
Species occurrence data (spocc), version 0.1.2

Introduction

The rOpenSci projects aims to provide programmatic access to scientific data repositories on the web. A vast
majority of the packages in our current suite retrieve some form of biodiversity or taxonomic data. Since
several of these datasets have been georeferenced, it provides numerous opportunities for visualizing species
distributions, building species distribution maps, and for using it analyses such as species distribution models.
In an effort to streamline access to these data, we have developed a package called Spocc, which provides a
unified API to all the biodiversity sources that we provide. The obvious advantage is that a user can interact
with a common API and not worry about the nuances in syntax that differ between packages. As more data
sources come online, users can access even more data without significant changes to their code. However, it is
important to note that spocc will never replicate the full functionality that exists within specific packages.
Therefore users with a strong interest in one of the specific data sources listed below would benefit from
familiarising themselves with the inner working of the appropriate packages.

Data Sources

spocc currently interfaces with six major biodiversity repositories

1. Global Biodiversity Information Facility (rgbif) GBIF is a government funded open data repository with
several partner organizations with the express goal of providing access to data on Earth’s biodiversity.
The data are made available by a network of member nodes, coordinating information from various
participant organizations and government agencies.

2. Berkeley Ecoengine (ecoengine) The ecoengine is an open API built by the Berkeley Initiative for
Global Change Biology. The repository provides access to over 3 million specimens from various
Berkeley natural history museums. These data span more than a century and provide access to
georeferenced specimens, species checklists, photographs, vegetation surveys and resurveys and a variety
of measurements from environmental sensors located at reserves across University of California’s natural
reserve system.

3. iNaturalist (rinat) iNaturalist provides access to crowd sourced citizen science data on species
observations.

4. VertNet (rvertnet) Similar to rgbif, ecoengine, and rbison (see below), VertNet provides access to
more than 80 million vertebrate records spanning a large number of institutions and museums primarly
covering four major disciplines (mammology, herpetology, ornithology, and icthyology). Note that we

don’t currenlty support VertNet data in this package, but we should soon

5. Biodiversity Information Serving Our Nation (rbison) Built by the US Geological Survey’s core
science analytic team, BISON is a portal that provides access to species occurrence data from several
participating institutions.

6. eBird (rebird) ebird is a database developed and maintained by the Cornell Lab of Ornithology and
the National Audubon Society. It provides real-time access to checklist data, data on bird abundance
and distribution, and communtiy reports from birders.

7. AntWeb (AntWeb) AntWeb is the world’s largest online database of images, specimen records, and
natural history information on ants. It is community driven and open to contribution from anyone with
specimen records, natural history comments, or images.

Note: It’s important to keep in mind that several data providers interface with many of the above mentioned
repositories. This means that occurence data obtained from BISON may be duplicates of data that are also
available through GBIF. We do not have a way to resolve these duplicates or overlaps at this time but it is
an issue we are hoping to resolve in future versions of the package.

1

http://www.gbif.org/
http://ecoengine.berkeley.edu/
http://globalchange.berkeley.edu/
http://globalchange.berkeley.edu/
http://vertnet.org/
http://bison.usgs.ornl.gov/
http://ebird.org/content/ebird/
http://antweb.org

Data retrieval

The most significant function in spocc is the occ (short for occurrence) function. occ takes a query, often a
species name, and searches across all data sources specified in the from argument. For example, one can
search for all occurrences of Sharp-shinned Hawks (Accipiter striatus) from the GBIF database with the
following R call.

library(spocc)

df <- occ(query = "Accipiter striatus", from = "gbif")

df

Summary of results - occurrences found for:

gbif : 25 records across 1 species

bison : 0 records across 1 species

inat : 0 records across 1 species

ebird : 0 records across 1 species

ecoengine : 0 records across 1 species

antweb : 0 records across 1 species

head(df$gbif$data[[1]])

name key decimalLatitude decimalLongitude prov

1 Accipiter striatus 8.91e+08 43.13 -72.53 gbif

2 Accipiter striatus 8.91e+08 32.86 -97.20 gbif

3 Accipiter striatus 8.91e+08 37.49 -122.44 gbif

4 Accipiter striatus 8.91e+08 18.27 -71.73 gbif

5 Accipiter striatus 8.91e+08 30.16 -97.65 gbif

6 Accipiter striatus 8.91e+08 43.63 -73.07 gbif

The data returned are part of a S3 class called occdat. This class has slots for the five data sources described
above. One can easily switch the source by changing the from parameter in the function call above.

Within each data source is the set of species queried. In the above example, we only asked for occurrence
data for one species, but we could have asked for any number. Let’s say we asked for data for two species:
Accipiter striatus, and Pinus contorta. Then the structure of the response would be

response -- |

| -- gbif ------- |

| -- Accipiter_striatus

| -- Pinus_contorta

| -- ecoengine -- |

| -- Accipiter_striatus

| -- Pinus_contorta

| -- inat ------- |

| -- Accipiter_striatus

| -- Pinus_contorta

| -- bison ------ |

| -- Accipiter_striatus

| -- Pinus_contorta

2

http://www.allaboutbirds.org/guide/sharp-shinned_hawk/id

| -- ebird ------ |

| -- Accipiter_striatus

| -- Pinus_contorta

| -- antweb ----- |

| -- Accipiter_striatus

| -- Pinus_contorta

If you only request data from gbif, like from = ’gbif’, then the other four source slots are present in the
response object, but have no data.

You can quickly get just the data by indexing to the data element, like

head(df$gbif$data$Accipiter_striatus)

name key decimalLatitude decimalLongitude prov

1 Accipiter striatus 8.91e+08 43.13 -72.53 gbif

2 Accipiter striatus 8.91e+08 32.86 -97.20 gbif

3 Accipiter striatus 8.91e+08 37.49 -122.44 gbif

4 Accipiter striatus 8.91e+08 18.27 -71.73 gbif

5 Accipiter striatus 8.91e+08 30.16 -97.65 gbif

6 Accipiter striatus 8.91e+08 43.63 -73.07 gbif

When you get data from multiple providers, the fields returned are slightly different, e.g.:

df <- occ(query = "Accipiter striatus", from = c("gbif", "ecoengine"))

head(df$gbif$data$Accipiter_striatus)

name key decimalLatitude decimalLongitude prov

1 Accipiter striatus 8.91e+08 43.13 -72.53 gbif

2 Accipiter striatus 8.91e+08 32.86 -97.20 gbif

3 Accipiter striatus 8.91e+08 37.49 -122.44 gbif

4 Accipiter striatus 8.91e+08 18.27 -71.73 gbif

5 Accipiter striatus 8.91e+08 30.16 -97.65 gbif

6 Accipiter striatus 8.91e+08 43.63 -73.07 gbif

head(df$ecoengine$data$Accipiter_striatus)

url

1 http://ecoengine.berkeley.edu/api/observations/LACM%3ABirds%3A5893/

2 http://ecoengine.berkeley.edu/api/observations/LACM%3ABirds%3A5883/

3 http://ecoengine.berkeley.edu/api/observations/LACM%3ABirds%3A5884/

4 http://ecoengine.berkeley.edu/api/observations/LACM%3ABirds%3A5885/

5 http://ecoengine.berkeley.edu/api/observations/LACM%3ABirds%3A5886/

6 http://ecoengine.berkeley.edu/api/observations/LACM%3ABirds%3A5887/

observation_type name country state_province

1 specimen Accipiter striatus velox United States Minnesota

2 specimen Accipiter striatus velox United States California

3 specimen Accipiter striatus velox United States California

4 specimen Accipiter striatus velox United States Minnesota

5 specimen Accipiter striatus velox United States California

6 specimen Accipiter striatus velox United States Illinois

3

begin_date end_date source

1 1894-09-15 1894-09-15 http://ecoengine.berkeley.edu/api/sources/2/

2 1899-04-11 1899-04-11 http://ecoengine.berkeley.edu/api/sources/2/

3 1914-11-11 1914-11-11 http://ecoengine.berkeley.edu/api/sources/2/

4 1893-09-23 1893-09-23 http://ecoengine.berkeley.edu/api/sources/2/

5 1899-04-17 1899-04-17 http://ecoengine.berkeley.edu/api/sources/2/

6 1908-04-07 1908-04-07 http://ecoengine.berkeley.edu/api/sources/2/

remote_resource geojson.type longitude latitude prov

1 Point -92.11 46.78 ecoengine

2 Point -118.13 34.14 ecoengine

3 Point -116.15 33.63 ecoengine

4 Point -92.11 46.78 ecoengine

5 Point -118.13 34.14 ecoengine

6 Point -87.79 41.85 ecoengine

We provide a function occ2df that pulls out a few key columns needed for making maps:

head(occ2df(df))

name longitude latitude prov

1 Accipiter striatus -72.53 43.13 gbif

2 Accipiter striatus -97.20 32.86 gbif

3 Accipiter striatus -122.44 37.49 gbif

4 Accipiter striatus -71.73 18.27 gbif

5 Accipiter striatus -97.65 30.16 gbif

6 Accipiter striatus -73.07 43.63 gbif

Fix names

One problem you often run in to is that there can be various names for the same taxon in any one source.
For example:

df <- occ(query = "Pinus contorta", from = c("gbif", "inat"), limit = 50)

head(df$gbif$data$Pinus_contorta[, 1:2])

name key

1 Pinus contorta 891034130

2 Pinus contorta 891051664

3 Pinus contorta 891124025

4 Pinus contorta 856965570

5 Pinus contorta 856964858

6 Pinus contorta 891140827

head(df$inat$data$Pinus_contorta[, 1:2])

name Datetime

1 Letharia columbiana 2014-04-22 00:00:00 +0000

2 Pinus contorta 2014-04-25 16:56:39 +0000

3 Pinus contorta 2014-04-24 13:01:03 +0000

4 Pinus contorta murrayana 2014-04-01 00:00:00 +0000

5 Pinus contorta 2014-03-30 00:00:00 +0000

6 Pinus contorta murrayana 2014-03-19 00:00:00 +0000

4

This is fine, but when trying to make a map in which points are colored for each taxon, you can have many
colors for a single taxon, where instead one color per taxon is more appropriate. There is a function in spocc

called fixnames, which has a few options in which you can take the shortest names (usually just the plain
binomials like Homo sapiens), or the original name queried, or a vector of names supplied by the user.

df <- fixnames(df, how = "shortest")

Warning: Strings are coming back as factors, this may interfere with

fixing sames,consider setting 'options(stringsAsFactors = FALSE)'

head(df$gbif$data$Pinus_contorta[, 1:2])

name key

1 Pinus contorta 891034130

2 Pinus contorta 891051664

3 Pinus contorta 891124025

4 Pinus contorta 856965570

5 Pinus contorta 856964858

6 Pinus contorta 891140827

head(df$inat$data$Pinus_contorta[, 1:2])

name Datetime

1 Letharia columbiana 2014-04-22 00:00:00 +0000

2 Letharia columbiana 2014-04-25 16:56:39 +0000

3 Letharia columbiana 2014-04-24 13:01:03 +0000

4 Letharia columbiana 2014-04-01 00:00:00 +0000

5 Letharia columbiana 2014-03-30 00:00:00 +0000

6 Letharia columbiana 2014-03-19 00:00:00 +0000

df_comb <- occ2df(df)

head(df_comb)

name longitude latitude prov

1 Pinus contorta -122.761 48.14 gbif

2 Pinus contorta -120.037 38.82 gbif

3 Pinus contorta -120.040 38.87 gbif

4 Pinus contorta -3.630 55.73 gbif

5 Pinus contorta -3.644 55.72 gbif

6 Pinus contorta -122.271 47.78 gbif

tail(df_comb)

name longitude latitude prov

95 Letharia columbiana -120.2 39.43 inat

96 Letharia columbiana -119.9 39.30 inat

97 Letharia columbiana -120.2 39.43 inat

98 Letharia columbiana -120.2 39.43 inat

99 Letharia columbiana -120.2 39.43 inat

100 Letharia columbiana -123.1 46.90 inat

5

Visualization routines

Interactive maps

Leaflet.js

Leaflet JS is an open source mapping library that can leverage various layers from multiple sources. Using the
leafletR library, it’s possible to generate a local geoJSON file and a html file of species distribution maps.
The folder can easily be moved to a web server and served widely without any additional coding.

It’s also possible to render similar maps with Mapbox by committing just the geoJSON file to GitHub or
posting it as a gist on GitHub. All the remaining fields will become part of a table inside a tooltip, providing
a extremely quick and easy way to serve up interactive maps. This is especially useful when users do not
have their own web hosting options.

Here is an example of making a leaflet map:

spp <- c("Danaus plexippus", "Accipiter striatus", "Pinus contorta")

dat <- occ(query = spp, from = "gbif", gbifopts = list(hasCoordinate = TRUE))

data <- occ2df(dat)

mapleaflet(data = data, dest = ".")

Geojson map as a Github gist

You can also create interactive maps via the mapgist function. You have to have a Github account to
use this function. Github accounts are free though, and great for versioning and collaborating on code or
papers. When you run the mapgist function it will ask for your Github username and password. You can
alternatively store those in your .Rprofile file by adding entries for username (options(github.username

= ’username’)) and password (options(github.password = ’password’)).

spp <- c("Danaus plexippus", "Accipiter striatus", "Pinus contorta")

dat <- occ(query = spp, from = "gbif", gbifopts = list(hasCoordinate = TRUE))

dat <- fixnames(dat)

dat <- occ2df(dat)

mapgist(data = dat, color = c("#976AAE", "#6B944D", "#BD5945"))

Static maps

base plots

Base plots, or the built in plotting facility in R accessed via plot(), is quite fast, but not easy or efficient to
use, but are good for a quick glance at some data.

6

http://leafletjs.com/
http://cran.r-project.org/web/packages/leafletR/index.html

spnames <- c("Accipiter striatus", "Setophaga caerulescens", "Spinus tristis")

out <- occ(query = spnames, from = "gbif", gbifopts = list(hasCoordinate = TRUE))

plot(out, cex = 1, pch = 10)

ggplot2

ggplot2 is a powerful package for making visualizations in R. Read more about it here. We created a simple
wrapper function mapggplot to make a ggplot2 map from occurrence data using the ggmap package, which is
built on top of ggplot2. Here’s an example:

ecoengine_data <- occ(query = "Lynx rufus californicus", from = "ecoengine")

mapggplot(ecoengine_data)

Upcoming features

• As soon as we have an updated rvertnet package, we’ll add the ability to query VertNet data from
spocc.

• We will add rCharts as an official import once the package is on CRAN (Eta end of March)

• We’re helping on a new package rMaps to make interactive maps using various Javascript mapping
libraries, which will give access to a variety of awesome interactive maps. We will integrate rMaps once
it’s on CRAN.

• We’ll add a function to make interactive maps using RStudio’s Shiny in a future version.

7

http://docs.ggplot2.org/0.9.3.1/

8

	Species occurrence data (spocc), version 0.1.2
	Introduction
	Data Sources
	Data retrieval
	Fix names
	Visualization routines
	Upcoming features

