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Abstract

Standard methods for classification use labeled data to establish criteria for assigning
unlabeled data to groups. However, the unlabeled data which need to be classified of-
ten contain important information about the structure of the groups, despite the group
membership of these observations being unknown. A new R package called upclass is
presented which uses both labeled and unlabeled data to construct a model-based clas-
sification method. The method uses the EM algorithm to obtain maximum likelihood
estimates of the model parameters and classifications for the unlabeled data. It can be
shown to perform better than classical methods, particularly in cases where few observa-
tions are labeled.
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1. Introduction

Classification techniques are employed regularly in a wide variety of application areas. Ex-
amples include food science applications where studies are carried out to establish whether
products are correctly labeled (e.g., Caetano, Üstün, Hennessy, Smeyers-Verbeke, Melssen,
Downey, Buydens, and Heyden 2007; Toher, Downey, and Murphy 2007, 2011); botanical
investigations to identify rare plants (e.g., Pouteau, Meyer, Taputuarai, and Stoll 2012) and
medical diagnostic applications to identify whether patients have a particular disease or con-
dition (e.g., Fan, Murphy, Byrne, Brennan, Fitzpatrick, and Watson 2011). It is important
to devise effective rules in order to reduce potential errors.

Classification methods require a labeled dataset so that the number of groups and the struc-
ture of groups can be inferred. The task is to classify any unlabeled observations into the
correct groups. Traditionally, a classification rule is developed using the fully labeled data
which can then be used to classify any new unlabeled data as it becomes available. Extensive
reviews of classification methods include Ripley (1996) and McLachlan (1992).

Semi-supervised classification methods use both the labeled and unlabeled data to develop
a classifier for the unlabeled observations. These methods exploit the idea that even though
the group memberships of the unlabeled data are unknown, these data carry important in-
formation about the group parameters (e.g., McLachlan 1977; O’Neill 1978; Dean, Murphy,
and Downey 2006; Chapelle, Schölkopf, and Zien 2006). These methods provide a framework
for updating a classification rule using unlabeled observations, so that more accurate clas-
sifications can be obtained. A number of semi-supervised classification methods have been
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developed including model-based methods (e.g., Dean et al. 2006; McNicholas 2010; Murphy,
Dean, and Raftery 2010; Toher et al. 2011) and machine learning methods (e.g., Joachims
1999; Wang, Chen, and Zhou 2012). Detailed reviews of semi-supervised classification include
Chapelle et al. (2006) and Zhu and Goldberg (2009).

Herein, we present the R package upclass which implements the (semi-supervised) updated
model-based classification method as developed in Dean et al. (2006). This method starts by
estimating the unknown labels using a standard model-based classification method and then
combines them with the labeled observations to form the complete-data. The EM algorithm
is utilized where the parameters and estimated unknown labels are iteratively updated until
convergence. This yields maximum likelihood estimates for the parameters in the model
and estimates group membership for the unlabeled observations. The algorithm for standard
model-based classification is outlined in Section 2 and the algorithm for the updated version
is described in more detail in Section 3.

In Section 3.2, using the well known olive oil data set (Forina, Armanino, Lanteri, and Tis-
cornia 1983) as an example, we give a short comparison of the effectiveness of the updated
method versus a classical method for a case where only a small proportion of the data is
labeled.

In Section 4, we will illustrate the use of each function in the upclass package by working
through examples using the olive oil data.

The R package implementing the methodology described in this article is available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/package=upclass.

2. Model-based methods

Discriminant analysis is concerned with classifying data into predefined groups while clustering
sets out to cluster data into a previously undefined number of groups. In this section, we
will outline the model-based approach to clustering (Section 2.1) and discriminant analysis
(Section 2.2). The updated classification method which will be developed in Section 3 uses a
hybrid of the statistical models underlying model-based discriminant analysis and clustering.

2.1. Model-based clustering

Model-based clustering (Banfield and Raftery 1993; Fraley and Raftery 2002, 2007) as im-
plemented in the mclust package (Fraley, Raftery, Murphy, and Scrucca 2012) is used for
clustering data into groups, where the number of groups G is unknown.

Model-based clustering is formulated as follows, we assume that there are G clusters, where
each cluster arises with probability τg and data within each cluster follows a normal distribu-
tion with cluster specific mean µg and covariance Σg. That is, the data are characterized by
a finite mixture of normal distributions.

Hence, the density of each observation can be given by,

f(y) =

G∑
g=1

τgf(y|µg,Σg),

where f(·) is a multivariate normal density.

http://CRAN.R-project.org/package=upclass
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It is worth noting that the assumption of multivariate normal distributed clusters implies that
the clusters are elliptical in shape. Banfield and Raftery (1993) proposed that constraints are
placed on the covariance matrices in such a way as to produce different shapes and sizes for the
clusters. A modified eigenvalue decomposition of Σg is used to implement these variations.
This decomposition can be written as

Σg = λgDgAgD
T
g ,

where λg − is a constant which controls the cluster volume

Dg − is an orthogonal matrix of eigenvectors which control the

orientation/direction of the clusters

Ag − is a diagonal matrix, with entries proportional to the

eigenvalues, which control the shape of the cluster.

We can restrict each part of the covariance Σg in different ways, resulting in fourteen different
possible models (Biernacki, Celeux, Govaert, and Langrognet 2006). Throughout this paper,
we will consider the ten covariance structures implemented in mclust (Fraley et al. 2012),
as displayed in Figure 1 and Table 1. Each letter in the name of a model corresponds to
the constraint placed on the volume, shape and orientation respectively. The constraint can
be equal (E), variable (V) or identity (I). Consider, for example, the EEV model for the
covariance. If data are fitted by this model, then each cluster has the same volume and the
same shape but the orientation of each cluster is allowed to differ.

EII VII EEI VEI EVI

VVI EEE EEV VEV VVV

Figure 1: Examples of clusters under each covariance restriction.

As shown in Figure 1, the various covariance restrictions result in a different combination
of cluster shapes in each model. The constraints yield parsimonious models which facili-
tate a more flexible modeling strategy beyond assuming unequal covariance (VVV) or equal
covariance (EEE).

The model parameters are estimated using maximum likelihood via the EM algorithm (Demp-
ster, Laird, and Rubin 1977). The EM algorithm, a technique used to find maximum likelihood
estimates in cases where there are missing data, is made up of two steps, the Expectation (E)
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Table 1: Covariance decompositions available.

Model Volume Shape Orientation Covariance Σg

EII Equal Spherical λI
VII Variable Spherical λgI
EEI Equal Equal Axis aligned λA
VEI Variable Equal Axis aligned λgA
EVI Equal Variable Axis aligned λAg

VVI Variable Variable Axis aligned λgAg

EEE Equal Equal Equal λDADT

EEV Equal Equal Variable λDgADT
g

VEV Variable Equal Variable λgDgADT
g

VVV Variable Variable Variable λgDgAgD
T
g

and the Maximization (M) steps. Since the data are from a mixture model,

f(y) =
G∑

g=1

τgf(y|µg,Σg),

we can write the likelihood as the product over this density, evaluated at each ym,

L(τ, µ,Σ|yM ) =

M∏
m=1

 G∑
g=1

τgf(ym|µg,Σg)

 , (1)

and the log-likelihood as

l(τ, µ,Σ|yM ) =
M∑

m=1

log

 G∑
g=1

τgf(ym|µg,Σg)

 ,
where τ = (τ1, τ2, . . . , τG), µ = (µ1, µ2, . . . , µG) and Σ = (Σ1,Σ2, . . . ,ΣG). It is difficult to
maximize the log-likelihood directly. To resolve this, we introduce indicator variables, zmg,
which represent the unknown labels of each observation,

where zmg =

{
1 if ym is from group g
0 otherwise.

The complete-data likelihood can now be written as

L(τ, µ,Σ|yM , zM ) =

M∏
m=1

[τgg(ym|µg,Σg)]zmg , (2)

and the complete-data log-likelihood is of the form

l(τ, µ,Σ|yM , zM ) =
M∑

m=1

G∑
g=1

zmg [log τg + log f(ym|µg,Σg)] . (3)
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The E-step of the algorithm replaces the zmg values in (3) with their conditional expected
values (5), thus yielding the expected complete-data log-likelihood. The M-step of the al-
gorithm then maximizes the expected complete-data log-likelihood function. The algorithm
is iterated until convergence and the final zmg values provide the posterior probability that
observation m belongs to group g. Each observation is classified to the group with maximum
a posteriori (MAP) probability.

Further details for the algorithm are provided in Section 3 where the EM algorithm for the
updated method of model-based classification is described.

2.2. Model-based discriminant analysis

Two classical classification methods are linear (LDA) and quadratic (QDA) discriminant
analysis. Both methods can be seen as model-based discriminant analysis methods based on
a similar model to that outlined in Section 2.1 but where the group membership for each
observation is known. When implementing LDA, the covariance matrix is assumed equal for
each group, which corresponds to the EEE covariance structure. Whereas in QDA, each group
is allowed to have its own unconstrained covariance matrix, which corresponds to the VVV
covariance structure.

In the context of discriminant analysis there are two types of data: labeled data for which
the group memberships are known and unlabeled data where they are unknown. Discrim-
inant analysis uses labeled data to estimate model parameters which are used to create a
classification rule. This rule can then be used to classify the unlabeled data.

Let (xN , lN ) be the labeled data, where the observations are denoted by xN = (x1, x2, . . . , xN )
and their labels by lN = (l1, l2, . . . , lN ). The unlabeled data will be represented by yM where
yM = (y1, y2, . . . , yM ) and the unknown labels are zM = (z1, z2, . . . , zM ). The likelihood of
the labeled data can be written as:

L(τ, µ,Σ|xN , lN ) =

N∏
n=1

G∏
g=1

[τgf(xn|µg,Σg)]lng . (4)

Hence, the log-likelihood is

l(τ, µ,Σ|xN , lN ) =

N∑
n=1

G∑
g=1

lng[log τg + log f(xn|µg,Σg)].

where lng =

{
1 if xn belongs to group g
0 otherwise.

The function l(τ, µ,Σ|xN , lN ) can be maximized with respect to (τg, µg,Σg) to obtain maxi-

mum likelihood estimates for the parameters (τ̂g, µ̂g, Σ̂g) in the model. Using these estimates,
calculated from the labeled data, the expected value of the unknown labels zM can be com-
puted as

ẑmg =
τ̂gf(ym|µ̂g, Σ̂g)∑G

g=1 τ̂g′f(ym|µ̂g′ , Σ̂g′)
. (5)

These a posteriori probabilities of group membership for each observation can be used to
derive the maximum a posteriori (MAP) predicted group membership for each observation.
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2.3. Model selection

In implementing model-based discriminant analysis and clustering techniques, the model of
the data must be known. If the model is not known, it is recommended to fit every model
to the data and calculate the Bayesian Information Criterion (BIC) value (Schwarz 1978;
Kass and Raftery 1995) for each model. The BIC value is calculated in such a way where it
penalizes for a large number of parameters and rewards for a large likelihood value.

BIC = 2 log(L)− k log(n)

where L − is the likelihood of the data

k − is the number of model parameters

n − is the number of observations.

The model with the highest BIC value is selected. While this does not always guarantee the
lowest misclassification rate, in practice it often selects a close to optimal model (Biernacki
and Govaert 1999). Biernacki and Govaert (1999) provide an overview of other model selection
criteria for model-based clustering and classification.

3. Updating method

The backbone of the method employed by upclass is the idea that the unlabeled data may
potentially contain important information about the overall data even though their group
memberships are unknown (Dean et al. 2006). This information can help give a clearer picture
of the structure of the groups in the data. Earlier work in using labeled data to update model-
based classification rules has been carried out by McLachlan (1975, 1977), Ganesalingam and
McLachlan (1978) and O’Neill (1978) amongst others. More recent work includes Nigam,
McCallum, and Mitchell (2006), McNicholas (2010) and Murphy et al. (2010).

We have observed (xN , lN ,yM ) and unknown zM . So the observed likelihood is of the form

L(τ, µ,Σ|xN , lN ,yM ) =

N∏
n=1

G∏
g=1

[τgf(xn|µg,Σg)]lng

︸ ︷︷ ︸
labeled data

M∏
m=1

 G∑
g=1

τgf(ym|µg,Σg)


︸ ︷︷ ︸

unlabeled data

; (6)

this is the product of the likelihood for model-based discriminant analysis (4) and model-based
clustering (1). If we treat the unknown labels as missing data, we can write the likelihood for
the complete-data as

Lc(τ, µ,Σ|xN , lN ,yM , zM ) =

N∏
n=1

G∏
g=1

[τgf(xn|µg,Σg)]lng

︸ ︷︷ ︸
labeled data

M∏
m=1

G∏
g=1

[τgf(ym|µg,Σg)]zmg

︸ ︷︷ ︸
unlabeled data

; (7)

this is a product of the likelihood for model-based discriminant analysis (4) and the complete-
data likelihood for model-based clustering (2). The package maximizes the likelihood (6) using
the EM algorithm, which utilizes the complete-data likelihood (7), to find maximum likelihood
estimates for the unknown parameters and hence estimates for the unknown labels.
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3.1. How it works

There are four general steps used to implement this updated classification rule. They iterate
through the EM algorithm and are made up of the following:

Step 1 Let k = 0. Find initial values for the parameter estimates in the model. Only the
labeled data (xN , lN ) are used here along with the M-step of the EM algorithm. This is
equivalent to performing classical model-based discriminant analysis to obtain starting
values for the model parameters.

Step 2 Using the current parameter estimates, τ (k), µ(k) and Σ(k), calculate the expected
value of the unknown labels through the E-step,

ẑ(k+1)
mg =

τ̂
(k)
g f(ym|µ̂(k)g ,Σ

(k)
g )∑G

g′=1 τ̂
(k)
g′ f(ym|µ̂(k)g′ ,Σ

(k)
g′ )

.

Step 3 Combine (xN , lN ) and (yM , ẑ
(k+1)
M ) to form the complete-data. Using the complete-

data, calculate new parameter estimates for the model, τ (k+1), µ(k+1) and Σ(k+1),
through the M-step by maximizing the log complete-data likelihood (7).

Step 4 Check for convergence using the Aitken acceleration convergence criterion, by default.
There is a simpler convergence option also, see Section 4.5. If convergence has been
reached, stop. If not, set k = k + 1 and return to Step 2 where new estimates for the
unknown labels are calculated followed by new parameter estimates.

The parameter estimates used in Step 3 are of the following form. The estimate of τ̂
(k+1)
g can

be seen as the average number of observations in each group,

τ̂ (k+1)
g =

∑N
n=1 lng +

∑M
m=1 ẑ

(k+1)
mg

N +M
,

and µ̂
(k+1)
g is a weighted average of the observations, where the labels and their estimates are

used as weights,

µ̂(k+1)
g =

∑N
n=1 lngxn +

∑M
m=1 ẑ

(k+1)
mg ym∑N

n=1 lng +
∑M

m=1 ẑ
(k+1)
mg

.

The estimation of Σg depends on the constraints placed on the covariance matrix. For exam-

ple, if the model was VVV, the estimate for Σ̂
(k+1)
g would look like;

Σ̂
(k+1)
g =

∑N
n=1 lng(xn − µ̂(k+1)

g )(xn − µ̂(k+1)
g ) +

∑M
m=1 ẑ

(k)
mg(ym − µ̂

(k+1)
g )(ym − µ̂

(k+1)
g )′∑N

n=1 lng +
∑M

m=1 ẑ
(k)
mg

.

For further details on parameter estimation and how the covariance matrix for each model
can be calculated, see Bensmail and Celeux (1996). Once the final converged estimates of the
model have been obtained, these maximize the observed-data likelihood (6). The resulting
parameters and ẑmg values form the updated classification rule.

3.2. Comparing the two methods
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We compare how the two methods perform using the olive oil data set (Forina et al. 1983)
as an example. This data set is made up of eight variables which measure the percentage
composition of eight fatty acids on 572 olive oils. Each oil is from one of three Italian regions;
North Italy, South Italy and Sardinia. Note that we did not classify by geographical area
within region, neither did we include this finer geographical area variable in our training/test
data.

The data were randomly split into training (labeled) and test (unlabeled) data with a given
percentage being assigned as training data. This process was repeated 200 times and classical
model-based discriminant analysis and the updated method were fit to each split of the data.
In each case, the best model was selected using BIC and the classification performance was
recorded for this model.

Table 2 shows the results of classification tests using model-based discriminant analysis and
the updated method, and also the number of times each model was selected at each level. It
can be seen that VVV is selected as the best model until only 15% of the data are labeled.
The VVV model, as the one with the most parameters, requires the training data to be of a
certain size to work efficiently. On some data splits where fewer than 15% of the observations
are labeled, some groups had insufficient observations to fit the VVV model so simpler models
were selected; in these cases the selected models enumerated by the numbers in brackets.

Table 2: Olive oil data: The proportion of labeled data versus the average misclassification
rate (reported as a percentage) for the classical and updated methods. The frequency that
each covariance structure was selected is also shown.

Labeled Classical Models Updated Models

data method method

90% 0.08 VVV 0.04 VVV
80% 0.10 VVV 0.07 VVV
70% 0.15 VVV 0.08 VVV
60% 0.19 VVV 0.09 VVV
50% 0.32 VVV 0.12 VVV
40% 0.45 VVV 0.16 VVV
30% 0.79 VVV 0.25 VVV
20% 2.24 VVV 0.57 VVV
15% 5.04 VVV (195) 1.29 VVV (194)

VEV (2) VEV (6)
EEE (3)

10% 11.46 VVV (141) 3.30 VVV (137)
VEV (42) VEV (59)
EEE (17) EEV (10)

The results in Table 2 show the updated method outperforming the classical method at every
level, although the methods show comparable results when more than 30% of the data are
labeled. However, at the 30% level and lower, the results from the updated method far surpass
those from the classical method.
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At the 10% level, the difference between the two methods is very apparent. In this case, 515
observations are unlabeled out of the total of 572. The classical method misclassified nearly
11.5% of the unlabeled observations, which corresponds to 59 observations. The updated
method has misclassified only 3.3% of the unlabeled data, which corresponds to only 17
observations.

Figure 2 compares the results of the two methods for each of the 200 iterations at the 10%
level of labeled data.
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Figure 2: Olive oil data: Comparing the classical and updated methods at the 10% level: (a)
shows the difference in the number of misclassified observations for the classical and updated
methods. (b) shows a scatter plot of the number of misclassified observations for the classical
and updated methods.

Figure 2(a) shows that the updated method almost always gives better results than the
classical method. The updated method yielded a lower misclassification rate on 188 iterations
out of 200, the same misclassification rate on 3 iterations and an inferior misclassification
rate on 9 iteration. Figure 2(b) shows the number of observations that were misclassified by
each method on each iteration. On 24 iterations, the classical method misclassified at least
20% of the unlabeled observations reaching a maximum of misclassifying almost 30% of the
unlabeled observations for one iteration.

4. The software

In this section we will discuss how to use the package upclass in R (R Development Core Team
2011). It can be implemented in a supervised or semi-supervised mode. It makes extensive
use of the package mclust (Fraley et al. 2012). If mclust is not installed, upclass will install
it.

The package is available on CRAN and can be installed using the following code.
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R> install.packages("upclass")

R> library(upclass)

4.1. Setting up the data

To illustrate the use of the functions in upclass, we will again employ the olive oil dataset
(Forina et al. 1983). The dataset is found in the classifly package developed by Wickham
(2011). We will set up the data in the following way.

R> data(olives)

R> X<-as.matrix(olives[,-c(1:2)])

R> cl<-as.matrix(olives[,2])

R> N<-dim(X)[1]

R> indtrain<-sort(sample(1:N, N * 0.2))

R> Xtrain<-X[indtrain,]

R> cltrain<-cl[indtrain]

R> indtest<-setdiff(1:N, indtrain)

R> Xtest<-X[indtest,]

R> cltest<-cl[indtest]

This randomly assigns 20% of the data (114 observations) as labeled data (Xtrain, cltrain),
where Xtrain are the observations and cltrain are their labels. The remaining data are
unlabeled. The observations are stored as Xtest, and their removed labels as cltest.

4.2. Supervised model

We first illustrate the basic use of the classical model fit, with the default model EEE in mind.
We could change the model to any of the ten available in mclust (Table 1).

R> fitnoup <- noupclassifymodel(Xtrain, cltrain, Xtest)

Fitting this model is equivalent to classifying the data using LDA. Since we have the correct
labels to hand, we can include them in our model as follows; this will result in the function
reporting classification performance results.

R> fitnoup1 <- noupclassifymodel(Xtrain, cltrain, Xtest, cltest)

We can thus extract a table comparing the maximum a posteriori labels with the true ones,
the Brier score (Brier 1950), the BIC criterion (Schwarz 1978), as well as a reported number
of misclassified observations, as can be seen in the sample output included next.

Labels for test data provided

Total Misclassified:

12

Brier Score:
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8.74595

BIC:

-9054.496

Classification Table

1 2 3

1 255 1 1

2 0 76 0

3 0 10 115

_________________________________________

However, it is likely that we would not have a particular model in mind when starting out
our analysis. In this case we can use the noupclassify command, as follows.

R> fitnoupall <- noupclassify(Xtrain, cltrain, Xtest, cltest)

This runs noupclassifymodel for a selected list of models or for all of them (the default is
to fit all ten models in Table 1); see modelvec function later in Section 4.4.

The noupclassify function returns the ‘best’ model as well as the associated output for this
model. As outlined in Section 2.3, the best model is considered to be the one with the largest
BIC value.

A subset of the output for the same data sample is provided below. As can be seen, it
suggests that the VVV model is the best for these data. This is in keeping with our findings
in Section 3.2.

$Best

Function Call:

noupclassifymodel(Xtrain = Xtrain, cltrain = cltrain, Xtest = Xtest,

cltest = cltest, modelName = modelName, reportrate = reportrate)

No in Training Set:

114

No in Test Set:

458

No of Groups:

3

Model Name:

VVV

_________________________________________
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_________________________________________

Labels for test data provided

Total Misclassified:

4

Brier Score:

2.949363

BIC:

-8833.488

Classification Table

1 2 3

1 257 0 0

2 2 74 0

3 1 1 123

_________________________________________

The output for all the other models that were fitted is also stored in the output from
noupclassify.

Note that the BIC criterion usually selects the model with the lowest misclassification rate,
but not always. With this data split, the VEI model only had one misclassification but had
a less satisfactory BIC, as can be seen from the code below.

R> fitnoupall$VEI

Model Name:

VEI

_________________________________________

_________________________________________

Labels for test data provided

Total Misclassified:

1

Brier Score:

1.015307

BIC:

-9660.548
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Classification Table

1 2 3

1 256 0 1

2 0 76 0

3 0 0 125

_________________________________________

4.3. Semi-supervised model

The real power of this package lies in the semi-supervised model. The functions work in a
similar fashion. For those who wish to fit a specific model, for example the VEV model, the
code below will do this. The default model, as before, is EEE.

R> fitup <- upclassifymodel(Xtrain, cltrain, Xtest,cltest, modelName="VEV")

If the labels are not available, the cltest vector can be omitted. A sample of the output
follows.

Labels for test data provided

Total Misclassified:

8

Brier Score:

7.986492

BIC:

-43507.49

Classification Table

1 2 3

1 257 0 0

2 0 76 0

3 7 1 117

_________________________________________

If you have selected a model and wish to try the classification for a range of models, the
upclassify command can be used. Here, we use the same data split and the full range of
models. It can be seen that VVV is selected again, but with only one misclassification this
time.

Model Name:

VVV



14 upclass: Classification Using Updated Classification Rules in R

_________________________________________

_________________________________________

Labels for test data provided

Total Misclassified:

1

Brier Score:

0.9995319

BIC:

-42739.35

Classification Table

1 2 3

1 257 0 0

2 0 76 0

3 0 1 124

_________________________________________

Both upclassifymodel and noupclassifymodel have output with the user-defined class of
upclassfit. A print() and a summary() for this class of output has been developed. The
print has already been detailed but the output from summary is more extensive.

R> print(fitup)

R> summary(fitup)

Note that in both functions, the available components of the output list are itemized so par-
ticular results can be picked out.

Available Components:

[1] "call" "Ntrain" "Ntest" "d" "G" "iter"

[7] "converged" "ModelName" "parameters" "reportrate" "train" "test"

[13] "ll" "bic"

There is also a plot() function which produces a simple heat map of the classification matrix.
An example appears in Figure 3.

R> plot(fitup)

4.4. Models
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Figure 3: Heat map of the classification of the olive oil data using the VEV model.

modelvec is a function which outputs all the available models for univariate/multivariate
normally distributed data. It can be used alongside modelscope from some of the previous
functions.

There is one input argument; the dimension of the data. If the data are one-dimensional, or
univariate, there are only two possible models here.

R> modelvec(1)

[1] "E" "V"

If the data are multivariate, all ten available models are returned as here where there are four
variables in the data set.

R> modelvec(4)

[1] "EII" "VII" "EEI" "VEI" "EVI" "VVI" "EEE" "EEV"

[9] "VEV" "VVV"

If only a few of these models are needed, they can be extracted and stored in a vector, i.e.,
scope. Perhaps while running noupclassify or upclassify, we wish only to test models
with equal volume. These can be entered manually as a vector string through the modelscope
argument, or else modelvec can be used as in the following:

R> scope <- modelvec(4)[c(1, 3, 5, 7, 8)]

R> upclassify(Xtrain, cltrain, Xtest, modelscope = scope)
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So here, upclassifymodel is run only over models with equal volume (see Fraley and Raftery
2002).

4.5. Convergence

Both upclassify and upclassifymodel in upclass can make use of the function Aitken by
setting the argument Aitken to TRUE. This function takes in a vector of three consecutive
log-likelihoods and estimates the final converged maximized log-likelihood using the method
of Aitken acceleration described by Böhning, Dietz, Schaub, Shlattmann, and Lindsay (1994).
The calling functions can then decide if the log-likelihood has converged based on some spec-
ified tolerance, defaulted to 10−5 in the case of the upclass functions.

This function could, of course, be used by itself, as in the following snippet.

R> ll<-c(-261, -257.46,-256.4)

R> Aitken(ll)

$ll

[1] -256.4

$linf

[1] -254.8869

$a

[1] 0.299435

ll gives the current estimate for the log-likelihood, while linf gives the estimate of the
converged value and if the difference between the two should be less than some specified
tolerance, convergence can be said to have been reached.

A simpler convergence criterion can be used by setting Aitken to FALSE. This method achieves
convergence when two successive values of ll have a difference smaller than tol. The simpler
convergence criterion has been shown to be less strict than the Aitken one (McNicholas,
Murphy, McDaid, and Frost 2010).

5. Discussion

We have presented a problem in data classification that occurs frequently in many areas,
namely to classify unlabeled observations when only in possession of a small amount of labeled
data. As such it would be of interest to researchers in food science, medical diagnostics,
botany, or any area where such a scenario is commonplace.

We have introduced a R package called upclass which goes some way to addressing this
problem. As we saw in Section 3 we can take advantage of the complete-data (both labeled and
unlabeled) to create a classifier. The package is an implementation of the method developed
in Dean et al. (2006), and takes advantage of the EM algorithm functionality developed by
Fraley et al. (2012) in the package mclust.

We have described the functions available in the package in Section 4. The user can use the
function upclassify to classify his data over the full range of models described in Section 2.1,
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or to select one or more suitable models. It is possible to vary the parameters to control conver-
gence criteria, and also control the output produced. The function noupclassify is provided
to carry out supervised classification, if desired. Functions are provided to interrogate the
output from the functions in the package.

We have shown (in Table 2) that this method can provide significantly better results at low
levels of labeling, than supervised classification.

The main limitation of the idea is that we assume that each group can be modeled by a normal
distribution as we discussed in Section 2.1; in some applications this assumption may not be
appropriate. Also, at very low levels of labeling, upclass cannot fit all possible models for
the data, and must choose among the models with a suitably reduced number of parameters
where model fitting is feasible.

The package is currently based on the ten covariance structures in mclust however fourteen
covariance structures are possible within the modified eigen-decomposition. It would be inter-
esting to extend to the approach to all fourteen covariance structures (Biernacki et al. 2006)
to increase the flexibility of this approach further.

A possible avenue for exploration, is to cater for the situation where not all groups are
represented in the training set. This becomes more and more likely at very low levels of
labeling, and might have other applications if any new datapoint belongs to a previously
unknown group.
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