
sparseMVN: An R Package for Multivariate Normal

Distributions with Sparse Covariance or Precision

Matrices

Michael Braun

SMU Cox School of Business

Southern Methodist University

November 4, 2013

Abstract

The sparseMVN package provides functions to sample from a mul-

tivariate normal distribution, and compute its density, when the covari-

ance or precision matrix is sparse. By exploiting this sparsity, we can

handle high-dimensional distributions quickly, with lower memory usage.

1 Introduction

The R package mvtnorm (Genz et al. 2012) includes functions for sampling from

a multivariate normal (MVN) distribution (rmvnorm), and for computing the den-

sity of an MVN sample (dmvnorm). To use these functions, the user must provide

the covariance matrix as a standard, base R matrix. This approach can be ineffi-

cient when most of the entries in the covariance matrix are zero. Not only will R

store these zeros explicitly, but linear algebra functions (e.g., matrix multiplication,

solve) will treat the zeros like any other number. Additionally, rmvnorm computes

a factorization (e.g., eigenvalue, singular value, or Cholesky) of this dense matrix

every time the function is called.

1

The sparseMVN provides analogous functions to rmvnorm and dmvnorm that can

be used when either the covariance or precision matrix is sparse. Our method uses

the classes and methods from the Matrix package (Bates and Maechler 2013),

which is now one of the “recommended” packages in R. In contrast to the mvtnorm

functions, the user supplies the Cholesky decomposition of either the covariance or

precision (inverse covariance) matrix. By separating the Cholesky decomposition

from the sampling or density functions, the user can call these functions repeatedly,

while performing the factorization step only once. Having the option to work with

the precision matrix instead of the covariance avoids the need to explicitly invert the

precision matrix when the latter is more readily available. This option is useful, for

example, when the precision of an MVN distribution is determined by the Hessian

at the optimum of a target distribution, as in Laplace approximation of posterior

densities. More importantly, by using the sparse matrix algorithms in the Matrix

package, we dramatically reduce the computational expense of sampling from, and

computing densities of, MVN variates of very high dimension.

In the next section, we describe how sparseMVN works. We then compare the

functions in sparseMVN to those in mvtnorm, in terms of execution time. We

do not provide alternatives to any of the other functions in mvtnorm, such as

those that estimate cumulative probabilities of the MVN, or those that deal with

the multivariate t distribution. In addition, we do not address the case for which

the covariance matrix is not positive definite.

2 Algorithmic details

Let X be a random variable, with k dimensions, that is distributed MVN with mean

µ and covariance Σ. Let L be a matrix root of Σ, such that Σ = LL′, and L is lower

triangular. To generate a sample realization x, we sample k independent standard

normal random variates (call that vector z), and let x = µ + Lz. The matrix factor

L could be generated via an eigenvalue, singular value, or Cholesky decomposition.

The Cholesky factor of a symmetric, positive definite matrix is the unique factor L
for which all of the diagonal elements are positive. For the rest of this paper, we

will use that definition for L.

2

The density of the MVN distribution is

f (x) = (2π)−
k
2 |Σ|− 1

2 exp
[
−1

2
(x− µ)′ Σ−1 (x− µ)

]
(1)

The determinant of Σ is the square of the product of the diagonal elements of L. In

addition, Σ−1 = (LL′)−1 = L′−1L−1. If we define y = L−1(x− µ), we can write the

log density of x as

log f (x) = − k
2

log(2π)− log |L| − 1
2

y′y (2)

Since L is triangular, we can solve Ly = x − µ for y quickly, avoiding the need to

invert Σ explicitly.

In some cases, the precision matrix Σ−1 is more readily available than Σ. Let

Σ−1 = ΛΛ′ represent the Cholesky decomposition of Σ−1. To sample x, we sample

z as before, solve Λ′x = z, and then add µ. Since E(z) = 0 and E(zz′) = Ik, we

have E(x) = µ, and cov(xx′) = E(Λ′−1zz′Λ−1) = Λ′−1Λ−1 = (ΛΛ′)−1 = Σ. Then,

if we let y = Λ′(x− µ), the log density is

log f (x) = − k
2

log(2π) + |Λ| − 1
2

y′y (3)

Regardless of whether the user starts with Σ or Σ−1, either random sampling or

density calculation will involve solving a triangular system. Which matrix to use

depends mostly on convenience and the task at hand.

Nothing in this section so far is special for sparse Σ or Σ−1. The efficiency gains in

sparseMVN come from storing Σ or Σ−1 in a compressed format without explicit

zeros, and applying linear algebra routines that are optimized for those sparse ma-

trix structures. The Matrix package calls sparse linear algebra routines that are

implemented in the CHOLMOD library (Chen et al. 2008; Davis and Hager 1999,

2009); more information about these routines is available there.

3

3 Using the package

There are two functions in sparseMVN: rmvn.sparse and dmvn.sparse. The for-

mer samples from an MVN, and the latter computes the log density. The signatures

are

rmvn.sparse(N, mu, CH, prec=TRUE)

dmvn.sparse(x, mu, CH, prec=TRUE)

N is the number of samples to collect; each sample will be returned in a row in a

standard base R matrix. Each row in the matrix x is a sample for which we want to

compute the log density. In both functions, mu is the mean (a vector), and CH is the

Cholesky decomposition either the covariance or precision matrix. The argument

prec flags from which type of matrix CH was decomposed.

CH must be an object of the class dCHMsimpl or dCHMsuper, as returned by the

Cholesky function in the Matrix package. The first argument to Cholesky must

be a sparse symmetric matrix, stored as an object of class dsCMatrix. As far as

we know, there is no particular need to deviate from the defaults of the remain-

ing arguments. If Cholesky uses a fill-reducing permutation to compute CH, the

sparseMVN functions will handle that directly, with no additional user interven-

tion required.

A demonstration of how to use the package is in the file demo/sparseMVN.R, and

can be run with default arguments by calling demo(sparseMVN). Much of the time

in this script is spent constructing the covariance or precision matrix, and not in

the sampling or computation routines.

4 Timing comparison

Next, we present the results of a timing comparison that demonstrates how much

faster rmvn.sparse and dmvn.sparse can be than their mvtnorm counterparts.

In this example, we consider an MVN distribution for which either the covariance

or precision matrix has a “band-arrow” structure. To construct this matrix, we

start with Q1, a p× p dense, lower triangular matrix, where p is a relatively small

4

integer. Then, let Q2 = Q1 ⊗ Im, where m can be large. Note that Q2 is also lower

triangular. Then, we augment Q2 by appending k additional rows, all of which are

filled by random non-zero values. Call this (pm + k)× (pm + k) lower triangular

matrix Q3. Finally, we compute Q = Q3Q′3, which is symmetric, positive definite,

and sparse.

We can visualize the sparsity pattern of Q as a p× p tiling of m-dimensional diagonal

matrices, with dense margins on the bottom and the left. Although Q itself is (pm +

k)× (pm + k), there are only p2m + 2kpm + k2 non-zero elements. For example, if

p = 3, m = 1000, and k = 20, Q has 9,120,400, elements, but only 129,400 of them

(1.4%) are non-zero. As m increases, the matrix becomes more sparse.

The timing comparison consists of generating values for the covariance matrix, sim-

ulating 200 MVN draws, and computing the log densities, all for different values

of p and m. We replicate this study 30 times, and report the mean run times for

random sampling and log density computation. Then, we do the whole thing again,

but treating the input matrix as a precision matrix instead. Results are in Table 1.

Computation was done on a 2010-vintage Mac Pro with 12 processing cores, each

running at 2.93GHz, and with 32GB of RAM.

input density eval 200 mvn draws
matrix p m dense sparse dense sparse

cov 2 25 0.01 0.01 0.01 0.02
cov 2 250 0.73 0.02 0.31 0.04
cov 2 500 1.62 0.03 0.45 0.08
cov 5 25 0.11 0.01 0.01 0.02
cov 5 250 3.63 0.05 1.15 0.12
cov 5 500 19.88 0.13 5.41 0.31
prec 2 25 0.01 0.02 0.06 0.01
prec 2 250 0.84 0.02 0.25 0.03
prec 2 500 2.43 0.05 1.30 0.07
prec 5 25 0.12 0.01 0.02 0.01
prec 5 250 4.18 0.06 2.04 0.12
prec 5 500 21.44 0.13 7.52 0.27

Table 1: Time, in seconds, for evaluating the density of, and generating 200 random samples
from, a multivariate normal distribution. The input matrix is either a covariance or preci-
sion, and is either dense or sparse. If dense, routines from mvtnorm are used. Otherwise,
results are from sparseMVN. For all examples here, k = 15.

5

For small m, the MVN routines in sparseMVN, actually take longer than those in

mvtnorm. But as either the precision or covariance matrices become more sparse,

we see a dramatic speed-up in computation time.

Table 1 was generated from the file inst/tables.R in the package source code.

Users can generate one replication of the comparison by calling demo(sparseMVN).

References

Bates D, Maechler M (2013). Matrix: Sparse and Dense Matrix Classes and Methods.

R package version 1.1-0, URL http://CRAN.R-project.org/package=Matrix.

Chen Y, Davis TA, Hager WW, Rajamanickam S (2008). “Algorithm 887:

CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate.”

ACM Transactions on Mathematical Software, 35(3), 1–14.

Davis TA, Hager WW (1999). “Modifying a Sparse Cholesky Factorization.” SIAM

Journal on Matrix Analysis and Applications, 20(3), 606–627.

Davis TA, Hager WW (2009). “Dynamic Supernodes in Sparse Cholesky Up-

date/Downdate and Triangular Solves.”ACM Transactions on Mathematical Soft-

ware, 35(4), 1–23.

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2012). mvt-

norm: Multivariate Normal and t Distributions. R package version 0.9-9994,

URL http://CRAN.R-project.org/package=mvtnorm.

6

