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Abstract

An important step in modeling spatially-referenced data is appropriately
specifying the second order properties of the random field. A scientist
developing a model for spatial data has a number of options regarding
the nature of the dependence between observations. One of these options
is deciding whether or not the dependence between observations depends
on direction, or, in other words, whether or not the spatial covariance
function is isotropic. Isotropy implies that spatial dependence is a function
of only the distance and not the direction of the spatial separation between
sampling locations. A researcher may use graphical techniques, such as
directional sample semivariograms, to determine whether an assumption
of isotropy holds. These graphical diagnostics can be difficult to assess,
subject to personal interpretation, and potentially misleading as they
typically do not include a measure of uncertainty. In order to escape
these issues, a hypothesis test of the assumption of isotropy may be more
desirable. To avoid specification of the covariance function, a number
of nonparametric tests of isotropy have been developed using both the
spatial and spectral representations of random fields. Several of these
nonparametric tests are implemented in the R package spTest, available
on CRAN. We demonstrate how graphical techniques and the hypothesis
tests programmed in spTest can be used in practice to assess isotropy
properties. A version of this vignette is also available in the Journal of
Statistical Software (Weller, 2018).

1 Introduction

An important step in modeling a spatial process is choosing the form of the
covariance function. The form of the covariance function will have an effect on
kriging as well as parameter estimates and the associated uncertainty (Cressie,
1993, pg. 127-135). A common simplifying assumption about the spatial covariance
function is that it is isotropic, that is, the dependence between sampling locations
depends only on the distance between locations and not on their relative orientation.
This assumption may not always be reasonable; for example, wind may lead to
directional dependence in environmental monitoring data. Misspecification of
the second order properties can lead to misleading inference. Sherman (2011,
pg. 87-90) and Guan et al. (2004) summarize the effects of incorrectly specifying
isotropy properties on kriging estimates through numerical examples. In order
to choose an appropriate model, a statistician must first assess the nature of
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the spatial variation of his or her data. To check for anisotropy (directional
dependence) in spatially-referenced data, a number of graphical techniques are
available, such as directional sample variograms or rose diagrams (Matheron,
1961; Isaaks and Srivastava, 1989, pg. 149-154). Spatial statisticians may have
intuition about the interpretation and reliability of these diagnostics, but a less
experienced user may desire evaluation of assumptions via a hypothesis test.

A number of nonparametric tests of isotropy, which avoid the choice of a
parametric covariance function, have been developed (see, e.g., Lu and Zimmerman,
2001; Guan et al., 2004; Lu and Zimmerman, 2005; Maity and Sherman, 2012).
In Weller and Hoeting (2016), we provide a review of the different nonparametric
methods available for testing isotropy and symmetry properties, including an
extensive simulation study. In the current work, we aim to showcase the functionality
of our R (R Core Team, 2015) package spTest (Weller, 2016a), which implements
several of the aforementioned methods. We use two real data examples to
illustrate how the nonparametric hypothesis tests available in spTest can be
used to assess isotropy properties in spatially-referenced data. The examples
also demonstrate how graphical techniques and hypothesis tests can be used in a
complementary role. The remainder of the paper is organized as follows: Section
2 establishes notation and definitions; Section 3 describes the functionality of
the spTest package; Section 4 demonstrates how to use the functions in spTest
in conjunction with graphical techniques on two different data sets; Section 5
concludes the paper with a discussion.

2 Notation

2.1 Spatial statistics

In Section 2.1 we review key definitions required for describing and performing
nonparametric tests of isotropy. In particular we review the concepts of stationarity
and isotropy in random spatial processes. Readers who are familiar with these
concepts may wish to proceed to Section 2.2. For additional background, see
Weller and Hoeting (2016) or Schabenberger and Gotway (2004).

Let {Y (s) : s ∈ D ⊆ <d} be a random field (RF). For the remainder of
the paper we assume the common case of d = 2. Let {s1, . . . , sn} ∈ D be
the finite set of locations at which the RF is observed, providing the random
vector Y = (Y (s1), . . . , Y (sn))>. The sampling locations may follow one of
several spatial sampling designs, for example, gridded locations, randomly and
uniformly distributed locations, a cluster design, or any other general design.
Note that there is a distinction between a lattice process and a geostatistical
process observed on a grid (e.g., Fuentes and Reich, 2010; Schabenberger and
Gotway, 2004, pg. 6-10), but we do not explore this distinction and will use the
term grid throughout.

It is often of interest to infer the effect of covariates on the RF, deduce
dependence structure, and/or predict Y with associated uncertainty at new
locations. To achieve these goals, we must specify the distributional properties
of the spatial process. A common assumption is that the finite-dimensional joint
distribution of {Y (s) : s ∈ D ⊆ <2} is multivariate normal, in which case we
call the RF a Gaussian random field (GRF).

A RF is strictly stationary if its distribution is invariant under coordinate
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translation,

P(Y (s1) < y1, · · · , Y (sk) < yk) = P(Y (s1 +h) < y1, · · · , Y (sk +h) < yk) (2.1)

for all spatial lags h = (h1, h2)> ∈ <2 and k ∈ Z+. A RF is weakly, or second
order, stationary if

E(Y (s)) = E(Y (s + h)) = µ and

COV(Y (s), Y (s + h)) = COV(Y (0), Y (h)) = C(h),
(2.2)

where C(h) < ∞ is called the covariance function or covariogram. Henceforth
we assume µ = 0. A RF that is weakly stationary (2.2) has a constant mean,
and the covariance between values at two spatial locations depends only on the
spatial lag. Absolute coordinates are irrelevant for the mean, variance, and
covariance of a weakly stationary RF. A RF is intrinsically stationary if

E(Y (s + h)− Y (h)) = 0 and

VAR(Y (s + h)− Y (s)) = 2γ(h),
(2.3)

where 2γ(h) is called the variogram function or variogram, and γ(h) = 1
2VAR(Y (s+

h)− Y (s)) is the semivariogram function or semivariogram. Note that intrinsic
stationarity is defined in terms of the increments Y (s + h)− Y (s).

The relationship between the different types of stationarity is given by

strict =⇒ weak =⇒ intrinsic. (2.4)

In general the converse in (2.4) is not true; however, the converse in (2.4) holds
under the assumption that the RF is a GRF. From (2.2) and (2.3) it follows that
γ(h) = C(0)−C(h) when the RF is weakly stationary. This relationship implies
that the second order properties of a weakly stationary RF can be viewed from
the perspective of either the (semi)variogram or covariance function.

A common simplifying assumption about the spatial dependence structure
is that it is isotropic.

Definition 2.1.1. A weakly stationary RF is isotropic if the covariance function,
C(h), (or equivalently, the semivariogram function) of the RF depends on the
lag vector h only through its Euclidean length, ||h||, i.e., C(h) = C0(||h||) for
some function C0(·) of a univariate argument.

Isotropy implies that the dependence between any two observations depends
only on the Euclidean distance between their sampling locations and not on their
relative orientation. A spatial process that is not isotropic is called anisotropic.
Figure 1 displays data simulated from a two stationary RFs, one which is
isotropic and one that is anisotropic. The methods in the R package spTest
are designed to assist in determining whether or not an assumption of isotropy
is reasonable.

R> library("mvtnorm")

R> library("fields")

R> matern.2d = function(h, phi, alpha, nu) {

+ a <- (pi * phi)/(2^(nu - 1) * gamma(nu + 1) * alpha^(2 *
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+ nu))

+ d <- h * alpha

+ d[d == 0] <- 1e-10

+ b <- (d)^nu

+ c <- besselK(d, nu)

+ cov.val <- a * b * c

+ return(cov.val)

+ }

R> coords.aniso = function(coords, aniso.pars, reverse = FALSE) {

+ coords <- as.matrix(coords)

+ n <- nrow(coords)

+ if (length(aniso.pars) != 2)

+ stop("argument aniso.pars must be a vector with 2 elements: the anisotropy angle and anisotropy ratio, respectively")

+ psiA <- aniso.pars[1]

+ psiR <- aniso.pars[2]

+ if (psiR < 1) {

+ psiR <- round(psiR, digits = 8)

+ if (psiR < 1)

+ stop("anisotropy ratio must be greater than 1")

+ }

+ rm <- matrix(c(cos(psiA), -sin(psiA), sin(psiA),

+ cos(psiA)), ncol = 2)

+ tm <- diag(c(1, 1/psiR))

+ if (reverse)

+ coords.mod <- coords %*% solve(rm %*% tm)

+ else coords.mod <- coords %*% rm %*% tm

+ return(coords.mod)

+ }

R> set.seed(2017)

R> x = seq(0, 12, by = 0.25)

R> y = seq(0, 12, by = 0.25)

R> coords = expand.grid(x, y)

R> n = dim(coords)[1]

R> aniso.angle <- 3 * pi/4

R> aniso.ratio <- 2

R> coordsA <- coords.aniso(coords, c(aniso.angle, aniso.ratio))

R> Da <- as.matrix(dist(coordsA))

R> sigma.sq <- 1

R> alpha <- 1/2

R> sm <- 1

R> tau.sq <- 0

R> d <- seq(0, 20, by = 0.1)

R> phi <- sigma.sq * alpha^(2 * sm) * gamma(sm + 1)/(pi *

+ gamma(sm))

R> mcov2 <- matern.2d(d, phi, alpha, sm)

R> er.index <- which(round(mcov2, 2) == 0.05)

R> er <- d[er.index]

R> er <- er[1]

R> D <- as.matrix(dist(coords))

R> R <- matern.2d(D, phi, alpha, sm)
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R> R <- R + diag(tau.sq, nrow = n, ncol = n)

R> Ra <- matern.2d(Da, phi, alpha, sm)

R> Ra <- Ra + diag(tau.sq, nrow = n, ncol = n)

R> z <- rmvnorm(1, rep(0, n), R, method = c("chol"))

R> z <- z - mean(z)

R> zmat <- matrix(z, nrow = length(y), ncol = length(x),

+ byrow = T)

R> zmat.iso <- zmat

R> x.shift = -102

R> y.shift = 37

R> par(mai = c(0.8, 0.4, 0.8, 0.2), pty = "s")

R> image(x + x.shift, y + y.shift, zmat, ylab = "", xlab = "",

+ col = two.colors(n = 256, start = "blue3", end = "red3",

+ middle = "gray60"), cex.main = 1.8, pty = "s")

R> map("state", add = T, lwd = 2)

R> mtext("Stationary and Isotropic Spatial Process", side = 3,

+ line = 0.5, cex = 1.25, font = 2)

R> mtext("Longitude", side = 1, line = 2)

R> mtext("Latitude", side = 2, line = 2)

R> set.seed(2)

R> z <- rmvnorm(1, rep(0, n), Ra, method = c("chol"))

R> z <- z - mean(z)

R> zmat <- matrix(z, nrow = length(y), ncol = length(x),

+ byrow = T)

R> zmat.anis <- zmat

R> zmat.iso <- zmat

R> x.shift <- -102

R> y.shift <- 37

R> par(mai = c(0.8, 0.4, 0.8, 0.2), pty = "s")

R> image(x + x.shift, y + y.shift, zmat, ylab = "", xlab = "",

+ col = two.colors(n = 256, start = "blue3", end = "red3",

+ middle = "gray60"), cex.main = 1.8, pty = "s")

R> map("state", add = T, lwd = 2)

R> mtext("Stationary and Anisotropic Spatial Process", side = 3,

+ line = 0.5, cex = 1.25, font = 2)

R> mtext("Longitude", side = 1, line = 2)

R> mtext("Latitude", side = 2, line = 2)

When modeling a RF, a typical assumption is that the spatial covariance,
C(h)), or semivariogram function, γ(h), can be described by a parametric
model. A number of methods are available for estimating the parameters of
these models, for example, maximum likelihood or least squares (Cressie, 1993,
pg. 90-97). Parametric models ensure that the covariance function is valid and
provide parameters that can be interpreted as describing characteristics of the
random field, such as the range of dependence or the direction of anisotropy
(Schabenberger and Gotway, 2004, pg. 141-152). The methods in spTest are
nonparametric tests of isotropy, which circumvent the choice of a parametric
form for the covariance (semivariogram) function. A nonparametric test of
isotropy escapes potential misspecification of a parametric covariance function
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Figure 1: Heat maps displaying simulated data from two stationary RFs.
Figure 1a displays data simulated from an isotropic covariance function.
Figure 1b shows data simulated from an anisotropic covariance function. The
existence of anisotropy in Figure 1b is evidenced by bands of similar values
running the northwest to southeast directions. These bands indicate that spatial
dependence is stronger in the NW-SE direction than the SW-NE direction.
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and avoids the potential for having to estimate the covariance function twice
(e.g., under the null and alternative hypothesis for a likelihood-ratio test).

A nonparametric test of isotropy requires a nonparametric estimator of
second order properties of the RF. We discuss nonparametric estimation of the
semivariogram function here and note that similar techniques can be used for
nonparametric estimation of the covariance function. The classical moment-
based estimator of the semivariogram (Matheron, 1962) is the sample semivariogram
given by

γ̂(h) =
1

2|D(h)|
∑

[Y (s)− Y (s + h)]2, (2.5)

where the sum is over D(h) = {s : s, s + h ∈ D} and |D(h)| is the number
of elements in D(h). The set D(h) is the set of sampling location pairs that
are separated by spatial lag h. There are two important modifications to the
estimator in (2.5) that are pertinent to the methods described in this paper.
First, for non-gridded sampling locations, the estimator needs to be modified to
account for the fact that very few or no pairs of locations will be separated by
a specific spatial lag, h. One solution to this challenge is to specify a distance
tolerance, ε, such that lags having length ||h|| ± ε are included in estimating
the semivariogram at lag h. Second, directional sample semivariograms can
be estimated by using only observations that are separated by spatial lags in
a specific direction. For example, to investigate potential anisotropy, we can
compare sample semivariograms between the horizontal and vertical directions.
For non-gridded sampling locations, very few pairs of locations will lie at a
specific distance and directional lag, so we need to allow for both a distance and
a directional tolerance when estimating the semivariogram. A common method
for doing this is by using a product kernel smoother that smoothes over both the
horizontal (h1) and vertical (h2) components of the spatial lag h = (h1, h2)>.

Spatial RFs and their second order properties can also be expressed in
the spectral (or frequency) domain using Fourier transforms. The spectral
representation of RFs and their second order properties provides alternative
methods for testing second order properties. For brevity we focus only on the
methods in the spatial domain and refer the interested reader to Weller and
Hoeting (2016) or Fuentes and Reich (2010). We note that that, in addition
to the methods from the spatial domain, the nonparametric spectral methods
from Lu and Zimmerman (2005) are also implemented in spTest.

2.2 Nonparametric tests of isotropy

Lu (1994) and Lu and Zimmerman (2001) pioneered a popular approach to
testing second-order properties when they used the joint asymptotic normality
of the sample semivariogram computed at different spatial lags to evaluate
symmetry and isotropy properties. The subsequent works of Guan et al. (2004,
2007) and Maity and Sherman (2012) built upon these ideas and are the primary
methods programmed in spTest. Here we give an overview of the tests in Guan
et al. (2004) and Maity and Sherman (2012).

Under the null hypothesis that the RF is isotropic, it follows that the values
of γ(·) evaluated at any two spatial lags that have the same norm are equal,
independent of the direction of the lags. For example, under the assumption of
isotropy, γ((−6, 0)) = γ

((√
3,
√

3
))

. To completely specify the null hypothesis
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of isotropy, theoretically, one would need to compare semivariogram values for
an infinite set of lags. In practice, a small number of lags are specified. Then it
is possible to test a hypothesis consisting of a set of linear contrasts of the form

H0 : Aγ(·) = 0 (2.6)

as a proxy for the null hypothesis of isotropy, where A is a full row rank matrix
(Lu and Zimmerman, 2001). For example, a set of lags, denoted Λ, commonly
used in practice on gridded sampling locations with unit spacing is

Λ = {h1 = (1, 0),h2 = (0, 1),h3 = (1, 1),h4 = (−1, 1)}, (2.7)

and the corresponding A matrix under H0 : Aγ(Λ) = 0 is

A =

[
1 −1 0 0
0 0 1 −1

]
. (2.8)

In other words, using (2.7) and (2.8) under the hypothesis (2.6), we contrast
the semivariogram values at lags h1 = (1, 0) and h2 = (0, 1), and likewise,
contrast semivariogram values at lags h3 = (1, 1) and h4 = (−1, 1). An
important step in detecting anisotropy is the choice of lags, Λ, as the test results
will only hold for the set of lags considered (Guan et al., 2004). While this choice
is somewhat subjective, there are several considerations for determining the set
of lags. First, in terms of Euclidean distance, short lags should be chosen.
Short lags are preferred because estimates of the semivariogram at long lags
tend to be more variable. Second, pairs of orthogonal lags should be contrasted
because, for an anisotropic process, the directions of strongest and weakest
spatial correlation will typically be orthogonal. For other considerations and
more detailed guidelines regarding the choice of lags, see Weller and Hoeting
(2016), Lu and Zimmerman (2001), and Guan et al. (2004).

Hypothesis test properties
Method spTest func’n Design Estimator Primary user choices
GSC GuanTestGrid grid sample

semivariogram
lag set, window size

LZ LuTest grid periodogram −
GSC GuanTestUnif uniform kernel sample

semivariogram
lag set, window size, bandwidth

MS MaityTest any kernel sample
covariogram

lag set, block size

Table 1: Nonparametric tests of isotropy available in the R package spTest,
including GSC: Guan et al. (2004), LZ: Lu and Zimmerman (2005), and MS:
Maity and Sherman (2012). The column “spTest func’n” lists the name of the
function used to implement the test in the spTest package. “Design” indicates
the spatial sampling design for which the test is valid. “Estimator” describes the
method used to estimate second order properties. Note that a “uniform” design
implies sampling locations must be uniformly distributed on the domain.

The tests in Guan et al. (2004) and Maity and Sherman (2012) require
estimating the semivariogram and covariance function values, respectively, at the
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set of chosen lags. We denote the vector of point estimates of the semivariogram/covariance

function at the chosen lags as Ĝn, the true values as G, and the asymptotic
variance-covariance matrix of Ĝn as Σ. Under increasing domain asymptotics,
a central result for both methods is that

an(Ĝn −G)
d−−−−→

n→∞
MVN(0,Σ), (2.9)

where an is a normalizing constant. This result holds assuming stationarity of
the RF and mild conditions on the RF’s mixing and moments. See Section 5 for
additional discussion regarding the assumptions for the tests. The test statistic
is a quadratic form

TS = b2n(AĜn)>(AΣ̂A>)−1(AĜn), (2.10)

where Σ̂ is an estimate of the asymptotic variance-covariance matrix and bn
is a normalizing constant. A p value can be obtained from the asymptotic χ2

distribution with degrees of freedom given by the row rank of A. Important
differences between these works regard the distribution of sampling locations,
shape of the sampling domain, and estimation of G and Σ. Table 1 outlines
the primary differences between these methods; we refer the interested reader
to Weller and Hoeting (2016) for more details.

3 Nonparametric tests implemented in spTest

The R package spTest includes functions for implementing the tests developed
in Guan et al. (2004), Lu and Zimmerman (2005), and Maity and Sherman
(2012). The spTest functions for implementing these tests are listed in Table 1.
For example, the test from Guan et al. (2004) for data observed at non-gridded,
but uniformly distributed, sampling locations is implemented in the function
GuanTestUnif, which takes the following arguments:

GuanTestUnif(spdata, lagmat, A, df, h = 0.7, kernel = "norm",

truncation = 1.5, xlims, ylims, grid.spacing = c(1, 1),

window.dims = c(2, 2), subblock.h, sig.est.finite = T).

There are several necessary inputs. spdata must include the coordinates
of sampling locations and the corresponding data values. This input can be
a matrix or an object created by either the sp or geoR packages. The spatial
lags used to estimate the semivariogram, denoted Λ, are specified in the matrix
lagmat. The matrix A in (2.10) is specified by A and provides the contrasts of
the semivariogram estimates, and its row rank is indicated by the parameter df
(the degrees of freedom for the asymptotic χ2 distribution). The values h and
kernel provide the bandwidth (smoothing) parameter and form of the kernel
smoother, respectively, used to smooth over spatial lags when estimating the
semivariogram. If a normal smoothing kernel is used, then the truncation

parameter indicates where to truncate the normal kernel (i.e., zero weight for
spatial lags larger than this value). The parameters xlims and ylims give the
horizontal and vertical limits of the sampling region (a rectangular sampling
region is assumed). When performing a nonparametric tests of isotropy for non-
gridded sampling locations, we must place a grid on the sampling domain and
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choosing a moving window or block size to estimate Σ in (2.9) (see Section 4.2).
A grid is placed over the sampling region according the width and height
specified by grid.spacing. The dimensions of the moving window, given in the
units of the underlying grid, are determined by the values in window.dims. The
bandwidth of the smoothing kernel used to estimate the semivariogram on the
subblocks of data created by the moving window is indicated by subblock.h and
a finite sample adjustment to the estimate of the asymptotic variance-covariance
matrix is made by setting sig.est.finte = T. For more information about
the different arguments and guidelines on how to choose them, see Weller and
Hoeting (2016), the spTest manual, and the original works (Guan et al., 2004,
2007; Maity and Sherman, 2012).

4 Applications: Using spTest to check for anisotropy

We demonstrate the functionality of the spTest on two data sets: the first
containing data at gridded sampling locations; the second containing data collected
via a non-gridded sampling design. For more details on the functions and
examples using simulated data, see the spTest manual. The spTest package
can be used independently of other packages built for analyzing spatial data,
but it works nicely with two other packages loaded into R : fields (Nychka et al.,
2014) and geoR (Ribeiro Jr. and Diggle, 2001). We also load the splines (R
Core Team, 2015), MASS (Venables and Ripley, 2002), and rgdal (Bivand et al.,
2016) packages, which we use to estimate mean functions, compute studentized
residuals, and calculate map projection coordinates, respectively.

R> library("spTest")

R> library("geoR")

R> library("splines")

R> library("MASS")

R> library("rgdal")

R> library("mvtnorm")

For the two examples given below, we use graphical diagnostics and the
hypothesis tests implemented in spTest to determine whether or not an assumption
of isotropy is reasonable for spatially-referenced data. The general strategy will
be to first do exploratory data analysis (EDA) of the original data and create
a model for the mean of the spatial process using appropriate covariates. After
estimating a model for the mean, we extract residuals and again use EDA to
check for remaining spatial dependence and utilize graphical diagnostics and
hypothesis tests to investigate potential anisotropy. For brevity, we have not
included the full version of EDA code and plots; instead, we include only the
most relevant to demonstrating the functionality of the spTest package. The
complete version of the code is available on github (Weller, 2016c).

4.1 Gridded sampling locations

The gridded data used in this section come from the North American Regional
Climate Change Assessment Program [NARCCAP] (Mearns et al., 2009). The
data set WRFG in spTest includes coordinates and a 24-year average of yearly
average temperatures from runs of the Weather Research and Forecasting -
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Grell configuration (WRFG) regional climate model (RCM) using boundary
conditions from the National Centers for Environmental Prediction (NCEP).
The original data are available on the NARCCAP website and the R code used
to create the yearly averages is available on github (Weller, 2016b). The data set
contains both latitude and longitude and universal transverse mercator (UTM)
coordinates. The UTM coordinates specify the regular grid for 14,606 grid boxes
along with average temperature at surface at each grid box. Figure 2 displays
a heat map of all of the data and was created using the image.plot function
from the fields package . Due to computational considerations and because the
methods in spTest assume stationarity, for our analysis we use a 20× 20 subset
of the grid boxes defined by the UTM coordinates over the central United States
(see Figures 2 and 3a).

R> data("WRFG")

R> coords <- expand.grid(WRFG$xc, WRFG$yc)

R> sub <- which(coords[, 1] > 2900000 & coords[, 1] < 3950000 &

+ coords[, 2] > 1200000 & coords[, 2] < 2250000)

R> coords.ll <- cbind((WRFG$lon - 360)[sub], WRFG$lat[sub])

R> image.plot(WRFG$lon - 360, WRFG$lat, WRFG$WRFG.NCEP.tas,

+ col = two.colors(n = 256, start = "blue3", end = "red3",

+ middle = "gray60"), legend.lab = "Temp (K)",

+ legend.cex = 0.8, legend.line = 2.2, xlab = "Longitude",

+ ylab = "Latitude", main = "Mean WRFG-NCEP Temperatures")

R> world(add = T)

R> left <- seq(1, 400, by = 20)

R> right <- seq(20, 400, by = 20)

R> for (i in 2:20) {

+ segments(coords.ll[i - 1, 1], coords.ll[i - 1, 2],

+ coords.ll[i, 1], coords.ll[i, 2], lwd = 2)

+ segments(coords.ll[left[i - 1], 1], coords.ll[left[i -

+ 1], 2], coords.ll[left[i], 1], coords.ll[left[i],

+ 2], lwd = 2)

+ segments(coords.ll[right[i - 1], 1], coords.ll[right[i -

+ 1], 2], coords.ll[right[i], 1], coords.ll[right[i],

+ 2], lwd = 2)

+ j <- i + 380

+ segments(coords.ll[j - 1, 1], coords.ll[j - 1, 2],

+ coords.ll[j, 1], coords.ll[j, 2], lwd = 2)

+ }

To investigate potential anisotropy in the relevant subset of these data, we
can examine two graphical diagnostics: a heat map and directional sample
semivariograms. We use the function variog4 from the geoR package to estimate
directional semivariograms to visually assess isotropy properties.

R> tas <- c(WRFG$WRFG.NCEP.tas)[sub]

R> x.coord <- unique(coords[sub, 1])

R> y.coord <- unique(coords[sub, 2])

R> nx <- length(x.coord)

R> ny <- length(y.coord)

R> tas.mat <- matrix(tas, nrow = nx, ncol = ny, byrow = F)
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Figure 2: Heat map of temperatures in latitude and longitude coordinates. The
temperature values are the 24 year average of WRFG-NCEP yearly average
temperature. The black box indicates the relevant subset of data used for the
example in Section 4.1, and this subset is displayed in Figure 3a.
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Figure 3: Graphical assessments of isotropy in the 20 × 20 subset of WRFG
temperature data. Because northing coordinates have not been accounted for,
the heat map (Figure 3a) indicates that the dependence between observations
is stronger in the east-west direction than the north-south direction. The
directional dependence is also evidenced by the differences between the
directional sample semivariograms (Figure 3b).

R> image.plot(x.coord, y.coord, tas.mat, col = two.colors(n = 256,

+ start = "blue3", end = "red3", middle = "gray60"),

+ legend.lab = "Temp (K)", legend.cex = 0.8, legend.line = 2.2,

+ ylab = "Northing", xlab = "Easting", main = "Subset of Temperatures")

R> tas.geodat <- as.geodata(cbind(coords[sub, 1], coords[sub,

+ 2], tas))

R> plot(variog4(tas.geodat), xlab = "distance (meters)",

+ ylab = "estimated semivariogram")

R> title("Directional Sample Semivariograms")

The heat map in Figure 3a indicates that the spatial process is anisotropic,
having a stronger spatial dependence in the horizontal direction than the vertical
direction. Intuitively, northing coordinates are an important factor in determining
average temperature, and we need to include its effect in a model for these
data. We also notice non-linear trends in temperature as a function of easting
coordinates in Figure 3a. Thus, the anisotropy can be attributed, at least in
part, to the fact that we have not modeled important covariates related to
the process. The directional sample semivariograms in Figure 3b reaffirm the
notion that the data exhibit anisotropy as the 90◦ sample semivariogram appears
much different than the other three. Before modeling the effects of northing and
easting coordinates, we use the GuanTestGrid function from spTest to affirm
our understanding that these data exhibit anisotropy.

Necessary conditions for the asymptotic properties of the nonparametric
tests to hold are typically met when the data are Gaussian (see Section 5).

13



A quantile-quantile (QQ) plot (not shown) of the relevant subset of WRFG
temperatures indicates that a Gaussian assumption is reasonable. To implement
the nonparametric test in Guan et al. (2004) via the function GuanTestGrid,
we need to specify the spatial lags that will be used to test for differences in the
semivariogram. For this test we choose the lag set (2.7) and use the matrix A in
(2.8) to contrast the semivariogram estimates. With the first row of A and the
first two entries of Λ, we are contrasting the estimated dependence structure
in the 0◦(h1) and 90◦(h2) directions for data separated by one horizontal or
vertical sampling location. The second row of A and second two entries of
Λ contrast the estimated dependence structure in the 45◦(h3) and 135◦(h4)
directions for data separated by one diagonal sampling location. Because the
grid spacing between sampling locations is 50,000 meters, we set the the scaling
parameter delta = 50,000. To create subblocks of data used to estimate Σ in
(2.10), we choose a moving window with a size of 4× 4 grid cells. The moving
window dimensions should be chosen so that the window has the same shape
(i.e., square or rectangle) and orientation as the sampling domain. To maximize
the amount of data used to estimate Σ, the dimensions of the window should
evenly divide the number of columns and rows, respectively, of the entire region.
The window dimensions should also be compatible with the spatial lags in Λ.
For example, if sampling locations are on the integer grid Z2, a window with
dimensions of 2 × 2 grid cells cannot be used to estimate the variability of the
semivariogram at a lag with Euclidean distance longer than

√
2, the maximum

distance between locations in the moving window. For this example there are 20
rows and columns, and we are using lags with spacings of one or two sampling
locations; hence, window dimensions of 2 × 2 or 4 × 4 grid cells are reasonable
choices. We run the test using window dimensions of 4 × 4 grid cells via the
following code, suppressing some of the output for brevity.

R> my.delta <- 50000

R> mylags <- rbind(c(1, 0), c(0, 1), c(1, 1), c(-1, 1))

R> myA <- rbind(c(1, -1, 0, 0), c(0, 0, 1, -1))

R> tr <- GuanTestGrid(spdata = tas.geodat, delta = my.delta,

+ lagmat = mylags, A = myA, df = 2, window.dims = c(4,

+ 4), pt.est.edge = TRUE, sig.est.edge = TRUE,

+ sig.est.finite = TRUE)

R> tr$alternative <- NULL

R> tr$sigma.hat <- NULL

R> print(tr)

Test of isotropy from Guan et. al. (2004) for gridded

sampling locations using the sample semivariogram.

data: tas.geodat

Chi-sq = 34.063, df = 2, p-value = 4.012e-08

p-value (finite adj.) < 2.2e-16, number of subblocks: 240

sample estimates: (lag value)

(1,0) (0,1) (1,1) (-1,1)

0.02887917 0.07927363 0.09644188 0.11504961

As we suspected, the results of the hypothesis test (p value < 0.05) indicate
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that the data exhibit anisotropy. We note that for gridded data, Guan et al.
(2004) recommend using the p value computed via a finite sample correction.
The function GuanTestGrid, and other functions in spTest, return a p value(s)
for the test and information used in computing the p value, such as the point
estimates (Ĝn), estimates of the asymptotic variance-covariance matrix (Σ̂),
the number of subblocks used to estimate Σ, and other information about
the estimation process. We note that the point estimates for the directional
semivariograms are slightly different between the functions from the spTest and
geoR packages due to different kernel methods used in estimation.

As previously mentioned, we need to model the effects of northing and
easting UTM coordinates on average temperature. We fit temperature as a
nonparametric additive function of both the northing and easting coordinates
via least-squares using cubic splines. The cubic splines can be specified using
the function ns from the splines package and the least squares fit is computed
via the lm function.

R> m1 <- lm(tas ~ ns(coords[sub, 1], df = 3) + ns(coords[sub,

+ 2], df = 3))

R> summary(m1)

After removing the mean effects of the coordinates, we can check for any
remaining (unaccounted for) spatial dependence and evidence of anisotropy in
the residuals using graphical diagnostics and a hypothesis test. A QQ plot of
the studentized residuals (not shown) indicates that a Gaussian assumption is
reasonable.

R> resid.mat <- matrix(studres(m1), nrow = nx, ncol = ny,

+ byrow = F)

R> image.plot(x.coord, y.coord, resid.mat, col = two.colors(n = 256,

+ start = "blue3", end = "red3", middle = "gray60"),

+ xlab = "Easting", ylab = "Northing")

R> title("Heat Map of Studentized Residuals")

R> resid.geo <- as.geodata(as.matrix(cbind(coords[sub, 1:2],

+ studres(m1))))

R> plot(variog4(resid.geo), xlab = "distance (meters)",

+ ylab = "estimated semivariogram")

R> title("Directional Sample Semivariograms")

The clusters of similar values in the heat map of Figure 4a, and the increase,
followed by a leveling off, of the semivariogram values as distance increases in
the directional sample semivariograms in Figure 4b indicate that the residuals
are still spatially dependent. However, the plots in Figure 4 do not clearly
illustrate whether or not the residuals exhibit anisotropy. There appears to be
directional dependence along the NW to SE direction in the northern parts of
the heatmap (Figure 4a). The directional sample semivariograms do not appear
to be different until the distance is greater than 200,000 meters. Semivariogram
estimates at large distances can be unreliable and a general recommendation is
to compute the semivariogram for lags with distance that is less than half of
the maximum observed distance separating sampling locations (Schabenberger
and Gotway, 2004, pg. 155). Additionally, directional semivariograms are less
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Figure 4: Graphical assessments of isotropy in the studentized residuals from the
WRFG temperature data. The appearance of elongated areas of similar residual
values in the heat map (Figure 4a) indicates that the process may be anisotropic.
The directional semivariograms (Figure 4b) do not appear to exhibit differences,
indicating that the process is isotropic. A nonparametric test of isotropy can
assist in determining whether or not an assumption of isotropy is reasonable.

reliable than a uni-directional semivariogram because fewer pairs of sampling
locations are used at each distance for directional estimation. The unreliability
of the sample semivariograms at the larger distances, coupled with the lack
of a measure of uncertainty, make it difficult to determine whether or not
an assumption of isotropy is reasonable using a plot of the directional sample
semivariogams. To gain more insight into the isotropy properties, we perform
a nonparametric hypothesis test of isotropy using the residuals with the same
choices for Λ, A, and the window dimensions.

R> tr <- GuanTestGrid(spdata = resid.geo, delta = my.delta,

+ lagmat = mylags, A = myA, df = 2, window.dims = c(4,

+ 4))

R> tr$p.value.finite

p.value.finite

0.2

Here the residuals do not provide evidence for anisotropy (p value > 0.05).
These results suggest that it may be appropriate to choose an isotropic covariance
function to model the residuals. However, it is important to note that we
have not included the effect of other potentially influential covariates such as
elevation or water cover in the model for temperature. Additionally, although
we examined a 20 × 20 subset of the data, the grid boxes still cover a large
geographic region of the U.S., and thus an assumption of stationarity, which is
needed for the asymptotic properties of the hypothesis test to hold, may not be
reasonable.
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4.2 Non-gridded sampling locations

The non-gridded data set used in this section describes monthly surface meterology
in a region of the state of Colorado and comes from the National Center for
Atmospheric Research (NCAR). The data are available in the R package fields.
For this example, our variable of interest is the log (mm) of the 30-year average
of average yearly precipitation at 344 station locations during the time period
1968-1997.

Like the temperature data, our goal will be to model the mean effect of
covariates and check for spatial dependence and potential anisotropy in the
residuals. The first two steps of the analysis are to compute the yearly precipitation
averages and convert the latitude/longitude coordinates to UTM coordinates.
We divide the UTM coordinates by 100,000 so that distances are measured
in hundreds of kilometers. Scaling the coordinates eases the choice of tuning
parameters for the test in Guan et al. (2004). To meet the Gaussian assumption,
we take the log transform of the average precipitation. Figure 5 displays quilt
plots of the log precipitation values and the elevation of the stations.

R> data("COmonthlyMet")

R> sub30 <- CO.ppt[74:103, , ]

R> nstations <- 376

R> years <- 1968:1997

R> nyears <- length(years)

R> yr.avg <- matrix(data = NA, nrow = nstations, ncol = nyears)

R> for (i in 1:nyears) {

+ yr.dat <- sub30[i, , ]

+ yr.avg[, i] <- apply(yr.dat, 2, mean, na.rm = T)

+ }

R> avg30 <- apply(yr.avg, 1, mean, na.rm = T)

R> CO.loc <- as.matrix(CO.loc)

R> CO.loc.utm <- project(CO.loc, "+proj=utm +zone=13 ellps=WGS84")/1e+05

R> quilt.plot(CO.loc.utm, log(avg30), col = two.colors(n = 256,

+ start = "blue3", end = "red3", middle = "gray60"),

+ legend.lab = "Precip (log mm)", legend.cex = 0.8,

+ legend.line = 2.2, xlab = "Easting", ylab = "Northing",

+ main = "Quilt Plot of log(precip)")

R> mp <- map("state", region = c("colorado", "wyoming",

+ "nebraska", "utah", "new mexico", "oklahoma"), plot = F)

R> st.loc <- cbind(mp$x, mp$y)

R> states <- project(st.loc, "+proj=utm +zone=13 ellps=WGS84")/1e+05

R> points(states[, 1], states[, 2], type = "l", lwd = 1.5)

R> quilt.plot(CO.loc.utm, CO.elev, col = two.colors(n = 256,

+ start = "blue3", end = "red3", middle = "gray60"),

+ legend.lab = "Elevation (meters)", legend.cex = 0.8,

+ legend.line = 2.7, xlab = "Easting", ylab = "Northing",

+ main = "Quilt Plot of Elevation")

R> points(states[, 1], states[, 2], type = "l", lwd = 1.5)

Colorado has two distinct geographic regions: the mountainous region in the
west and the plains region in the east. Figure 5b illustrates these two regions,
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Figure 5: Quilt plots showing the locations of the weather stations in Colorado
and surrounding region along with the log of average yearly precipitation (5a)
and elevation (5b) at each station.

and we can begin to notice a possible relationship between elevation and average
precipitation. We explore the potential relationship between log precipitation
and elevation using scatter plots (see Figure 6a).

R> plot(CO.elev, log(avg30), xlab = "Elevation (meters)",

+ ylab = "Precip (log mm)", main = "log(Precip) vs. Elevation")

R> m1 <- lm(log(avg30) ~ ns(CO.elev, df = 3))

R> summary(m1)

R> fits <- m1$fitted.values

R> bad <- is.na(avg30)

R> x <- CO.elev[which(!bad)]

R> lines(sort(x), fits[order(x)], lwd = 3, col = "red")

R> qqnorm(studres(m1))

R> abline(0, 1)

We fit a cubic smoothing spline via least squares to model the relationship
between log(precipitation) and elevation. The estimate is shown in Figure 6a,
and a QQ plot of residuals in Figure 6b indicates that a Gaussian assumption
is reasonable. We will use the residuals from this model to check for remaining
spatial dependence and potential anisotropy. We use variog4 to estimate
directional sample semivariograms.

R> precip.resid <- cbind(CO.loc.utm[which(!bad), ][, 1],

+ CO.loc.utm[which(!bad), ][, 2], studres(m1))

R> precip.geo <- as.geodata(precip.resid)

R> plot(variog4(precip.geo), xlab = "distance (100s of km)",
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Figure 6: Results from the model relating log(precipitation) and elevation.
Figure 6a displays the nonparametric fit relating elevation to log(precipitation).
Figure 6b shows the QQ plot of studentized residuals from the nonparametric
fit.

+ ylab = "estimated semivariogram", legend = F)

R> legend("bottomright", legend = c(expression(0 * degree),

+ expression(45 * degree), expression(90 * degree),

+ expression(135 * degree)), col = 1:4, lty = 1:4)

R> title("Directional Sample Semivariograms")

The increase, followed by a leveling off, of the semivariogram values as
distance increases in Figure 7 indicates that there is spatial dependence remaining
in the data. We notice that the 0◦ semivariogram appears to be slightly different
than the other three, but there is no measure of uncertainty, so we cannot
determine if the differences are statistically significant. The sample semivariograms
also suggest the presence of a large amount of small scale variation, often
called a nugget effect, in the data. This can be seen by noting the ratio of
semivariogram values at the shortest observed distance to the semivariogram
values at the longest reliable distance. The large jumps and decrease in the
estimated semivariogram values in Figure 7 indicate that semivariogram estimates
become unreliable beyond a distance of two. The sample semivariogram values
in Figure 7 are approximately 0.7 at the shortest distance and approximately 1.1
at a distance of two. This suggests that approximately 63% ≈ (0.7/1.1)100%
of the variability in the data is due to small scale variation. We note the
apparently large nugget effect because this small scale variation is detrimental to
the size and power of nonparametric tests of isotropy (Weller and Hoeting, 2016).
Despite the small scale variation, we will proceed with nonparametric hypothesis
tests to assist in determining if an assumption of isotropy is reasonable.

There are two procedures for testing isotropy in non-gridded data available in
spTest: Guan et al. (2004) and Maity and Sherman (2012). To choose between
these two, we need to decide whether or not it is reasonable to assume that
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Figure 7: A graphical assessment of isotropy in the studentized residuals from
the model relating log(precipitation) to elevation generated by using the geoR
function variog4. The directional sample semivariogram in the 0◦ direction
appears to be different from the other three at distances less than 2. Because
there is no measure of uncertainty, it can be difficult to determine whether or
not an assumption of isotropy is reasonable.

sampling locations are uniformly distributed on the sampling domain. The
methods for non-gridded data from Guan et al. (2004) rely on the assumption
that sampling locations are uniformly distributed while Maity and Sherman
(2012) can be used on any general sampling design. To check this assumption,
we can turn to methods from the spatial point process literature to perform a
test of complete spatial randomness (CSR) (i.e., a uniform spatial distribution)
for the sampling locations. Methods for testing CSR are available in the R
package spatstat (Baddeley and Turner, 2005). For brevity, we do not display
the results of the CSR test here, but note that they do not provide evidence
against the assumption of CSR for these sampling locations so either test of
isotropy can be used.

For both Guan et al. (2004) and Maity and Sherman (2012), we need to
choose the lag set, Λ, and the contrast matrix, A. Because semivariogram
estimates appear to be unreliable at distances greater than two, we should choose
lags having Euclidean distance less than this distance. We choose the lag set

Λ = {h1 = (0.60, 0),h2 = (0, 0.60),h3 = (0.45, 0.45),h4 = (−0.45, 0.45)},

and again we use the matrix A in (2.8). The set Λ corresponds to lags in the
0◦, 90◦, 45◦, 135◦ directions, respectively, having Euclidean distances of ||h1|| =
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||h2|| = 0.60 (60 km) and ||h3|| = ||h4|| ≈ 0.64 (64 km).

R> mylags <- rbind(c(0.60, 0), c(0, 0.60), c(0.45, 0.45), c(-0.45, 0.45))

R> myA <- rbind(c(1, -1, 0 , 0), c(0, 0, 1, -1))

The next step in implementing the methods from Guan et al. (2004) and
Maity and Sherman (2012) is to determine the size of the moving windows
and the block size, respectively, used to estimate the asymptotic variance-
covariance matrix, Σ. The moving window is shifted over the sampling region,
creating subblocks of data used to estimate Σ. Likewise, for the test in Maity
and Sherman (2012), the block size is used to implement the grid-based block
bootstrap [GBBB] (Lahiri and Zhu, 2006).

There are two steps in determining the appropriate window/block size for
non-gridded sampling locations. First, we place a grid over the sampling domain;
second, we specify scaling parameters that will define the window/block size in
terms of that grid. We should complete this two step process while keeping
three goals in mind: (1) the number of sampling locations per window/block,
denoted nb, should be approximately

√
n (Weller and Hoeting, 2016); (2) the

windows/blocks should have have the same orientation (i.e., square or rectangle)
as the entire sampling domain; and (3) the scaling parameters should be compatible
with the dimensions of the underlying grid.

For the Colorado precipitation data, recall that one unit of distance equals
100 km. The dimensions of the sampling region are approximately 7.3 × 5.5
(width × height), providing a total area of 40.15. For n = 344 uniformly
distributed sampling locations, we expect approximately 344/40.15 = 8.6 sampling
locations per unit area. Recalling goal (1), we seek to construct windows/blocks
with nb ≈

√
344 = 18.5 sampling locations, or equivalently, windows/blocks

with an area of approximately 18.5/8.6 = 2.15. Goal (2) indicates we want to
create rectangular windows/blocks with slightly larger width than height, and
(3) says that if our grid divides the x-axis into 12 grid cells, then the scaling
parameter defining the width of the window/block should be 3 or 4 because
those numbers evenly divide 12. For the CO precipitation data, if we choose
our grid to divide the x-axis into 16 cells and the y-axis into 12 cells, we have a
grid with (x, y) spacing of roughly (7.3/16, 5.5/12) ≈ (0.46, 0.46). The resulting
grid is plotted in Figure 8. Then, choosing our scaling parameters to be 4×3, we
have windows/blocks with dimensions of approximately (4)(0.46)× (3)(0.46) =
1.84 × 1.38 and area of (1.84)(1.38) ≈ 2.54, or equivalently with an expected
number of points per block of nb = (2.54)(8.6) ≈ 21.8.

R> my.color <- two.colors(n = 256, start = "blue3", end = "red3",

+ middle = "gray60")

R> quilt.plot(precip.resid[, 1:2], precip.resid[, 3], col = my.color,

+ xlab = "Easting", ylab = "Northing", xlim = c(0.75,

+ 8.65), ylim = c(40.1, 46.2))

R> title("Quilt Plot of Residuals and Grid Used for Subsampling")

R> tol <- 0.02

R> my.xlims <- c(min(precip.resid[, 1]) - tol, max(precip.resid[,

+ 1]) + tol)

R> my.ylims <- c(min(precip.resid[, 2]) - tol, max(precip.resid[,

+ 2]) + tol)

R> xlen <- my.xlims[2] - my.xlims[1]
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R> ylen <- my.ylims[2] - my.ylims[1]

R> my.grid.spacing <- c(xlen/16, ylen/12)

R> xgrid <- seq(my.xlims[1], my.xlims[2], by = my.grid.spacing[1])

R> ygrid <- seq(my.ylims[1], my.ylims[2], by = my.grid.spacing[2])

R> segments(x0 = xgrid, y0 = min(my.ylims), y1 = max(my.ylims),

+ lty = 2)

R> segments(x0 = min(my.xlims), y0 = ygrid, x1 = max(my.xlims),

+ lty = 2)
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Figure 8: Quilt plot of the studentized residuals from the model relating
elevation to log(precipitation) for the weather station locations. The grid placed
on the region that is used to define the moving windows in Guan et al. (2004)
and block size in Maity and Sherman (2012) is also shown. Because the sampling
locations are not gridded, it can be difficult to assess isotropy properties via a
quilt plot.

For the functions GuanTestUnif and MaityTest, the upper and lower limits
of the sampling region in the x and y directions are given by the xlims and ylims

arguments. Note that the values defining the upper and lower limits should be
slightly larger than the minimum and maximum observed x and y coordinates.
The horizontal and vertical spacing, respectively, of the grid laid on the sampling
region is defined by the two values in grid.spacing. The horizontal and vertical
scaling parameters that define the size of the moving windows in GuanTestUnif

and blocks in MaityTest in terms of the underlying grid are given by the
window.dims and block.dims arguments, respectively. We recommend using
visualizations of different grid choices and algebraic calculations, as done above,
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to assist in choosing a grid and the window/block dimensions. When the
scaling parameters defining the moving window or block dimensions are not
compatible with the number of rows or columns of gridded sampling locations
or the dimensions of the grid laid on the sampling region for non-gridded
locations, the functions in spTest will print a warning message because they do
not currently handle partial (incomplete) blocks. Likewise, if the chosen window
or block dimensions for non-gridded sampling locations creates (sub)blocks of
data with few or no sampling locations, the functions GuanTestUnif and MaityTest

will discard (sub)blocks that do not have enough sampling locations and print
a warning message. The p value of the hypothesis test will be sensitive to the
choice of moving window and block dimensions. See Weller and Hoeting (2016)
and the original works (Guan et al., 2004; Maity and Sherman, 2012) for more
recommendations on choosing these values.

The next step for implementing the test in Guan et al. (2004) is choosing the
smoothing (bandwidth) parameters for smoothing over lags on the entire domain
and within each subblock created by the moving windows. The smoothing
parameters should be chosen based on the number and density of the sampling
locations with larger values of the smoothing parameter inducing higher levels
of smoothing, i.e., allowing a greater distance and direction tolerance. In our
experience, smoothing parameter values between 0.6 and 0.9 tend to produce
reasonable results when using a standard normal Gaussian smoothing kernel
truncated at 1.5. However, the p value of the hypothesis test will change with
the bandwidth. For this example, we choose a bandwidth of h = 0.70 for
smoothing over lags on the entire domain, and a bandwidth of subblock.h =

0.85 for smoothing over lags on on the subblocks of data created by the moving
window. Choosing a larger bandwidth for the subblocks equates to allowing
for a larger lag distance and direction tolerance, which is needed for subblocks
that have few sampling locations. We also use the default Gaussian smoothing
kernel (kernel = "norm") truncated at 1.5 (truncation = 1.5). Because the
sample size is less than 500, we use a finite sample adjustment to approximate
the p value (Guan et al., 2004; Weller and Hoeting, 2016).

Finally, for the test in Maity and Sherman (2012) we need to choose the
number of bootstrap resamples that will be used in the GBBB procedure to
estimate Σ. We recommend using at least 50 bootstrap samples; however, the
bootstrapping procedure is computationally intensive. We choose nBoot = 100

bootstrap samples for our example, and we note that the number of bootstraps
does not affect the precision of the p value, which is computed via the asymptotic
χ2 distribution. Having determined values for the different options, we can
now perform the hypothesis tests. For reproducibility of the bootstrap in the
MaityTest function, we set the random seed.

R> myh <- 0.7

R> myh.sb <- 0.85

R> tr.guan <- GuanTestUnif(spdata = precip.resid, lagmat = mylags,

+ A = myA, df = 2, h = myh, kernel = "norm", truncation = 1.5,

+ xlims = my.xlims, ylims = my.ylims, grid.spacing = my.grid.spacing,

+ window.dims = c(4, 3), subblock.h = myh.sb)

R> tr.guan$p.value.finite

p.value.finite

0.04615385
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R> set.seed(2016)

R> tr.maity <- MaityTest(spdata = precip.resid, lagmat = mylags,

+ A = myA, df = 2, xlims = my.xlims, ylims = my.ylims,

+ grid.spacing = my.grid.spacing, block.dims = c(4,

+ 3), nBoot = 100)

R> tr.maity$p.value

p.value.chisq

0.021859

For both of the tests, the data provide evidence in favor of anisotropy
(p value < 0.05). Thus, an isotropic model may be appropriate for modeling
the residuals. Additionally, the apparent anisotropy may also be present due to
unaccounted for covariates (e.g., northing/easting coordinates).

5 Discussion

Choosing a covariance function is an important step in modeling spatially-
referenced data and a variety of choices for the covariance function are available
(e.g., anisotropy, nonstationarity, parametric forms). The R package spTest
implements several nonparametric tests for checking isotropy properties which
avoid specifying a parametric form for the covariance function. Weller and
Hoeting (2016) perform a simulation study comparing the empirical size and
power of the methods for different degrees of anisotropy. They find that methods
from Guan et al. (2004) tend to outperform the competitor for gridded and non-
gridded data.

One concern regarding the methods in spTest is that they tend to have
low power when the anisotropy is weak and the data are not gridded (Weller
and Hoeting, 2016; Guan et al., 2004; Maity and Sherman, 2012). A second
concern is that the results of the tests are potentially sensitive to user choices,
for example, the moving window size and bandwidth in the method from Guan
et al. (2004). The optimal choices for these values is still an open question.
Weller and Hoeting (2016) offer further recommendations for how to choose the
user defined values, such as the window size and bandwidth, based on simulated
data. Finally, as noted earlier, the size and power of the methods are adversely
affected by the presence of small scale variation (nugget effect). Because of these
concerns, we recommend using the nonparametric methods in conjunction with
graphical techniques.

An implicit assumption of the methods discussed in this paper is ergodicity
of the spatial process, an assumption that is difficult to verify (Cressie, 1993,
pg. 57-58). However, there are two important assumptions which practitioners
should consider. The first is an assumption of strict stationarity, (2.1). While
this assumption is difficult to check, it follows from assuming the RF is weakly
stationary and Gaussian (2.4). The assumption of Gaussian data lies at the
heart of many spatial analyses (Gelfand and Schliep, 2016) and is easily checked
with a QQ plot. The assumption of weak stationarity may be questionable for
spatial data over large geographic regions and methods have been developed for
testing this assumption (see, e.g., Corstanje et al., 2008; Fuentes, 2005; Jun and
Genton, 2012; Bandyopadhyay and Rao, 2015). The second assumption required
is a mixing condition that states the dependence between observations goes to
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0 at large distances (Hall and Patil, 1994; Sherman and Carlstein, 1994). In the
case of a stationary GRF, this condition is met when the covariance function,
C(h), is 0 for sufficiently large ||h||, which also implies ergodicity (Cressie, 1993,
pg. 58). One way to check this assumption in practice is to look for a leveling
off of the sample covariogram or semivariogram values as distance increases,
indicating that the are data nearly independent at large distances.

After determining whether or not an assumption of isotropy is reasonable,
we can choose a parametric or nonparametric model for the covariance function.
Weller and Hoeting (2016) further illustrate the role of nonparametric tests of
isotropy in the process of modeling spatially-referenced data. We have demonstrated
how graphical techniques and the functions available in the R package spTest can
be used in a complementary role to check for anisotropy. Future work includes
extending the functionality of spTest to handle non-rectangular sampling domains
and improving computational efficiency by programming functions in C++.
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