its effective degrees
of freedom to be controlled through a single smooth-
ing parameter. How this works is best seen through
an example, so consider a model with one linear term
and a couple of smooth terms:

g(µi) = β0 +β1x1i + s1(x2i) + s2(x3i) (9.3)

The si can be re-written in terms of basis functions
thus:

s1(x) =
k1

∑
j=1
β j+1b1 j(x) s2(x) =

k2

∑
j=1
β j+1+k1 b2 j(x)

where ki is the number of basis functions used for si,
the β j are parameters to be estimated and the b ji are
basis functions. For example, a suitable set of spline-
like basis functions might be:

b j1(x) = x and b ji(x) = |x− x∗ji|3 for i > 1

where the x∗ji are a set of “knots” spread “nicely”
throughout the relevant range of explanatory vari-
able values. So (9.3) now becomes:

g(µi) = β0 +β1x1i +β2x2i +β3|x2i − x∗22|3 + · · ·

. . . a GLM. If we write the vector of values of g(µi)
as η then it’s pretty clear that the previous equa-
tion written out for all i can be written as η = Xβ,
where the model matrix X follows in an obvious way
from the above equation. (Note that mgcv actually
uses a different (but equivalent) regression spline ba-
sis based on cubic Hermite polynomials: its parame-
ters are usefully interpretable and it is computation-
ally convenient, but rather long winded to write out.)
So far the degrees of freedom associated with each
smooth term are determined entirely by the ki so that
model selection will have all the difficulties alluded
to above and the fitted model will tend to show char-
acteristics dependent on knot locations. To avoid
these difficulties mgcv uses a relatively high value
for each ki and controls the smoothness (and hence
degrees of freedom) for each term through a set of
penalties applied to the likelihood of the GLM. The
penalties measure the wiggliness of each si as:∫

[s′′i (x)]2dx

Since s′′1 (x) = ∑k1
j=1 β j+1b′′1 j(x), it’s not hard to see that

it is possible to write:∫
[s′′1 (x)]2dx = βTS1β

where β is the parameter vector, and S1 is a posi-
tive semi-definite matrix depending only on the ba-
sis functions. A similar result applies to s2. So the
model βi’s can be estimated by minimizing:

−l(β) +
2

∑
i=1
λiβ

TSiβ

where l is the log-likelihood for β, and the λi’s con-
trol the relative weight given to the conflicting goals
of good fit and model smoothness. Given λi it is
straightforward to solve this problem by (penalized)
IRLS, but the λi need to be estimated, and this is not
so straightforward.

Recall that the IRLS method for a GLM consists
of iterating the following steps to convergence:

1. The current estimate of β, β[k], yields estimates
of µ and the variance of each yi: Vi. Hence us-
ing the current estimates, calculate the follow-
ing: (i) the diagonal weight matrix W where:

Wii = [g′(µi)2Vi]−1

and (ii) the vector of pseudodata:

z = Xβ+ Γ(y−µ)

where Γ is a diagonal matrix and Γii =
[g′(µi)]−1.
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2. Minimize:

‖W1/2(z− Xβ)‖2

w.r.t. β to get β[k+1].

mgcv fits GAMs by replacing step 2. with the fol-
lowing:

2. Find the λi minimizing:

‖W1/2(z− Xβ)‖2

[tr(I−A)]2 (9.4)

where β is the solution to the problem of mini-
mizing:

‖W1/2(z− Xβ)‖2 + ∑ λ jβ
TS jβ

w.r.t. β, and A is the “influence” or “hat”
matrix: X(XTWX + ∑ λ jβ

TS jβ)−1XTW, whose
trace gives the estimated degrees of freedom
for the model.

(9.4) is the GCV score for the model and its effi-
cient minimization is the key to the approach used in
mgcv: the method for doing this is based on a gen-
eralization of the method developed by Gu & Wahba
(1991) for generalized smoothing spline models, and
is described in Wood (2000). The computational bur-
den is cubic in the dimension of β — which is usu-
ally much less than the computational burden of us-
ing Gu and Wahba’s method for gss models, which
is necessarily cubic in the number of data.

Note that direct minimization of (9.4) is not the
same as minimizing separate GCV scores as part of
each back-fitting iteration — the latter approach is
very difficult to justify on other than ad hoc grounds.

A simple Bayesian argument yields a covariance
matrix estimate for β̂ and hence estimated Bayesian
confidence intervals for the components of the GAM
(Wood, 2000; Hastie & Tibshirani, 1990). These are
similar in spirit to the intervals for smoothing splines
in Wahba (1983).

Note then, that the key point about mgcv is that
the selection of degrees of freedom for the compo-
nents of a fitted GAM is an integral part of model
fitting. Furthermore the manner in which it is in-
tegrated is designed to make inclusion of multi-
dimensional and anisotropic smooths quite straight-
forward. In addition it should be clear that in
principle any smooth constructed using a basis and
quadratic penalty could be incorporated into mgcv’s
GAM modelling tools.

Practical GAMs

Because of the way in which estimation of degrees of
freedom is integrated into model fitting, the gam()
function provided by mgcv is not an exact clone
of what is described in the white book and imple-
mented in S-PLUS. This section describes what is im-
plemented and how to use it.

gam()

mgcv’s gam() function fits a GAM specified by a
model formula and family, to univariate response
data. A simple example of its use is:

> gam(y ~ s(x))

which will cause the model:

yi ∼ f (xi) +εi , εi i.i.d. N(0,σ2)

to be estimated, where f is a smooth function.
A more complicated example, illustrating a few

more features is:

> gam(y^0.5 ~ -1 + x + s(z,5|f) + s(w) + s(v,20),

data = mydata, family = gamma(link=I))

In this case the response is
√

y, and the linear pre-
dictor is made up of a linear term in x plus smooth
functions of z, w and v, with no intercept term. The
data are assumed to follow a gamma distribution,
and the link is the identity function. The 3 differ-
ent forms of s() each relate to a different represen-
tation of the smooth concerned. s(z,5|f) indicates
that the smooth function of z is to be represented as
a pure un-penalized regression spline, with 5 knots
— under the representation used by mgcv this cor-
responds to exactly 4 degrees of freedom (‘|f’ indi-
cates f ixed degrees of freedom). s(w) indicates that
the smooth function of w is to be represented using
a default 10 knot penalized regression spline: corre-
sponding to maximum degrees of freedom of 9 for
this term. Finally s(v,20) indicates that the smooth
of v is to be represented by a 20 knot penalized re-
gression spline: this term is being allowed a maxi-
mum of 19 degrees of freedom — presumably the re-
lationship between

√
y and v is expected to be fairly

complicated.
The choice of the number of knots is not very crit-

ical, but should be somewhat larger than the esti-
mated degrees of freedom plus 1, otherwise: (i) the
choice of knot locations will begin to have a visible
effect on the shape of the estimated function, and
(ii) it is possible that if the GCV function is a strange
shape then the optimization path to the GCV mini-
mum may pass beyond the upper boundary on de-
grees of freedom, so that the smoothing parameter
estimates become incorrectly stuck at that boundary.
In practice I usually start with the default 10 knot
splines, but increase the number of knots for any
terms that are then estimated to have close to the cor-
responding maximum 9 degrees of freedom.

Other arguments to gam() will be familiar to
users of lm() and glm(). The exception is the ar-
gument scale. If the scale parameter for the model
distribution is known then there is an argument
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for replacing GCV with the unbiased risk estimator
(UBRE) given e.g. in Wahba (1990). Hence if scale
is a positive number it is assumed to be the scale
parameter and UBRE is used. If scale is zero (the
default) then UBRE is used for the Poisson and bi-
nomial distributions (scale parameter 1), but GCV is
used otherwise. A negative value for the scale pa-
rameter forces use of GCV in all cases. Note that
GCV is appropriate if over-dispersion is suspected.

Other GAM functions

Package mgcv provides versions of print.gam(),
predict.gam() and plot.gam(). plot.gam() differs
most from what is available in S-PLUS — interactive
use is missing, for example. Here is an example of
its use to plot the results of fitting a simple 4 term
model:

> gam.model <- gam(y ~ s(x0)+s(x1)+s(x2)+s(x3))

> plot(gam.model, pages = 1)
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By default the same y axis range is used for all the
plots, while the pages=1 option provides automatic
layout on a single page. The rug plots at the foot of
each plot show the observed values of each explana-
tory variable. Each y-axis label indicates what the
smooth is a function of and how many degrees of
freedom the term has. The solid line in each plot
is the estimate of the smooth function, while the
dashed lines are at 2 standard errors above and be-
low the estimate — roughly 95% confidence limits.
This example used simulated data and x3 is in fact
unrelated to the response: notice how the smooth for
x3 is estimated to have just one degree of freedom,
and how its “confidence band” comfortably includes
zero everywhere.

It’s also of some interest to print the gam.model:

> gam.model

Family: gaussian

Link function: identity

Formula:

y ~ s(x0) + s(x1) + s(x2) + s(x3)

Estimated degrees of freedom:

2.982494 2.096610 7.219753 1.000005

total = 14.29886

GCV score: 4.326104

The estimated degrees of freedom for each smooth
term are given in the order in which the smooth
terms are specified in the model formula — note that
the total degrees of freedom includes those associ-
ated with purely parametric model components. The
GCV score is useful for comparing models with and
without particular terms included.

Dropping model terms

While mgcv selects the degrees of freedom for each
term automatically, the nature of the estimation al-
gorithm means that it can not automatically decide
whether to drop a term altogether or not. The reason
for this is that a zero term and a straight line have the
same zero penalty — hence once a term has become a
straight line, increasing its smoothing parameter fur-
ther can have no effect on its degrees of freedom, and
certainly won’t force it to become zero. Hence the
modeller must remove unwanted terms “by hand”.
Deciding which terms to remove is straightforward,
and should be guided by the answers to 3 questions:

1. Is the estimated degrees of freedom for the
term close to 1?

2. Does the plotted confidence band for the term
include zero everywhere?

3. Does the GCV score drop when the term is
dropped?

If the answer to all three questions is “yes” then the
term should be dropped. If the e.d.f. is close to one
but the answer to the other 2 questions is “no” then
you might as well replace the smooth with a para-
metric linear term. Other cases will require judge-
ment: for example, very small increases in GCV score
shouldn’t prevent a term from being dropped. Be-
cause of correlations between explanatory variable,
terms should only be dropped one at a time: it makes
sense to start with the term for which the zero line is
most comfortably within the confidence band.

In the plot shown above it’s clear that x3 should
be dropped from the model: the example in the next
section provides a second illustration.
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A fisheries example

As an example of use of GAMs with mgcv, consider
a set of data originally analysed by Borchers et al.
(1997) as part of the stock assessment process for the
European mackerel fishery.
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The data are mackerel egg densities (per m2 of sea
surface) obtained from net hauls undertaken from
research boats in 1992 (Bowman & Azzalini, 1997,
analyse a subset of these data, with slightly differ-
ent pre-processing, using a loess model — their sub-
set is available in package sm). The plotted symbol
sizes are proportional to the egg density. Candidate
explanatory variables in this case are longitude, lat-
itude, sea bed depth, sea surface temperature and
distance from the 200 metre sea bed depth contour.
If a variance stabilizing transformation is employed
then a Gaussian error model is not too bad. So, a first
model attempt might be:

> mack.fit <-

+ gam(egg.dens^0.4 ~ s(lon) + s(lat) + s(b.depth)

+ + s(c.dist) + s(temp.surf),

+ data = mack)

(data frame mack contains the data for the 634 sam-
pling stations). Here are the first results (the fitting
took a few seconds on a Pentium II):

> mack.fit

Family: gaussian

Link function: identity

Formula:

egg.dens^0.4 ~ s(lon) + s(lat) +

s(b.depth) + s(c.dist) + s(temp.surf)

Estimated degrees of freedom:

5.55544 8.494712 4.536643 4.63995

1.000001 total = 25.22675

GCV score: 3.71533

clearly surface temperature is a candidate for re-
moval or replacement by a linear term: the next thing
to do is to plot the estimated terms:

> plot(mack.fit)
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So, surface temperature looks like a candidate for
removal (and at the same time it’s wise to increase
the number knots for the latitude term).

> mack.fit2 <-

+ gam(egg.dens^0.4 ~ s(lon) + s(lat, 20)

+ + s(b.depth) + s(c.dist),

+ data = mack)

> mack.fit2

Family: gaussian

Link function: identity

Formula:

egg.dens^0.4 ~ s(lon) + s(lat, 20) +

s(b.depth) + s(c.dist)

Estimated degrees of freedom:

5.276965 12.00392 4.323457 4.234603

total = 26.83895

GCV score: 3.709722

> plot(mack.fit2, pages = 1)
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The GCV score has decreased, supporting the de-
cision to remove the surface temperature term. There
being no further terms to delete, the model can be
used for prediction. Data frame mackp contained the
explanatory variables on a fine grid over the survey
area. To get a predicted (transformed) density for
each point on this grid I used predict.gam():
> mack.pred <- predict.gam(mack.fit2, mackp)

A certain amount of tedious manipulation was
needed to copy this into a matrix suitable for con-
touring and plotting, but an image plot of the final
predicted (transformed) densities looks like this:
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Summary and the future

mgcv offers GAM modelling tools with much (but
not all) of the functionality of their S-PLUS equiva-
lents, plus the substantial advantage of well founded
and efficient methods for selecting the degrees of
freedom for each smooth term (and for selecting
which terms to include at all). The package currently
offers a more limited range of models than the gss
package, but typically at much lower computational
cost, and with slightly greater ease of use for those fa-
miliar with GAMs in S-PLUS. Future developments
will provide further basic methods, and two further
substantial enhancements. Version 0.6 will include
multi-dimensional smooth terms, while in the longer
term anisotropic smooth terms will be included.
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What’s the Point of ‘tensor’?
by Jonathan Rougier

One of the packages on CRAN is called tensor, and
it exists to compute tensor products of arrays. The
tensor product is a generalisation of the matrix prod-
uct, but you can go a lot further if you want: to ex-
perience the full power of tensor methods in statis-
tics you should consult McCullagh (1987), not for the
faint-hearted.

Tensor notation

In statistics it is often necessary to compute measures
based on linear combinations of vectors of uncertain
quantities. For example, if x and y are uncertain we
might like to know Cov

[
Ax, By

]
where A and B are

known matrices. In this case we know that the an-
swer in matrix-form is A Cov

[
x, y

]
BT.

Tensors provide an alternative to the matrix-form
for representing linear combinations. The conven-
tion with tensors is to use a representitive component
to stand for the whole object, and to let repeated in-
dices denote sums of products across objects. Thus
instead of writing v = Ax in matrix-form, we would
write vi = Ai j x j in tensor-form, by which we mean
vi = ∑ j ai j x j, for i = 1, . . . , m where A has m rows.

The great advantage of tensors is their trans-
parency in use with linear operators. To compute
Cov

[
Ax, By

]
, for example, first write it as a tensor

then treat everything as scalars:

Cov
[
Ax, By

]
= Cov

[
Ai j x j, Bk` y`

]
= Ai j Cov

[
x j, y`

]
Bk`.

To do a tensor calculation the tensor function has to
know what the objects are and what their common
indices are. Using t and %*% would be faster here,
but in tensor-form we might do tensor(tensor(A,
Cxy, 2, 1), B, 2, 2). The inner call zips up the
j index between Ai j and Cov

[
x j, y`

]
, and creates an

object with index set i`, and the outer call zips up
the ` index with Bk` to leave an object with index
set ik. Another way to do the calculation would be
tensor(A %o% B, Cxy, c(2, 4), c(1, 2)), where
‘%o%’ computes the outer product (this is still two
tensor products but only one is apparent: the outer
product is a degenerate tensor product with no sum-
ming). This way creates an object with index set i jk`
and then zips up j` with Cov

[
x j, y`

]
.

Here’s another example of the transparency of
tensor-form. I am always forgetting the expectation
of the quadratic form xT Ax in terms of the mean µ
and variance Σ of x, which, for reference, is usu-
ally written E

[
xT Ax

]
= µT Aµ + tr(AΣ). Write the

quadratic form as a tensor, however, and we see that

E
[
xT Ax

]
= E

[
xi Aii′ xi′

]

= Aii′ E
[
xi xi′

]
= Aii′

{
µi µi′ + Σii′

}
.

So although you might be tempted by t(m) %*%
A %*% m + sum(diag(A %*% S)) from the textbook,
the smart money is on sum(A * (m %o% m + S)). We
do not need the tensor function here, but it would be
tensor(A, m %o% m + S, c(1, 2), c(1, 2)).

Rectangular objects

The greatest strength of tensor-form occurs in the
generalisation from matrices to arrays. Often un-
certain objects possess a rectangular structure, e.g.
X =

{
xi jk
}

might have a natural three-dimensional
structure. The mean of X is an array of the same
shape as X, while the variance of X is an array with
the same shape as the outer product of X with itself.
Thus the variance of Xi jk is, in tensor form, the six-
dimensional object

Ci jki′ j′k′ = Cov
[
Xi jk, Xi′ j′k′

]
= E

[
xi jk xi′ j′k′

]
− E

[
xi jk
]

E
[
xi′ j′k′

]
where primed indices are used to indicate similarity.

Even if X is two-dimensional (i.e. a matrix), stick-
ing with the matrix-form can cause problems. For
example, to compute Cov

[
AXB, X

]
we might use the

identity vec(AXB) = (BT ⊗ A) vec X, where ‘⊗’ de-
notes the kronecker product and ‘vec X’ creates a
vector by stacking the columns of X. Originally, that
is why I contributed the function kronecker to R.
Then we would have

Cov
[

vec(AXB), vec X
]
= (BT ⊗ A) Var

[
vec X

]
which requires us to vectorise the naturally two-
dimensional object X to give us a two-dimensional
representation of the naturally four-dimensional ob-
ject Var

[
X
]
. In tensor-form we would have instead

Cov
[
Ai j X jk Bkl , X j′k′

]
= Ai j Bkl Cov

[
X jk, X j′k′

]
where Cov

[
X jk, X j′k′

]
preserves the natural shape of

the variance of X. We might compute this by

tmp <- tensor(tensor(A, varX, 2, 1), B, 2, 1)

aperm(tmp, c(1, 4, 2, 3))

The temporary object tmp has index set i j′k′l which
is permuted using aperm to the set il j′k′. The same
result could be achieved more spectacularly using

tensor(A %o% B, varX, c(2, 3), c(1, 2))
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It is often the case that you can arrange for the index
set to come out in the right order, and so remove the
need for a call to aperm.

When the uncertain objects are more than two-
dimensional then tensors are usually the only option,
both for writing down the required calculation, and
performing it. You can find an example in the Ap-
pendix of our forthcoming paper (Craig et al, 2001)
which is expressed entirely in tensor-form. In this
paper we have a mixture of one-, two- and three-
dimensional objects which are also very large. For
example, lurking in the Appendix you can find ex-
pressions such as

Cov
[
Bim, Si′′r

]
Pi′′ri′′′r′ Hε

i′ i′′′r′(x) gm(x),

a two-dimensional expression (in ii′) which is a func-
tion of the vector x. To give you some idea of the
scale of this calculation, there are about 60 i’s, 45 m’s,
and 6 r’s, and x is 40-dimensional. (We then have to
integrate x out of this, but that’s another story!).

In our current development of this work we will
need to evaluate the object E

[
Bim Bi′m′ Bi′′m′′ Bi′′′m′′′

]
.

This has about 5 × 1013 components and so this
calculation is currently ‘on hold’, but I am hoping
that Luke Tierney’s eagerly anticipated hyper-spatial
memory manager will sort this out and spare me
from having to thinking too deeply about the essen-
tial structure of these objects.

Implementation

Conceptually, a tensor product is a simple thing.
Take two arrays A and B, and identify the extents

in each to be collapsed together (make sure they
match!). Permute the collapse extents of A to the end
and the collapse extents of B to the beginning. Then
re-shape both A and B as matrices and take the ma-
trix product. Reshape the product to have the non-
collapse extents of A followed by the non-collapse ex-
tents of B and you are done.

In order for these operations to be efficient, we
need a rapid aperm operation. The aperm function
in R 1.2 was not really fast enough for large objects,
and so I originally wrote tensor entirely in C, using a
Python approach for arrays called ‘strides’. In R 1.3
however, there is a new aperm that itself uses strides,
to achieve a reduction in calculation time of about
80%. The new version of tensor, version 1.2, there-
fore does the obvious thing as outlined above, and
does it entirely in R. But the old version of tensor,
version 1.1-2, might still be useful for dealing with
very large objects, as it avoids the duplication that
can happen when passing function arguments.
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On Multivariate t and Gauß Probabilities
in R
by Torsten Hothorn, Frank Bretz and Alan Genz

Introduction

The numerical computation of a multivariate nor-
mal or t probability is often a difficult problem. Re-
cent developments resulted in algorithms for the fast
computation of those probabilities for arbitrary cor-
relation structures. We refer to the work described
in (3), (4) and (2). The procedures proposed in those
papers are implemented in package mvtnorm, avail-
able at CRAN. Basically, the package implements
two functions: pmvnorm for the computation of mul-
tivariate normal probabilities and pmvt for the com-
putation of multivariate t probabilities, in both cases
for arbitrary means (resp. noncentrality parameters),

correlation matrices and hyperrectangular integra-
tion regions.

We first illustrate the use of the package using a
simple example of the multivariate normal distribu-
tion. A little more details are given in Section ‘De-
tails’. Finally, an application of pmvt in a multiple
testing problem is discussed.

A simple example

Assume that X = (X1, X2, X3) is multivariate normal
with correlation matrix

Σ =

 1 3
5

1
3
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and expectation µ = (0, 0, 0)>. We are interested in
the probability

P(−∞ < X1 ≤ 1,−∞ < X2 ≤ 4,−∞ < X3 ≤ 2).

This is computed as follows:

R> m <- 3

R> sigma <- diag(3)

R> sigma[2,1] <- 3/5

R> sigma[3,1] <- 1/3

R> sigma[3,2] <- 11/15

R> pmvnorm(lower=rep(-Inf, m), upper=c(1,4,2),

mean=rep(0, m), sigma)

$value

[1] 0.8279847

$error

[1] 5.684033e-07

$msg

[1] "Normal Completion"

The mean vector is passed to pmvnorm by the argu-
ment mean, and sigma is the correlation matrix (only
the lower triangle being used) The region of inte-
gration is given by the vectors lower and upper,
both can have elements -Inf or +Inf. The value of
pmvnorm is a list with the following components:

value: the estimated integral value,

error: the estimated absolute error,

msg: a status message, indicating whether or not the
algorithm terminated correctly.

From the results above it follows that P(−∞ < X1 ≤
1,−∞ < X2 ≤ 4,−∞ < X3 ≤ 2) ≈ 0.82798 with an
absolute error estimate of 2.7× 10−7.

Details

This section outlines the basic ideas of the algorithms
used. The multivariate t distribution (MVT) is given
by

T(a, b,Σ,ν) =
21− ν

2

Γ(ν2 )

∞∫
0

sν−1e−
s2
2 Φ

(
sa√
ν

,
sb√
ν

,Σ
)

ds,

where the multivariate normal distribution function
(MVN)

Φ(a, b,Σ) =
1√

|Σ|(2π)m

b1∫
a1

b2∫
a2

. . .
bm∫

am

e−
1
2 xtΣ−1xdx,

x = (x1, x2, ..., xm)t, −∞ ≤ ai < bi ≤ ∞ for all i,
and Σ is a positive semi-definite symmetric m × m
matrix. The original integral over an arbitrary m-
dimensional, possibly unbounded hyper-rectangle is
transformed to an integral over the unit hypercube.

These transformations are described in (3) for the
MVN case and in (2) for the MVT case. Several suit-
able standard integration routines can be applied to
this transformed integral. For the present implemen-
tation randomized lattice rules were used. Such lat-
tice rules seek to fill the integration region evenly in
a deterministic process. In principle, they construct
regular patterns, such that the projections of the in-
tegration points onto each axis produce an equidis-
tant subdivision of the axis. Robust integration error
bounds are obtained by introducing additional shifts
of the entire set of integration nodes in random di-
rections. Since this additional randomization step is
only performed to introduce a robust Monte Carlo
error bound, 10 simulation runs are usually suffi-
cient. For a more detailed description (2) might be
referred to.

Applications

The multivariate t distribution is applicable in a wide
field of multiple testing problems. We will illus-
trate this using a example studied earlier by (1). For
short, the effects of 5 different perfusates in capil-
lary permeability in cats was investigated by (5). The
data met the assumptions of a standard one-factor
ANOVA. For experimental reasons, the investigators
were interested in a simultaneous confidence inter-
vals for the following pairwise comparisons: β1 −
β2,β1 −β3,β1 −β5,β4 −β2 and β4 −β3. Therefore,
the matrix of contrast is given by

C =


1 −1 0 0 0
1 0 −1 0 0
1 0 0 0 −1
0 1 0 −1 0
0 0 1 −1 0

 .

Reference (1) assumed that β = (β1, . . . ,β5) is mul-
tivariate normal with mean β and covariance matrix
σ2V, where V is known. Under the null hypothesis
β = 0, we need knowledge about the distribution of
the statistic

W = max
1≤ j≤5

 |c j(β̂−β)|

σ̂
√

c jVc>j


where c j is the jth row of C. By assumption, σ̂
is χν distributed, so under hypothesis W the ar-
gument to max follows a multivariate t distribu-
tion. Confidence intervals can be obtained by c jβ̂±
wασ̂

√
c jVc>i , where wα is the 1 −α quantile of the

null distribution of W. Using pmvt, one can easily
compute the quantile for the example cited above.

R> n <- c(26, 24, 20, 33, 32)

R> V <- diag(1/n)

R> df <- 130

R> C <- c(1,1,1,0,0,-1,0,0,1,0,0,-1,0,0,
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1,0,0,0,-1,-1,0,0,-1,0,0)

R> C <- matrix(C, ncol=5)

R> cv <- C %*% V %*% t(C)

R> cr <- matrix(rep(0, ncol(cv)^2),

ncol=ncol(cv))

R> for (i in 1:5) {

for (j in 1:5) {

cr[i,j] <- cv[i,j] / sqrt(cv[i,i]*cv[j,j])

}

}

R> delta <- rep(0,5)

R> myfct <- function(q, alpha) {

lower <- rep(-q, ncol(cv))

upper <- rep(q, ncol(cv))

pmvt(lower, upper, df, cr, delta,

abseps=0.0001)$value - alpha

}

R> round(uniroot(myfct, lower=1, upper=5,

alpha=0.95)$root, 3)

[1] 2.561

Here n is the sample size vector of each level of
the factor, V is the covariance matrix of β. With the
contrasts C we can compute the correlation matrix cr
of Cβ. Finally, we are interested in the 95% quantile
of W. A wrapper function myfct computes the dif-
ference of the multivariate t probability for quantile q
and alpha. The alpha quantile can now be computed
easily using uniroot. The 95% quantile of W in this
example is 2.561; reference (1) obtained 2.562 using
80.000 simulation runs. The computation needs 8.06
seconds total time on a Pentium III 450 MHz with
256 MB memory.

Using package mvtnorm, the efficient computa-
tion of multivariate normal or t probabilities is now
available in R. We hope that this is helpful to users /
programmers who deal with multiple testing prob-
lems.
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Programmer’s Niche
Edited by Bill Venables

Save the environment

When you start to learn how to program in S you
don’t have to get very far into it before you find that
the scoping rules can be rather unintuitive. The sort
of difficulty that people first encounter is often some-
thing like the following (on S-PLUS 2000):

> twowaymeans <- function(X, f)

apply(X, 2, function(x) tapply(x, f, mean))

> twowaymeans(iris[,1:2], iris$Species)

Error in FUN(X): Object "f" not found

Dumped

The dismay expressed by disappointed neophytes on
S-news is often palpable. This is not helped by the
people who point out that on R it does work because
of the more natural scoping rules:

> twowaymeans(iris[,1:2], iris$Species)
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Sepal.Length Sepal.Width

setosa 5.006 3.428

versicolor 5.936 2.770

virginica 6.588 2.974

Some people even claim to have chosen R over S-
PLUS for the sake of the scoping rules alone. Strange,
but true.

The different scoping rules are just one conse-
quence of a feature of R, namely that its functions
have an “environment” attached to them which is
usually called the function closure. In S the search
path is the same for all functions, namely the local
frame, frame 1, frame 0 and the sequence of data di-
rectories or attached objects. This can be altered on
the fly and functions may be made to look at, and in-
terfere with, non-standard places on the search path
but this is usually regarded as a device strictly for the
excessively brave or the excessively lucky. For some,
even using frames 0 or 1 at all is considered rather
reckless.

This is the territory where R and S diverge very
markedly indeed. How is R so different? I will leave
readers to follow up this interesting story using the
standard references. All I will try to do here is give
an extended example that I hope motivates that kind
of followup study. In fact I intend to give the “other
story” that I referred to so tantalizingly in the first
Programmer’s Niche article, of course.

Function closures

We can think of the function closure as a little scratch-
pad attached to the function that initially contains
some objects on which its definition may depend.
This turns out to be a useful place to put other things
which the function needs to have, but which you
don’t want to re-create every time you call the func-
tion itself. If you understand the concept of frame 0
(the frame of the session) in S, this is a bit like a local
frame 0, but for that function alone.

Subsets revisited with caching

In my last article on profiling I used an example of a
recursive function to generate all possible subsets of
size r of a fixed set of size n. The result is an (n

r)× r
matrix whose rows define the subsets. Some time
ago I devised a way of speeding this process up in
S by storing (or ‘caching’) partial results in frame 0.
Doug Bates then pointed out that it could be done
much more cleanly using function closures in R.

Thinking back on the subset calculation, notice
that if you have all possible subsets of size r of the
integers 1, 2, . . . , n as a matrix then the subsets of any
set of size n stored in a vector v can be got by giving v
the elements of this matrix as an index vector and us-
ing the result to fill a similar matrix with the chosen
elements of v. (Oh well, think about it for a bit.)

The way we generate all possible subsets of size
r from n involves repeatedly generating all possible
subsets of smaller sizes from a smaller sets. What
we are going to do now is generate these indexing
vectors and store them in the the function closure.
The index vector for subsets of size 4 from sets of
size 10, say, will be given the non-standard name,
4 10. (It is no penalty to use non-standard names
here since these objects will always be accessed in-
directly.) Then when we need to generate a set of
subsets we will check to see if the index vector to do
it is cached in the environment first. If it is we do
the job by a single index computation; if not we first
generate the index by a recursive call and then use it.

Actually it is one of those times when the code
is easier to read than an explanation of it. However
even the code is not all that easy. The result, how-
ever, is a further spectacular increase in speed but at
the cost of greatly increasing your memory usage. If
you have to do this sort of computation repeatedly,
though, the advantages of the cached index vectors
in the environment are maintained, of course, so the
second time round, even for the large number of sub-
sets, the computation is nearly instantaneous (pro-
viding you are not hitting a memory limit and re-
peatedly swapping, swapping, swapping, . . . ). So
the technique is both interesting and potentially im-
portant.

The code

To get a function with an explicit environment (and
not just the global environment) we are going to do
it in the “old way” by writing a function to generate
the function itself. OK, here goes:

makeSubsets <- function() {

putenv <- function(name, value)

assign(name, value,

envir = environment(Subsets))

getenv <- function(name)

get(name, envir = environment(Subsets))

thereIsNo <- function(name)

!exists(name, envir = environment(Subsets))

function(n, r, v = 1:n) {

v0 <- vector(mode(v), 0)

if(r < 0 || r > n) stop("incompatible n, r")

sub <- function(n, r, v) {

if(r == 0) v0 else

if(r == n) v[1:n] else {

if(r > 1) {

i1 <- paste(n-1, r-1)

i2 <- paste(n-1, r)

if(thereIsNo(i1))

putenv(i1, sub(n-1, r-1, 1:(n-1)))

if(thereIsNo(i2))

putenv(i2, sub(n-1, r, 1:(n-1)))

m1 <- matrix(v[-1][getenv(i1)],
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ncol = r-1)

m2 <- matrix(v[-1][getenv(i2)],

ncol = r)

} else {

m1 <- NULL

m2 <- matrix(v[2:n], ncol = 1)

}

rbind(cbind(v[1], m1), m2)

}

}

sub(n, r, v)

}

}

Subsets <- makeSubsets()

The local environment will initially contain the small
utility functions getenv, putenv and thereIsNo for
doing various things with the local environment.
Within the function itself the index matrices are re-
ferred to by the constructed character strings i1 and
i2.

Here are a few little comparisons on my oldish
Sun system:

## best from last time

> system.time(x <- subsets2(20, 7))

[1] 22.26 3.96 26.29 0.00 0.00

## first time round

> system.time(X <- Subsets(20, 7))

[1] 4.94 0.25 5.38 0.00 0.00

## second time

> system.time(L <- Subsets(20, 7, letters))

[1] 1.90 0.04 2.00 0.00 0.00

These times are actually quite variable and depend a
lot on what is going on with the machine itself. Note
that with the fastest function we devised last time the
computation took about 26 seconds total time. With
the caching version the same computation took 5.38
seconds total time the first time and only 2 seconds
the next time when we did the same computation
with a different set.

Compression

There is a final speculative twist to this story that I
can’t resist throwing in even though its usefulness
will be very machine dependent.

It must be clear that storing oodles of very large
index vectors in the local environment will incur a
memory overhead that might well become a prob-
lem. Can we compress the vectors on the fly in any
way to cut down on this? The only way I have been
able to see how to do this has been to use so-called

“run length encoding”. Given a vector, v, the func-
tion rle finds the lengths of each run of consecutive
identical values and returns a list of two components:
one giving the values that are repeated in each run
and the other the lengths of the runs. This is the in-
verse operation to the one performed by rep: if we
feed those two components back to rep we re-create
the original vector.

The function rle is one of the neatest examples
of slick programming around. It is very short and
a nice little puzzle to see how it works. Here is a
cut-down version of it that returns a value with list
names matching the argument names of rep:

rle <- function (x) {

n <- length(x)

y <- x[-1] != x[-n]

i <- c(which(y), n)

list(x = x[i], times = diff(c(0, i)))

}

The thing you notice about these subset index vec-
tors (when the subsets are generated in this lexico-
graphic order) is that they do have long runs of re-
peated values. In fact the run-length encoded ver-
sion is an object typically only about half as big (in
bytes) as the object itself. This produces a compres-
sion of the memory requirements, but at an increased
computational cost again, of course. To incorporate
the idea into our makeSubsets function we need to
include this specialised version of rle in the local
environment as well and to modify the getting and
putting functions to include the encoding and decod-
ing:

putenv <- function(name, value)

assign(name, rle(value),

envir = environment(Subsets))

getenv <- function(name)

do.call("rep", get(name,

envir = environment(Subsets)))

No modification to the function itself is needed, and
this is one advantage of using accessor functions to
deal with the local environment, of course.

I think this is an interesting idea, but I have to re-
port that for all the systems I have tried it upon the
increased computational penalty pretty well elimi-
nates the gains made by caching. Quel domage!

Bill Venables
CSIRO Marine Labs, Cleveland, Qld, Australia
Bill.Venables@cmis.csiro.au
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Recent Events
by Friedrich Leisch

This new regular columns will report about recent
events related to R, S or statistical computing in gen-
eral. If you have been to a conference where R turned
out to be one of the hot topics (or simply part of
a nifty software demonstration), please write a few
lines and send them to the editors.

DSC 2001

The second workshop on distributed statistical com-
puting took place at the Vienna University of Tech-
nology from March 15 to March 17, 2001. As its pre-
decessor in 1999 it turned out to be a highly stim-
ulating event sparking many discussions on the fu-
ture of statistical computing, which continued even
after dinner and didn’t stop until the last beers
were ordered long after midnight. Of course the
workshop program had a slight bias towards R, but

speakers also included John Eaton (Octave), Gün-
ther Sawitzki (Voyager), David Smith (S-PLUS), Deb-
orah Swayne (GGobi), Antony Unwin (MANET) and
many more. Please have a look at the homepage
of the workshop at http://www.ci.tuwien.ac.at/
Conferences/DSC.html to see who participated and
what topics exactly we talked about. Online proceed-
ings are also available as PDF files.

The workshop was followed by two days of open
R core meetings, where all interested could partici-
pate and discuss future plans for R and S. The two
DSC workshops mark the only two occasions where
almost the complete R core team has ever met physi-
cally, normally we are spread out over 3 continents
with completely incompatible time zones and all
work on R has to be organized virtually using the
Internet.

Friedrich Leisch
Technische Universität Wien, Austria
Friedrich.Leisch@ci.tuwien.ac.at
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