
Introduction to the tm Package

Text Mining in R

Ingo Feinerer

February 20, 2011

Introduction

This vignette gives a short introduction to text mining in R utilizing the text mining framework provided by
the tm package. We present methods for data import, corpus handling, preprocessing, meta data management,
and creation of term-document matrices. Our focus is on the main aspects of getting started with text mining
in R—an in-depth description of the text mining infrastructure offered by tm was published in the Journal of
Statistical Software (Feinerer et al., 2008). An introductory article on text mining in R was published in R
News (Feinerer, 2008).

Data Import

The main structure for managing documents in tm is a so-called Corpus, representing a collection of text
documents. A corpus is an abstract concept, and there can exist several implementations in parallel. The
default implementation is the so-called VCorpus (short for Volatile Corpus) which realizes a semantics as known
from most R objects: corpora are R objects held fully in memory. We denote this as volatile since once the
R object is destroyed, the whole corpus is gone. Such a volatile corpus can be created via the constructor
Corpus(x, readerControl). Another implementation is the PCorpus which implements a Permanent Corpus
semantics, i.e., the documents are physically stored outside of R (e.g., in a database), corresponding R objects
are basically only pointers to external structures, and changes to the underlying corpus are reflected to all R
objects associated with it. Compared to the volatile corpus the corpus encapsulated by a permanent corpus
object is not destroyed if the corresponding R object is released.

Within the corpus constructor, x must be a Source object which abstracts the input location. tm provides a
set of predefined sources, e.g., DirSource, VectorSource, or DataframeSource, which handle a directory, a vector
interpreting each component as document, data frame like structures (like CSV files), respectively. Except
DirSource, which is designed solely for directories on a file system, and VectorSource, which only accepts (char-
acter) vectors, most other implemented sources can take connections as input (a character string is interpreted
as file path). getSources() lists available sources, and users can create their own sources.

The second argument readerControl of the corpus constructor has to be a list with the named compo-
nents reader and language. The first component reader constructs a text document from elements deliv-
ered by a source. The tm package ships with several readers (e.g., readPlain(), readGmane(), readRCV1(),
readReut21578XMLasPlain(), readPDF(), readDOC(), . . . ). See getReaders() for an up-to-date list of avail-
able readers. Each source has a default reader which can be overridden. E.g., for DirSource the default just
reads in the input files and interprets their content as text. Finally, the second component language sets the
texts’ language (preferably using ISO 639-2 codes).

In case of a permanent corpus, a third argument dbControl has to be a list with the named components
dbName giving the filename holding the sourced out objects (i.e., the database), and dbType holding a valid
database type as supported by package filehash. Activated database support reduces the memory demand,
however, access gets slower since each operation is limited by the hard disk’s read and write capabilities.

So e.g., plain text files in the directory txt containing Latin (lat) texts by the Roman poet Ovid can be
read in with following code:

> txt <- system.file("texts", "txt", package = "tm")

> (ovid <- Corpus(DirSource(txt),

+ readerControl = list(language = "lat")))

A corpus with 5 text documents

For simple examples VectorSource is quite useful, as it can create a corpus from character vectors, e.g.:

1



> docs <- c("This is a text.", "This another one.")

> Corpus(VectorSource(docs))

A corpus with 2 text documents

Finally we create a corpus for some Reuters documents as example for later use:

> reut21578 <- system.file("texts", "crude", package = "tm")

> reuters <- Corpus(DirSource(reut21578),

+ readerControl = list(reader = readReut21578XML))

Data Export

For the case you have created a corpus via manipulating other objects in R, thus do not have the texts already
stored on a hard disk, and want to save the text documents to disk, you can simply use writeCorpus()

> writeCorpus(ovid)

which writes a plain text representation of a corpus to multiple files on disk corresponding to the individual
documents in the corpus.

Inspecting Corpora

Custom print() and summary() methods are available, which hide the raw amount of information (consider a
corpus could consist of several thousand documents, like a database). summary() gives more details on meta
data than print(), whereas the full content of text documents is displayed with inspect().

> inspect(ovid[1:2])

A corpus with 2 text documents

The metadata consists of 2 tag-value pairs and a data frame

Available tags are:

create_date creator

Available variables in the data frame are:

MetaID

$ovid_1.txt

Si quis in hoc artem populo non novit amandi,

hoc legat et lecto carmine doctus amet.

arte citae veloque rates remoque moventur,

arte leves currus: arte regendus amor.

curribus Automedon lentisque erat aptus habenis,

Tiphys in Haemonia puppe magister erat:

me Venus artificem tenero praefecit Amori;

Tiphys et Automedon dicar Amoris ego.

ille quidem ferus est et qui mihi saepe repugnet:

sed puer est, aetas mollis et apta regi.

Phillyrides puerum cithara perfecit Achillem,

atque animos placida contudit arte feros.

qui totiens socios, totiens exterruit hostes,

creditur annosum pertimuisse senem.

$ovid_2.txt

quas Hector sensurus erat, poscente magistro

verberibus iussas praebuit ille manus.

Aeacidae Chiron, ego sum praeceptor Amoris:

saevus uterque puer, natus uterque dea.

sed tamen et tauri cervix oneratur aratro,

2



frenaque magnanimi dente teruntur equi;

et mihi cedet Amor, quamvis mea vulneret arcu

pectora, iactatas excutiatque faces.

quo me fixit Amor, quo me violentius ussit,

hoc melior facti vulneris ultor ero:

non ego, Phoebe, datas a te mihi mentiar artes,

nec nos a~Ańriae voce monemur avis,

nec mihi sunt visae Clio Cliusque sorores

servanti pecudes vallibus, Ascra, tuis:

usus opus movet hoc: vati parete perito;

Individual documents can be accessed via [[, either via the position in the corpus, or via their name.

> identical(ovid[[2]], ovid[["ovid_2.txt"]])

[1] TRUE

Transformations

Once we have a corpus we typically want to modify the documents in it, e.g., stemming, stopword removal,
et cetera. In tm, all this functionality is subsumed into the concept of a transformation. Transformations are
done via the tm_map() function which applies (maps) a function to all elements of the corpus. Basically, all
transformations work on single text documents and tm_map() just applies them to all documents in a corpus.

Converting to Plain Text Documents

The corpus reuters contains documents in XML format. We have no further use for the XML interna and just
want to work with the text content. This can be done by converting the documents to plain text documents.
It is done by the generic as.PlainTextDocument().

> reuters <- tm_map(reuters, as.PlainTextDocument)

Note that alternatively we could have read in the files with the readReut21578XMLasPlain reader which already
returns a plain text document in the first place.

Eliminating Extra Whitespace

Extra whitespace is eliminated by:

> reuters <- tm_map(reuters, stripWhitespace)

Convert to Lower Case

Conversion to lower case by:

> reuters <- tm_map(reuters, tolower)

As you see you can use arbitrary text processing functions as transformations as long the function returns a
text document. Most text manipulation functions from base R just modify a character vector in place, and as
such, keep class information intact. This is especially true for tolower as used here, but also e.g. for gsub which
comes quite handy for a broad range of text manipulation tasks.

Remove Stopwords

Removal of stopwords by:

> reuters <- tm_map(reuters, removeWords, stopwords("english"))

Stemming

Stemming is done by:

> tm_map(reuters, stemDocument)

A corpus with 20 text documents

3



Filters

Often it is of special interest to filter out documents satisfying given properties. For this purpose the function
tm_filter is designed. It is possible to write custom filter functions, but for most cases sFilter does its job:
it integrates a minimal query language to filter meta data. Statements in this query language are statements as
used for subsetting data frames. E.g., the following statement filters out those documents having an ID equal
to 237 and the string “INDONESIA SEEN AT CROSSROADS OVER ECONOMIC CHANGE” as their heading (both are
meta data attributes of the text document).

> query <- "id == '237' & heading == 'INDONESIA SEEN AT CROSSROADS OVER ECONOMIC CHANGE'"
> tm_filter(reuters, FUN = sFilter, query)

A corpus with 1 text document

There is also a full text search filter available (which is default when no explicit filter function FUN is specified)
accepting regular expressions:

> tm_filter(reuters, pattern = "company")

A corpus with 5 text documents

Meta Data Management

Meta data is used to annotate text documents or whole corpora with additional information. The easiest way
to accomplish this with tm is to use the meta() function. A text document has a few predefined attributes
like Author, but can be extended with an arbitrary number of additional user-defined meta data tags. These
additional meta data tags are individually attached to a single text document. From a corpus perspective these
meta data attachments are locally stored together with each individual text document. Alternatively to meta()

the function DublinCore() provides a full mapping between Simple Dublin Core meta data and tm meta data
structures and can be similarly used to get and set meta data information for text documents, e.g.:

> DublinCore(crude[[1]], "Creator") <- "Ano Nymous"

> meta(crude[[1]])

Available meta data pairs are:

Author : Ano Nymous

DateTimeStamp: 1987-02-26 17:00:56

Description :

Heading : DIAMOND SHAMROCK (DIA) CUTS CRUDE PRICES

ID : 127

Language : en

Origin : Reuters-21578 XML

User-defined local meta data pairs are:

$TOPICS

[1] "YES"

$LEWISSPLIT

[1] "TRAIN"

$CGISPLIT

[1] "TRAINING-SET"

$OLDID

[1] "5670"

$Topics

[1] "crude"

$Places

[1] "usa"

$People

4



character(0)

$Orgs

character(0)

$Exchanges

character(0)

For corpora the story is a bit more difficult. Corpora in tm have two types of meta data: one is the meta
data on the corpus level (corpus), the other is the meta data related to the individual documents (indexed) in
form of a data frame. The latter is often done for performance reasons (hence the named indexed for indexing)
or because the meta data has an own entity but still relates directly to individual text documents, e.g., a
classification result; the classifications directly relate to the documents, but the set of classification levels forms
an own entity. Both cases can be handled with meta():

> meta(crude, tag = "test", type = "corpus") <- "test meta"

> meta(crude, type = "corpus")

$create_date

[1] "2010-06-17 07:32:26 GMT"

$creator

LOGNAME

"feinerer"

$test

[1] "test meta"

> meta(crude, "foo") <- letters[1:20]

> meta(crude)

MetaID foo

1 0 a

2 0 b

3 0 c

4 0 d

5 0 e

6 0 f

7 0 g

8 0 h

9 0 i

10 0 j

11 0 k

12 0 l

13 0 m

14 0 n

15 0 o

16 0 p

17 0 q

18 0 r

19 0 s

20 0 t

Standard Operators and Functions

Many standard operators and functions ([, [<-, [[, [[<-, c(), lapply()) are available for corpora with
semantics similar to standard R routines. E.g., c() concatenates two (or more) corpora. Applied to several
text documents it returns a corpus. The meta data is automatically updated, if corpora are concatenated (i.e.,
merged).

5



Creating Term-Document Matrices

A common approach in text mining is to create a term-document matrix from a corpus. In the tm package
the classes TermDocumentMatrix and DocumentTermMatrix (depending on whether you want terms as rows and
documents as columns, or vice versa) employ sparse matrices for corpora.

> dtm <- DocumentTermMatrix(reuters)

> inspect(dtm[1:5, 100:105])

A document-term matrix (5 documents, 6 terms)

Non-/sparse entries: 1/29

Sparsity : 97%

Maximal term length: 10

Weighting : term frequency (tf)

Terms

Docs abdul-aziz ability able abroad, abu accept

127 0 0 0 0 0 0

144 0 2 0 0 0 0

191 0 0 0 0 0 0

194 0 0 0 0 0 0

211 0 0 0 0 0 0

Operations on Term-Document Matrices

Besides the fact that on this matrix a huge amount of R functions (like clustering, classifications, etc.) can be
applied, this package brings some shortcuts. Imagine we want to find those terms that occur at least five times,
then we can use the findFreqTerms() function:

> findFreqTerms(dtm, 5)

[1] "15.8" "accord" "agency" "ali"

[5] "analysts" "arab" "arabia" "barrel."

[9] "barrels" "bpd" "commitment" "crude"

[13] "daily" "dlrs" "economic" "emergency"

[17] "energy" "exchange" "exports" "feb"

[21] "futures" "government" "gulf" "help"

[25] "hold" "international" "january" "kuwait"

[29] "march" "market" "meeting" "minister"

[33] "mln" "month" "nazer" "nymex"

[37] "official" "oil" "opec" "output"

[41] "pct" "petroleum" "plans" "posted"

[45] "price" "prices" "prices." "production"

[49] "quoted" "recent" "report" "reserve"

[53] "reserves" "reuter" "saudi" "sheikh"

[57] "sources" "study" "traders" "united"

[61] "west" "world"

Or we want to find associations (i.e., terms which correlate) with at least 0.8 correlation for the term opec, then
we use findAssocs():

> findAssocs(dtm, "opec", 0.8)

opec prices. 15.8

1.00 0.81 0.80

The function also accepts a matrix as first argument (which does not inherit from a term-document matrix). This
matrix is then interpreted as a correlation matrix and directly used. With this approach different correlation
measures can be employed.

Term-document matrices tend to get very big already for normal sized data sets. Therefore we provide a
method to remove sparse terms, i.e., terms occurring only in very few documents. Normally, this reduces the
matrix dramatically without losing significant relations inherent to the matrix:

6



> inspect(removeSparseTerms(dtm, 0.4))

A document-term matrix (20 documents, 3 terms)

Non-/sparse entries: 55/5

Sparsity : 8%

Maximal term length: 6

Weighting : term frequency (tf)

Terms

Docs march oil reuter

127 0 3 1

144 0 4 1

191 0 2 1

194 0 1 1

211 0 2 1

236 2 6 1

237 1 2 1

242 1 3 1

246 1 2 1

248 1 8 1

273 1 5 1

349 1 4 1

352 1 4 1

353 1 4 1

368 1 3 1

489 1 5 1

502 1 5 1

543 1 3 1

704 1 1 1

708 1 2 1

This function call removes those terms which have at least a 40 percentage of sparse (i.e., terms occurring 0
times in a document) elements.

Dictionary

A dictionary is a (multi-)set of strings. It is often used to represent relevant terms in text mining. We provide
a class Dictionary implementing such a dictionary concept. It can be created via the Dictionary() constructor,
e.g.,

> (d <- Dictionary(c("prices", "crude", "oil")))

[1] "prices" "crude" "oil"

attr(,"class")

[1] "Dictionary" "character"

and may be passed over to the DocumentTermMatrix() constructor. Then the created matrix is tabulated
against the dictionary, i.e., only terms from the dictionary appear in the matrix. This allows to restrict the
dimension of the matrix a priori and to focus on specific terms for distinct text mining contexts, e.g.,

> inspect(DocumentTermMatrix(reuters, list(dictionary = d)))

A document-term matrix (20 documents, 3 terms)

Non-/sparse entries: 41/19

Sparsity : 32%

Maximal term length: 6

Weighting : term frequency (tf)

Terms

Docs crude oil prices

7



127 2 3 3

144 0 4 2

191 3 2 0

194 4 1 0

211 0 2 0

236 1 6 2

237 0 2 0

242 0 3 1

246 0 2 0

248 0 8 5

273 6 5 4

349 2 4 0

352 0 4 2

353 2 4 1

368 0 3 0

489 0 5 2

502 0 5 2

543 3 3 3

704 0 1 2

708 1 2 0

References

I. Feinerer. An introduction to text mining in R. R News, 8(2):19–22, Oct. 2008. URL http://CRAN.R-project.

org/doc/Rnews/.

I. Feinerer, K. Hornik, and D. Meyer. Text mining infrastructure in R. Journal of Statistical Software, 25(5):
1–54, March 2008. ISSN 1548-7660. URL http://www.jstatsoft.org/v25/i05.

8


