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1 Introduction

This document walks you step by step through the data analysis with the TIGER
package. The core idea of the method is to gain important information about a
model by a temporally resolved evaluation of the difference between model and
observation. If similar patterns of this difference occur repeatedly, the same
discrepancy between model and observation indicates that the difference is due
to a structural problem in the model or a systematic errors in the observation.
We may improve our understanding of the system under investigation, if the
conditions leading to this pattern of difference can be identified. For more
information on the method, please see [Reusser and Zehe, 2009, Reusser et˜al.,
2009].

2 Data

In this example, we are looking at the difference between an observed river dis-
charge time series and the model output from a hydrological model, simulating
the river discharge from meteorological input data. The data is provided in
the package and is shown in figure˜1 in two ways, once as a single best sim-
ulation run and once as a number (25) of simulation runs with varying model
parameters representing the uncertainty in the estimation of those parameters.

> library(tiger)

> data(tiger.example)

> measured.single <- tiger.single$measured

> modelled.single <- tiger.single$modelled

> measured.multi <- tiger.multi$measured

> modelled.multi <- tiger.multi$modelled

> par(mfrow = c(2, 1))

> plot(d.dates, measured.single, type = "l", col = "blue")

> lines(d.dates, modelled.single)

> legend("topright", legend = c("measured", "modelled"), lty = 1,

+ col = c("blue", "black"))

> plot(d.dates, measured.multi, type = "l", col = "blue")

> for (i in 1:NROW(modelled.multi)) {
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Figure 1: Measured and modelled river discharge.

+ lines(d.dates, modelled.multi[i, ])

+ }

> lines(d.dates, measured.multi, col = "blue")

3 Doing the calculations

First of all, we will generate our synthetic peak errors which will help to better
understand the error groups. The synthetic peak errors are shown in figure˜2.

> peaks2 <- synth.peak.error(rise.factor = 2, recession.const = 0.02,

+ rise.factor2 = 1.5, err1.factor = c(1.3, 1.5, 2), err2.factor = c(0.02,

+ 0.03, 0.06), err4.factor = c(9, 22, 40), err5.factor = c(0.2,

+ 0.3, 0.5), err6.factor = c(2, 3, 5), err9.factor = c(1.5,

+ 3, 6))

[1] "Check if peak volumes are correct for 'volume-optimized'\npeaks:"

[1] "Volume for reference peak: 20.3895471993771"

[1] "Volumes for error peaks:"

[1] 20.38916 20.38863 20.38802 20.38132 20.38950 20.36542

The synthetic peak error number 5 overestimates the peak, but the total
volume is kept correct. The recession constant is optimized to obtain a cor-
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Figure 2: Synthetic peak errors.

rect volume and the package asks you to check whether the optimization was
successful.

The command bellow plots the synthetic peak errors.

> p.synth.peak.error(peaks2)

Then, we will call the function that does all the computation. The objects
returned (result.single and result.multi) are equivalent to tiger.single

and tiger.multi provided in data(tiger.example). For the multi-run case
we calculate values for every tenth window only (step.size=10) in order to
save memory and computation time. Note that Reusser and Zehe [2009] used
step.size=1 for their study. These result objects will then be further processed
by plotting and summarizing methods. Here, the methods are shown for the
tiger.multi object, but they work the same way for the tiger.single object.

> result.single <- tiger(modelled = modelled.single, measured = measured.single,

+ window.size = 240, synthetic.errors = peaks2)

> result.multi <- tiger(modelled = modelled.multi, measured = measured.multi,

+ window.size = 240, synthetic.errors = peaks2)
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Figure 3: Scatter plots of the performance measures.

4 Assessing performance measures used to build
error groups

About 50 performance measures are used to split the time series into error
groups. Some of these performance measures are highly correlated and not of
much interest for further interpretation. Therefore, we will exclude those from
further plots. Note that we want to keep the CE and RMSE measures in any
case. We will also create a scatter plot of the remaining measures to get an
impression of their interdependence (Figure˜3 - here, we are only showing the
scatter plots for the first five measures).

> correlated <- correlated(result.multi, keep = c("CE", "RMSE"))

> print(scatterplot(result.multi$measures.uniform, show.measures = correlated$measures.uniform$to.keep[c(1,

+ 2, 3, 5, 6)]))

To get an impression of how the performance measures react to the synthetic
peaks, we can create a number of plots (figure˜4). Nine plots show the response
of some exemplary measures (y-axis) to the synthetic peak errors, each of which
is shown with a different symbol. On the x-axis, no error would be in the
centre and the severity of the error increases to each side. The variable do.out

determines whether to exclude outliers from the plot.
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Figure 4: Performance measures for synthetic peak errors.

> show.measures <- which(names(result.multi$measures) %in% c("CE",

+ "PDIFF", "ME", "MSDE", "SMSE", "Rsqr", "SMALE", "lagtime",

+ "NSC"))

> peaks.measures(result.multi, show.measures = show.measures, mfrow = c(2,

+ 5), do.out = c(rep(FALSE, 4), TRUE, TRUE, rep(FALSE, 3)))

5 How many clusters to use?

In order to determine the optimum number of error groups during the c-means
clustering, we try to minimize the validity index (figure˜5).

> par(mar = c(4, 4, 1, 1) + 0.1)

> p.validityIndex(result.multi, validity.max = 10)

The 3 cluster solution combines clusters B and C from the 5 cluster solution
in cluster B and clusters E and E in cluster C (figure˜6). Therefore the 5 cluster
solution also represents the 3 cluster solution. In this example, we are using the
5 group (cluster) solution.

> par(mfrow = c(2, 1), mar = c(2, 4, 1, 2) + 0.1)

> errors.in.time(d.dates, result.multi, solution = 3)

> errors.in.time(d.dates, result.multi, solution = 5, new.order = c(4,
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Figure 5: Validity index for the identification of the optimal cluster number for
c-means clustering.
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Figure 6: Simulated and observed discharge series. The colour bars indicate the
error class during this time period. Plots are show for 3, and 5 classes.

+ 3, 5, 2, 1))

> solutions <- 5

6 Time pattern of error groups

The temporal occurence of the error groups is shown in figure˜7.

> new.order = c(4, 3, 5, 2, 1)

> par(mar = c(2, 4, 1, 2) + 0.1)

> errors.in.time(d.dates, result.multi, solution = solutions, new.order = new.order)

7 Characterizing the error groups

In order to characterize the error groups, we can check which of the synthetic
peaks belong to which error groups and visualize the assignment as shown in
Figure˜??. Note that the output is formated as LATEXtables with & as the
delimiter between columns and \\ as end of line delimiter.

> peak.cluster <- peaks.in.clusters(result.multi, solution = solutions,

+ new.order = new.order)
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Figure 7: Simulated and observed discharge series. The colour bars indicate the
error class during this time period.
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level & 1&2&3&4&5&6 \\

\hline

peak size (1) & D&D&D&D&D&D \\

shift (2) & C&D&D&D&D&C \\

recession (3) & D&D&D&D&D&D \\

lag (4) & D&D&D&D&D&D \\

size./integr (5) & D&D&D&D&D&D \\

width (6) & D&D&D&D&D&D \\

false peak (7) & C&B&D&D&D&B \\

undeteced peak (8) & D&D&D&D&D&D \\

shift w/o peak (9) & D&D&D&D&D&D \\

Cluster & Error & Level\\

B & false peak (7) & 2 6 \\

C & shift (2) & 1 6 \\

& false peak (7) & 1 \\

D & peak size (1) & 1 2 3 4 5 6 \\

& shift (2) & 2 3 4 5 \\

& recession (3) & 1 2 3 4 5 6 \\

& lag (4) & 1 2 3 4 5 6 \\

& size./integr (5) & 1 2 3 4 5 6 \\

& width (6) & 1 2 3 4 5 6 \\

& false peak (7) & 3 4 5 \\

& undeteced peak (8) & 1 2 3 4 5 6 \\

& shift w/o peak (9) & 1 2 3 4 5 6 \\

> p.synth.peak.error(peaks2, peak.cluster = peak.cluster, peak.palette = rainbow(5))

But also, we can check what the values of the performance measures in
each cluster are. This is done with box plots as shown in figure˜9. The plotting
command also produces a summary table of the findings as described by Reusser
and Zehe [2009].

> par(mfrow = c(4, 6), mar = c(2, 2, 3, 1) + 0.1)

> summary.table <- box.plots(result.multi, solution = solutions,

+ show.measures = correlated$measures.uniform$to.keep, new.order = new.order)

> print(summary.table)

[1] "A & {\bf best:} ME, MARE, t_test, r[k], EQ; {\bf worst:} AME, RMSE, NSC, Rsqr, MSLE, MSDE, t[L], r[d], DE, LCS, RSMSGE; {\bf low:} ; {\bf high:} PDIFF\\"

[2] "B & {\bf best:} AME, RMSE, MSDE, EQ; {\bf worst:} Rsqr, r[d], r[k], MAOE; {\bf low:} ; {\bf high:} \\"

[3] "C & {\bf best:} NSC, MSDE, r[d], DE, MAOE, LCS; {\bf worst:} ME, MARE, MdAPE, CE, MSLE, t_test, EQ; {\bf low:} PDIFF; {\bf high:} \\"

[4] "D & {\bf best:} MARE, MdAPE, Rsqr, CE, MSLE, t[L], r[k], MAOE, RSMSGE, EQ; {\bf worst:} NSC, r[d], DE, LCS; {\bf low:} ; {\bf high:} \\"

[5] "E & {\bf best:} PDIFF, t[L]; {\bf worst:} ; {\bf low:} ; {\bf high:} \\"

References
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Figure 8: Synthetic peak errors with colors showing the corresponding cluster.
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Figure 9: Matrix of box plots comparing the normalized performance measure
values. The yellow line indicates the “perfect fit” for each of the performance
measures.Simulated and observed discharge series. The colour bars indicate the
error class during this time period.
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