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Kernel discriminant analysis for symbolic data

In most real-data discrimination tasks we can’t assume anything about density function.
We have to estimate such a function by:

a) approximating unknown density by applying one of known densities,

b) applying one of 12 functions proposed by Pearson as the estimator and solving a integral
equation,

c) estimating the unknown density by applying kernel estimators.

The general form of kernel density estimator can be defined as follows (see Hand,
Mannila and Smyth [2001], p. 170; Hérdle and Simar [2003], p. 27):
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where: f, (A )-kernel density estimator for i-th object and k-th cluster; k =1,...,g —cluster
number; A, —j-th object from k-th cluster; S — dimension; i=1,...,n, —number of objects in
k-th cluster; h, —bandwidth parameter; K(e)—uniform kernel.

In case of symbolic data we can’t apply the well-known kernel density estimator, due to
the fact for these object integral operator can’t be defined and symbolic data space is not a
Euclidean subspace too. Instead of density kernel estimator the kernel intensity estimator is
applied (see Bock and Diday [2000], p. 242):
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where: T, (A )-kernel intensity estimator for i-th object and k-th cluster; i =1,...,n, —number
of objects in k-th cluster; k =1,...,g —cluster number; 1=1,...,b—number of distance measures
applied; A, —j-th object from k-th cluster; h, —bandwidth parameter for I-th distance
measure; K, , (Ajk)— uniform kernel based on I-th distance measure for i-th symbolic object

and j-th symbolic object from k-th cluster.

For symbolic data uniform kernel is defined as (Bock and Diday [2000], p. 242):
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where: d; —distance measure for i-th and j-th symbolic object; h —bandwidth parameter.



Calculation of posterior probabilities requires to determine prior probabilities for each
cluster. The prior probabilities can be (Bock and Diday [2000], p, 242-243):

a) equal for each cluster: p, (A )= i, where g — number of clusters,
g

b) dependent on the number of the objects in the cluster: f)k(Ai)zn?k, where n, —number of

objects in k-th cluster; n — total number of objects in the dataset,

¢) calculated as:
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where: k=1,...,g—cluster number; n — number of objects; t — t-th iteration step;
ﬁk(o)zé—probability at the starting point of the algorithm; T, (A ) intensity estimators for

i-th object and k-th cluster that are constant.

Bock and Diday [2000], p. 241 suggest that ten iteration steps are enough to determine
prior probabilities.

Posterior probabilities are calculated as (Bock and Diday [2000], p. 244):
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where: k =1,...,g - cluster number; q, (A )— posterior probability for i-th symbolic object and

A

k-th cluster; p, — prior probabilities; T, (A )- intensity estymator for i-th symbolic object and

k-th cluster.
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