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Abstract

Numerous zoonotic diseases cause morbidity, mortality and productivity losses in both
humans and animal populations. For many zoonotic diseases that are important to hu-
man health (such as campylobacteriosis), it is difficult to attribute human cases to sources
because there is little epidemiological information on the cases. Genotyping systems allow
the zoonotic pathogens to be categorised, and the relative distribution of the genotypes
among the sources (food sources or reservoirs of bacteria) and in human cases allows
inference on the likely source of each genotype. Current source attribution models, specif-
ically the Island model (Wilson, Gabriel, Leatherbarrow, Cheesebrough, Hart, and Diggle
2008), Hald (Hald, Vose, Wegener, and Koupeev 2004) and modified Hald models (Mull-
ner, Jones, Noble, Spencer, Hathaway, and French 2009) are not fully joint and have many
(often unverifiable) assumptions. Identifiability of the parameters in this model is an is-
sue because a large number of parameters need to be estimated, the data is imbalanced,
and many of the combinations of source and type and have very low counts. We present
techniques to overcome these issues within a Bayesian framework by developing a fully
joint model which non-parametrically clusters the type effects (using a Dirichlet Process)
allowing identification of groups of bacterial subtypes with similar pathogenicity, survival
and/ or virulence mechanisms. This model is applied to Campylobacter data from the
Manawatu area of New Zealand (previously analysed by Mullner et al. (2009)) using the
sourceR package, and compared to current source attribution models.
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1. Introduction

1.1. Background

Food-borne diseases are a major source of human morbidity and mortality world wide. In
2010, an estimated 600 million cases occurred globally, of which approximately 90% were
cause by food borne diarrhoeal disease pathogens (Havelaar, Kirk, Torgerson, Gibb, Hald,
Lake, Praet, Bellinger, de Silva, Gargouri, Speybroeck, Cawthorne, Mathers, Stein, Angulo,
Devleesschauwer, and on behalf of World Health Organization Foodborne Disease Burden
Epidemiology Reference Group 2015). Identifying the source from which a food-borne disease
is acquired, and the pathway by which it enters the food chain, is crucial for the identification
and prioritization of food safety interventions. Traditional approaches to source attribution
include full risk assessments, analysis and extrapolation of surveillance or outbreak data, and
analytical epidemiological studies (Crump, Griffin, and Angulo 2002). However, their results
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may be highly uncertain due to long and variable incubation times of food-borne diseases
in the face of many and various exposures of an individual to potential sources. Given this
difficulty, quantitative methods using pathogen genotype frequency have become popular for
identifying important sources of food-borne illness (Mullner et al. 2009).

For a given disease, quantitative source attribution relies on molecular typing data from
pathogen genotypes isolated from human cases as well as from a number of putative sources
of infection. For bacterial diseases, source samples are usually collected from food (such
as raw chicken, beef etc) and environmental (such as water or faeces samples) sources, and
tested for the presence of the zoonotic bacterium usually using polymerase chain reaction
(PCR) methods. The bacterial samples are then categorised into subtypes using a genetic
typing methodology. Multilocus Sequence Typing (MLST) is commonly used because it is
a relatively inexpensive, rapid, and unambiguous procedure for coarse characterisation of
isolates of bacterial species. Here, genetic variations in small fragments of several house-
keeping genes are assigned distinct allelic identifiers. A sequence type is therefore defined
as a unique combination of alleles at each gene locus (Dingle, Colles, Wareing, Ure, Fox,
Bolton, Bootsma, Willems, Urwin, and Maiden 2001). Being defined on conserved regions
of the bacterial genome, the evolution of new MLST types is slow, enabling data collected
over a period of months to be classed as cross-sectional, making it suitable for use in source
attribution models. Recent statistical approaches designed specifically to use MLST data are
reviewed in Section 3.

Routine surveillance for food-borne pathogens is now commonplace in many countries and
is performed by national authorities, for example FoodNet in the US (Allos, Moore, Griffin,
and Tauxe 2004), the Danish Zoonosis Centre (food.dtu.dk), and the Ministry for Primary
Industries in New Zealand (foodsafety.govt.nz). However, despite this availability of data
there are no implementations in standard statistical software for source attribution modelling,
with analyses being performed using a variety of ad hoc methodologies. Moreover, as the
example of human Campylobacter jejuni cases in New Zealand between 2005 and 2007 shows,
current statistical source attribution models are subject to computational approximations and
inherent identifiability problems.

This paper presents an R package sourceR implementing a flexible Bayesian non-parametric
model, designed for use by epidemiologists and other scientists to attribute cases of zoonotic
infection to putative sources of infection. The paper is structured as follows. We first describe
a motivating example in Section 2, before briefly reviewing a set of related models that have
been previous applied to this dataset in Section 3, and for which our model represents a
significant advance. We describe our source attribution model in Section 4.1, and demonstrate
its utility through worked examples on simulated and real-world data in Sections 5.1 and 5.2
respectively.

2. Motivating example

Campylobacter is the most commonly identified cause of food-borne bacterial gastro-enteritis
in the developed world (Miller, On, Wang, Fontanoz, Lastovica, and Mandrell 2005) is esti-
mated to be responsible for over 26% of bacterial foodbourne illnesses world-wide (Havelaar
et al. 2015). In 2006, New Zealand had one of the highest incidences of campylobacteriosis
in the developed world, with an annual incidence in excess of 400 cases per 100,000 people
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(Baker, Wilson, Ikram, Chambers, Shoemack, and Cook 2006). A campaign to change poul-
try processing procedures, supported in part by results from quantitative source attribution
methods, was successful in leading to a sharp decline in campylobacteriosis incidence after
2007 (Mullner et al. 2009). This example provides the dataset that motivates the construc-
tion of the sourceR package. The dataset was first published in Mullner, Collins-Emerson,
Midwinter, Carter, Spencer, van der Logt, Hathaway, and French (2010), with a detailed
description of the data (and data collection methods) available in French and Marshall (2009)
and French and Marshall (2013).

Briefly, our data consist of MLST-genotyped Campylobacter jejuni isolates from both human
cases of campylobacteriosis and potential food and environmental sources between 2005 and
2008 in the Manawatu region of New Zealand. The human isolates were obtained from the
local medical microbiology service (MedLab Central, Palmerston North), with isolates from
food and environmental sources collected during a sample-based surveillance study. Samples
of beef and lamb were collected from local retail stores, water from popular local riverine
swimming locations, and sheep and cattle faeces from farms within local river catchments.
These samples were then grouped into one of six sources: poultry supplier A, poultry supplier
B, poultry supplier C, bovine (beef mince and liver, and cattle faecal samples), ovine (lamb
mince and liver, and sheep faecal samples) and environmental (water samples).

These data are included within sourceR, named campy, comprising a data frame of the number
of positive isolates of each MLST type identified from humans and each potential source of
infection. We use this dataset as a source attribution case study in Section 5.2, comparing
our results with previously published ad hoc statistical approaches.

3. Review of models and notation

This section briefly reviews the current source attribution models. Throughout, we adopt
a convention where ¢ = 1,...,n denotes a bacterial subtype, and 7 = 1,...,m denotes a
putative source of infection.

3.1. Dutch model

The Dutch method (van Pelt, van de Giessen, van Leeuwen, Wannet, Henken, and Evers 1999)
is one of the simplest models for source attribution. It compares the number of reported human
cases caused by a particular bacterial subtype with the relative occurrence of that subtype in
each source. The number of reported cases per subtype and reservoir is estimated by:
Tij

) Zj Tij ? ( )
where r;; is the relative occurrence of bacterial subtype ¢ in source j, y; is the estimated
number of human cases of type i per year, )\;; is the expected number of cases per year of
type i from source j. A summation across subtypes gives the total number of cases attributed
to source j, denoted by A;:

X=X (2)

As the Dutch model has no inherent statistical noise model, confidence intervals for the
estimated total attributed cases A; by bootstrap sampling over the dataset.
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3.2. Hald model

One of the first stochastic source attribution models was the Hald model (Hald et al. 2004)
which was developed to model the source attribution of salmonellosis in Denmark. It extends
the Dutch method by incorporating source and type effect parameters into the model, and
assuming that the number of human cases are Poisson distributed conditional on the source
typing data. Source and type effect parameters are used to account for source- and type-
specific influences on the rates. Type effects summarise the characteristics that determine
a type’s capacity to cause an infection (survivability, pathogenicity and virulence). Source
effects account for the ability of a particular food source to act as a vehicle of infection. This is
a significant advantage over the Dutch model as it is not plausible that type and source effects
are equal for most zoonoses. Inference is performed in a Bayesian framework allowing the
model to explicitly include and quantify the uncertainty surrounding each of the parameters.

The number of human cases y; of isolate type i = 1,...,n is Poisson distributed such that
y; ~ Poisson()\;) (3)
m
Ni = G Y ajcipg (4)
j=1

where p;; = r;; X m; is the absolute prevalence of each type in source j, 7; is the prevalence of
positive samples in source j, c¢; is the offset for the annual consumption of each food source j,
n; is the total number of samples from each source, 7;; = % is the relative prevalence
of each type in source j, x;; is the number of MLST positivelggmjples for type 4 in source j,
a; is the 4t source effect, and ¢; is the it type effect. The rate of cases attributed to each
source is given by \; = Y7 a;c;pi;-

Note that the prevalence 7; is calculated by dividing the number of positive samples (using
PCR to detect the presence of Campylobacter) by the total number of samples for each source.
Samples testing positive for Campylobacter using PCR are MLST typed. It is possible for
MLST typing to fail, hence, the number of positive samples for a given source (used in the
prevalence calculation) can exceed the number of source samples used in the source data
matrix (z).

This model is overparameterised because there are m + n parameters (the source and type
effects) but only n independent observations (the observed human case totals y;). Identifia-
bility was obtained by assuming some source and type effects were equal. This was done by
pooling the bacterial subtypes into groups (where types within the same group have the same
type effect) and assuming the source effects were the same for Danish and imported pork.
Although in some cases there may be some physical justification to set some parameters equal,
it is not possible for all zoonoses. Furthermore, the intensity of the source surveillance system
in Denmark justified the use of point estimates of p;;, rather than explicitly modelling the
source sampling process.

3.3. Modified Hald model

The Modified Hald model (Mullner et al. 2009) was developed because the Hald model had
some assumptions that were not suitable for modelling campylobacteriosis. There was no
evidence to justify a priori fixing some source and type effects to be equal, and the source data
came from a less intensive surveillance system with fewer source samples taken (suggesting
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it would be beneficial to introduce uncertainty into the source prevalence matrix). For their
application, they wished to include the environment as a potential source of infection. Since
it is not possible to quantify annual exposure to the environment, the annual consumption
offset was removed from the model.

The number of human cases y; of isolate type ¢ = 1,...,n is again Poisson distributed with
rate \; for each type i as in Equation 4, omitting the annual consumption term c¢;. In contrast
to the Hald model, identifiability of the model is ensured by treating q as a a log Normal(0, 7)
distributed random effect. However, a strong prior is needed on 7 to shrink g towards 0
sufficiently to avoid overfitting the model, the choice of which is arbitrary.

In a further development, the modified Hald model introduces uncertainty into the relative
prevalence matrix by modelling the source sampling process. The p;;’s were first modelled
in a separate Bayesian scheme, where independent symmetric Dirichlet priors were used to
model columns of the r matrix, and a non-informative Beta distribution was used for the
source prevalences:

r.j ~ Dirichlet(1) V j (5)
mj ~ Beta(1,1) V j (6)

This model was fitted in WinBUGS using an approximate two stage process (Mullner et al.
2009). First, a posterior distribution was estimated for the absolute prevalence of source
subtypes p, using the model specified in Equations 5 and 6. The marginal posterior for each
element of p was then approximated by a Beta distribution

pij ~ Beta(aj, Bij)

using the method of moments for ;; and 3;;. which were included as independent priors in
the Poisson model. Due to convergence issues for very small o;; values, o;; was limited to be
at least 1 and the f;; parameter was adjusted accordingly (French and Marshall 2009).

Using independent Beta priors on each p;; removes the constraint that they sum to m; over
each type i. Thus, the absolute prevalence for source j (3.1, pij) is no longer constrained to
be a probability.

3.4. Asymmetric Island model

The Asymmetric Island Model (Wilson et al. 2008; Wilson 2016) takes a different approach
to the models described above. Here, the evolutionary processes (mutation, migration and
recombination) of the sequence types is modelled to probabilistically infer the source of each
human infection. This means it requires genetic typing for all samples limiting the range
of data that can be used with this model (for example, phenotypic typing cannot be used).
The extra information in the genetic typing allows the model to attribute human cases not
observed in any sources to a likely source of infection by looking at the genetic similarity
of that type to other types that are observed in the sources; this is not possible with the
Dutch, Hald or Modified Hald models. However, they are much simpler with fewer strong
assumptions and work with a wider range of data than the Island model.

4. Methods
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In this section, we address the problems inherent in both the Hald and Modified Hald mod-
els. Our approach builds on these models by introducing a fully joint model for both source
and human case sampling. This allows us to integrate over uncertainty in the source sam-
pling process, estimating both the prevalence of contaminated source samples and the relative
prevalence of each identified subtype, without resorting to an approximate marginal proba-
bility distribution on r. Furthermore, we introduce non-parametric clustering of pathogen
types using a Dirichlet process model on the type effect vector g, providing an automatic
data-driven way of reducing the dimensionality of q to aid model identifiability. We are able,
therefore, to circumvent the Hald model requirement for heuristically grouping pathogen types
(Section 3.2), as well as avoiding an arbitrarily strong prior distribution on a random effect
precision parameter as required by the Modified Hald model (Section 3.3).

4.1. Model

As with the Hald and Modified Hald models, the number of human cases y; identified by
isolation of subtype ¢ is assumed to be Poisson distributed so that

y; ~ Poisson(\;) (7)

The mean intensity \; is a linear combination of type and source-specific effects such that

Ai = ¢ Z a;jpij (8)
j=1

where a; represents the source effect, p;; the absolute prevalence of subtype ¢ in samples from
source j, and ¢; is the type effect for subtype i.

For each source j = 1,...,m, we model the number of positive samples x;; identified as type
1=1,...,nas
x; ~ Multinomial(n;, r;) 9)

where x; denotes the vector of type-counts in source j, n; denotes the number of positive
samples obtained from source j, and r; denotes a vector of relative prevalences of isolate
types in source j. The advantage of this model is that it automatically places the constraint
Y1 rij = 1, avoiding the approximation made in Mullner et al. (2009) where independent
Beta-distributed priors were assigned marginally to components of r; . The source case model
is then coupled to the human case model through the simple relationship

Dij = TijTj (10)

where 7; is the prevalence of any isolate in source j.

We note that in principle, a Beta distribution could be used to model =;, arising as the
conjugate posterior distribution of a Binomial sampling model for z; positive samples from
n; tested, and a Beta prior on m;. However, since within a particular source the number of
positive and negative samples are typically high, we choose to fix the source prevalences at
their point estimates (7; = z;/n;).

The type effects, g are drawn from a Dirichlet Process

qi ~ DP (ag, Qo) - (11)
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The Dirichlet Process is a random probability measure defined by a base distribution Qg
and a concentration parameter o, (Ferguson 1973). The base distribution constitutes a prior
distribution in the values of each element of the type effects q whilst the concentration pa-
rameter encodes prior information on the number of groups K to which each subtype ¢ is
assigned. For small values of «,, samples from the DP are likely to have a small number of
atomic measures with large weights. For large values, most samples are likely to be distinct,
and hence, concentrated on (Qy. A value of 1 implies that, a priori, two randomly selected
types have probability 0.5 of belonging to the same cluster (Gelman, Carlin, Stern, Dunson,
Vehtari, and Rubin 2013).

Yi

Figure 1: Directed acyclic graph of the source attribution model. See Table 1 for a concise
description of the parameters.
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Table 1: Description and definition of parameters used in our model.

Parameter Description Estimation
Aij Number of human cases from type i, source j  Aij = aj - qy() - Tij *
i Number of human cases from type i A = ;”:1 Aij
Aj Number of human cases from source j Aj =D Aij
Vi Number of human cases from type 4 y; ~ Poisson(\;)
Tij Number of positive samples (that were Data

successfully MLST typed) from source j, type i
hij Number of positive samples (PCR) that Data

could not be MLST typed.
n; Total number of samples from source j Data
j Prevalence of contamination for each source Z{Zl(:vij + hij)/n;
Tij Relative occurrence of type i on source j r; ~ Dirichlet(c)

or @i/ Ylit1 Tij

Dij Absolute prevalence of type 4 in source j Tij * TG
a; Unknown source effect for source j a ~ Dirichlet(ay)
i Unknown type effect for type ¢ in group k, q ~ DP(Gamma(ay, fBy), og)

where group k has an unknown value 6y,

4.2. Model extensions

The models can further be extended to incorporate a time and location dependence into the
model allowing different rates over time and in different locations (such as urban vs rural
cases). Let A;jjy be the expected number of infections of sequence type i attributable to
source j at time ¢ with location [. Then the observed human counts from a particular type ¢
during that time period in a particular location y;4; is given by

m
Yitl ~ POiSSO”(Z Aijitt)
j=1
where
Aijtl = QiQjeTijeTjt- (12)
Note that type effects q are assumed to be constant over all times and locations, and source
effects a are allowed to vary between times and locations. Importantly, the source sampling
information (r; and 7r;) are allowed to vary by time only. This is because of the the nature
of food source sampling at the point of sale, where food retailers move packaged meat long

distances from the farm to retail store. This is implemented in sourceR as shown in Section
5.1.

5. Case Studies

In this section we demonstrate the use of the sourceR package using two example data sets.
The first uses simulated data to demonstrate the general use case, with both time and location
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Table 2: Minimum parameters required for the saBayes function.
formula A formula object of the form y ~ z1+x2+ ...+ xJ, where y is the
name of the human cases column, and 1, ..., xJ are the names of
the source count columns in the data.

time A formula object of the form ~ ¢, where ¢ is the name of the
column containing the times in the data.

location A formula object of the form ~ [, where [ is the name of the
column containing the locations in the data.

type A formula object of the form ~ s, where s is the name of the
column containing the (sub) types in the data.

data Correctly formatted data.

priors List with parameters for the prior distributions for each of the
model parameters.

n_iter Specifies the number of iterations to run the algorithm for.

likelihood_dist Specifies the likelihood distribution to be used for the human cases

from each type. Must be one of nbinom or pois.

extensions for the model. The second is a specific case study using the the data described in
the motivation section (Section 2). The results (proportion of cases attributed to each source)
are compared to the results from the Dutch, Modified Hald and Island models.

5.1. Simulated data

In this section, we provide a worked example using simulated data with multiple times and
locations for source attribution data generated from the model in Section 4.1 (available in the
sourceR data sets). There are two times (1, 2) and two locations (A, B) over which the human
cases vary. The data expected by saBayes is in long format, with a column for the number
of human cases, the number of positive samples for each source, and columns identifying the
type, time and locations. Note, the source data is the same for all locations within a time.
For this data, the source prevalences (7;) are all set to be 1. If source prevalences are not
provided, saBayes will automatically set them all to 1 (with a warning). The data must be
in long format, with columns giving the number of human cases for each type, a column for
each of the sources giving the number of positive samples for each type, and columns giving
the time, location and type id’s for each observation.

require(sourceR)
set.seed(63164)
data(sim_SA)
data(sim_SA_true)

priors <- list(a =1, r = 1, theta = c(0.01, 0.00001))

res_sim <- saBayes(formula = Human ~ Sourcel + Source2 + Source3 + Source4 + Source5,
time = "Time, location = “Location, type = “Type,
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data = sim_SA$data, priors = priors,
alpha_conc = 1, prev = sim_SA$prev,
likelihood_dist = "pois", n_iter = 1010,
mcmc_params = list(burn_in = 20, thin = 1))

The algorithm is run for 102,000 iterations using the sourceR command, with an initial
burn in of 2000 iterations, followed by a further 100,000 iterations, of which every 100"
sample is saved. The acceptance rates for all parameters (except those updated using a Gibbs
sampler) can be found in a list called acceptance in the output from saBayes. Trace and
autocorrelation plots for the parameters (Figure 2) indicate that the Markov chain is mixing
well and has converged, and that thinning by 100 is adequate. The posteriors are returned
as nested lists for each parameter. The following R code demonstrates how to access the
posteriors for a given source ajy or type g; effects and a relative prevalence r;;q.

plot(res_sim$posterior$a$timel$locationAl[, "Source3d"], type="1")

plot(res_sim$posterior$ql, "type21"], type="1")

plot(res_sim$posterior$r$time2["typel7","Sourceb",], type="1")

source effect r A A
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Figure 2: Trace and acf plots for a sample of the model parameters. True values of the
parameters are shown in red.

Medians and Chen-Shao highest posterior density credible intervals (Chen and Shao 1991)
can be obtained for each parameter using the summary command.
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summary(res_sim, alpha = 0.05, thin = 1, burn_in = 0)

The data can be subsetted using the subset_posterior command.

subset_posterior(res_sim, params = c("a", "1i", "q"),
t ="1", 1= "B", j = c("Source2", "Sourcel"),
i = c("47", "10"), iters = c(3:10))

Both the full posterior and a subset of the posterior (generated using subset_posterior)
can be flattened into a data frame.

flatten(res_sim)

The marginal density plots of the proportion of cases attributed to each source at each time
and location (\j;) show that the true values (shown by a cross on the graph) are within the
credible intervals (Figure 3). The residual plots for A; (Figure 4) show that the model is
fitting well. The heatmap shows the grouping of the type effects (Figure 5) computed using
a dissimilarity matrix from the clustering output of the mcme. The coloured bar under the
dendrogram gives the correct grouping from the simulated data. This shows that all the types
have been grouped correctly if the dendrogram is cut at the true number of groups (5).

5.2. Campylobacteriosis cases in the Manawatu (2005-2008)

In this section, we apply sourceR to the campy (campylobacteriosis) dataset from Manawatu,
New Zealand, described in Section 2. We compare the results of our Bayesian non-parametric
approach with results from the Modified Hald and Island models. Types which do not have
any source cases need to be removed from the data set before running the analysis because
there is no information to attribute human cases to a source if the subtype only occurs in
humans.

data(campy)
set.seed(59623)

zero_rows <- which(apply(campy[,c(2 : 7)], 1, sum) == 0)
campy <- campy[-zero_rows,]

priors <- list(a =1, r = 1, theta = c(0.01, 0.00001))

tot_samples<-c(239, 196, 127, 595, 552, 192 + 332)
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0.4

Proportion of cases attributed
0.2

|

0.1

0.0
[

1A 1B 2A 2B 1A 1B 2A 2B 1A 1B 2A 2B 1A 1B 2A 2B 1A 1B 2A 2B

Source 1 Source 2 Source 3 Source 4 Source 5

Figure 3: Proportion of cases attributable to each source for each time (1, 2) and location
(A, B) for simulated data. Error bars represent 95% Chen-Shao credible intervals. True \;
values are shown as crosses.
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Figure 4: Residual plots (simulated data).
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groupings given by the 5 colours in the bar under the dendrogram).
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pos_samples<-c(181, 113, 109, 97, 165, 24 + 62)
prevs <- data.frame(value = pos_samples / tot_samples,
source_id = colnames(campyl[, 2:7]1))

res_real <- saBayes(formula = Human ~ ChickenA + ChickenB + ChickenC +
Bovine + Ovine + Environment,
type = "Type, data = campy, priors = priors, alpha_conc = 1,
prev = prevs, likelihood_dist = "pois", n_iter = 1020,
mcmc_params = list(burn_in = 20, thin = 1))

Trace and autocorrelation plots for the parameters indicate that the Markov chain is mixing
well and has converged, and that thinning by 500 is adequate for most of the parameters
(Figure 6). The residual plots for the A;s (Figure 7) show that the model is fitting the data
well. The proportion of cases attributed to each source ()\;) using the new model can be
compared to the previous models (Figure 8). The new model has very similar medians to
the modified Hald and Island models. The credible intervals are much narrower than the
modified Hald model, but still relatively wide compared to the Island model. The heatmap
and dendrogram of the type effects (Figure 9) shows that there are 3 main groups of type
effects. The violin plots (Figure 10) show that the largest group of types have very small type
effects. These correspond to types that are observed in source samples, but no human cases.
There is a group of 5 types which have very large type effects (including type 474 which is
endemic to NZ and largely associated with poultry). Although the clustering was determined
without reference to genetic relatedness of the types, three members of this group (subtypes
38, 48 and 474) are members of the same clonal complex (CC48) and therefore genetically
closely related (pubmlst 2016). Subtype 52 was frequently placed in both the groups with the
largest and middling type effects (as can be seen in Figure9, although overall it was attributed
to the group with the largest type effects.

6. Discussion

The sourceR package is the first implementation of a source attribution model in standard
statistical software that is easily accessible and intended for use by epidemiologists. The
simulation and case studies illustrate how the sourceR package might be used in practice to
identify important sources of infection. The new model is widely applicable, fully joint, and
does not require approximations or a large number of assumptions. Mixing and aposteriori
correlations are significantly decreased in comparison to the Modified Hald model. Further-
more, it can identify clusters of bacterial sub types with similar virulence, pathogenicity and
survivability.

6.1. Clustering of the type effects

The clustering has significantly reduced the effective number of parameters in the model. The
dendrogram and heatmap indicate that there are three main groups identified by the model.
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Figure 9: Heatmap showing the grouping of the type effects (q) using the Manawatu Campy-
lobacter data.
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It is more difficult to estimate the type effect if there are very few positive source samples
for that type because large changes in the type effect may not result in much change to the
estimated number of human cases. In the Campylobacter data set (Mullner et al. 2009), there
is very little information about the source effects for the types in the largest group identified
in the clustering because the source matrix for these types is very sparse, and all have zero
human cases. This means that the type effect becomes very small and dominates the source
effect.

Care must be taken in performing marginal interpretations of the number of parameters. It
is much easier to split a group into two (with similar group means) than it is to merge two
groups with clearly different means. Hence, a histogram of the number of groups per iteration
is positively skewed compared to the true number of groups. When fitting the model with
simulated data, visually assessing the dendrogram and heatmap to determine the number
of groups usually provides a closer value to the true number of groups than looking at a
histogram, particularly when the group means are well separated.

The results of the clustering of the type effects is of biological interest as it could be used to
identify alleles that are correlated with high (or low) virulence, survivability and pathogenicity.
The analysis could therefore provide an early warning system for the emergence of danger-
ous pathogen types in, for example, a particular food processing facility. Additionally, it
may identify clusters of strains having particular traits that could be explored using further
genotyping or phenotyping assays.

6.2. Posterior correlations between the source and type effects

In the Hald and Modified Hald models there is an inherent posterior correlation between the
mean of the source and type effects because the model does not include an explicit mean
or constrain the scale of the source or type parameters. This causes a decrease in mixing
quality and increases the width of the credible intervals for the source and type effects. This
correlation has been greatly reduced in our model by constraining the scale of the source effects
using a Dirichlet prior. However, aposteriori correlations between some source and type effects
(and hence some \; parameters and the source and type effects) may occur if the source matrix
is highly unbalanced (especially if it contains many zero’s as in the Campylobacter data set
used above). Although a highly unbalanced source matrix can make fitting the model difficult,
a heterogeneous distribution of types is a essential for the model to find the solution with
the highest probability of occurrence, as there would be little information contained in the
observations of human cases if the types were approximately equally distributed among the
food sources (Hald et al. 2004). The introduction of uncertainty into a relative prevalence
matrix prevents any source-type combination from being 0 which reduces the heterogeneity
of the relative prevalence matrix because it forces the larger components to be reduced (as
the vector r; must sum to 1 over the types for each source). Whether or not to allow true
zero’s in the prevalence matrix depends on whether there are truly apathogenic types (for a
particular source).

The source matrix for the simulated data analysed in Section 5.1 was drawn from a Uniform(1, 100)
distribution which meant the matrix was not sparse, nor highly imbalanced. Simulating data
with a sparse, highly unbalanced source matrix reduced mixing quality and increased poste-
rior correlations between some source and type effects. Alternative fitting algorithms such
as NUTS (Homan and Gelman 2014) converge to high-dimensional target distributions much
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more quickly than simpler methods such as random walk Metropolis or Gibbs sampling (that
are currently used in sourceR). This is because they avoid the random walk behaviour and
sensitivity to correlated parameters that are causing slow mixing for the highly unbalanced
Campylobacter data set. Currently, Dirichlet processes cannot be fitted using NUTS, hence,
a hybrid algorithm, where the clustering is fitted using a standard CRP, and the other pa-
rameters are updated using NUTS would likely improve mixing significantly. This may be
implemented in a future release for the sourceR package.

If there are multiple times and / or locations, it is much easier to identify the type effects
groups because they are constant over all times and locations.

6.3. Comparison of the number of cases attributed to each source for current
source attribution models

Figure 8 shows the proportion of cases attributed to each source for each of the commonly
used source attribution models in addition to the new model. The median values are similar
between all models except the Dutch method. The credible intervals of the Dutch model are
very narrow because there are far fewer parameters in the model, however, the lack of source
and type effects in the model biases the results.

The Island model has much narrower credible intervals than the other models, however it is
much more complex than the other models, and hence it has many implicit assumptions (such
as the assumptions about mutation, recombination and migration rates, which are likely to
be gross simplifications). The narrower credible intervals produced by the Island model could
be due to more bias (if the model assumptions are not correct) or more accuracy (due to
the additional genetic information that is used). Our model (as with the Hald and Modified
Hald models) ignores the genetic similarities between types, which loses some information and
prevents attribution of novel types in human isolates to a likely source. However, the Island
models reliance on detailed genetic data prevents the use of data where phenotypic typing
methods were used, reducing the range of data for which the model is applicable.

The modified Hald model has very wide credible intervals compared to the other models. This
may be because the prevalence matrix is less restricted (as it is modelled using independent
Beta’s for each ij), that uncertainty is modelled for the source prevalences (7;) or that the
model is less identifiable due to the effective number of parameters still being large. Although
it would be preferable to allow uncertainty in the source prevalences, we decided to use point
estimates in our model. This is because they have the same functional form as the source
effects in the model, hence they cannot be identified from the source effects in a fully joint
model without very strong priors.

6.4. Source and type effect interpretation

The interpretation of source and type effects for this model depends on the quality and type
of data collected, the model specification, and the characteristics of the organism of interest.
Type effects summarise the characteristics that determine a types capacity to cause an in-
fection, such as survivability during food processing, pathogenicity or virulence (measured in
cases per dose of bacteria population). Source effects account for the ability of a particular
source to act as a vehicle of infection. This includes factors such as the amount of the food
source consumed (if an offset for consumption is not used), the physical properties of the
source and the environment provided for the bacteria through storage and preparation. A
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high source effect may reflect a high exposure, but not necessarily a high ability of the indi-
vidual food source to cause disease. Including an environmental source in the model can be
thought of as grouping the (individually) unmeasured wildlife sources into one. It may also
be a transmission pathway for pathogens present in livestock sources (for example, through
the contamination of waterways) which complicates the interpretation meaning the source
effects no longer directly summarize the ability of the source to act as a vehicle for food-borne
infections (Hald et al. 2004).

6.5. Apathogenic subtypes

Potentially pathogenic types (that is types found in the sources but not humans) are included
in the model as it is assumed that these types are rarely (rather than never) found in humans.
The model cannot attribute types that have been detected in humans but not in any of the
sources because there is no information relating them to the sources (as with the Hald and
modified Hald models). The Island model (Wilson et al. 2008) can attribute types undetected
in a source using inferences on genetic relatedness, however, it cannot use data where types
are distinguished by phenotypic characteristics. In addition to excluding human cases for
types not detected in any sources, cases with a history of travel in the incubation period are
assumed to have acquired the disease overseas, and are therefore excluded from the model.

At present it is assumed that both humans and all sources can potentially be infected by all
types, albeit some very rarely. If a type is truly apathogenic in humans, then this approach
is likely to overestimate the type incidence A;. A future development may therefore be to to
allow for zero inflation in the prevalence matrices and human data. However, the sourceR
package currently allows the relative prevalence matrix to be fixed at the maximum likelihood
estimates, which includes zero values where a particular type was not detected in any samples
from a source. Fixing the relative prevalence matrix increases the posterior precision, but
the results may be biased if the source data is not of a high quality. The relative prevalence
matrix can be fixed by setting r to TRUE in the params_fix argument to saBayes.

6.6. Model extensions

There are many alternative model extensions to those implemented in the sourceR package.
These include:

1. Adding in an independent time and/or location term

2. Adding time and/or location dependence to the type factors g;

3. Model autocorrelation between parameters over time

4. Add interaction terms between the source and type effects
Extension 1 is useful for modelling dynamic behaviour, however, it assumes that the
changes are independent of sources and types. It is more likely that the changes are spe-
cific to a few sources or types. Hence, it is preferable to add the dependence into the source

and/or type terms so that is is possible to identify which parts of the epidemiology are likely
to be the cause of the observed changes in the attribution. This model is a subset of the other
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models where the time/ location dependent behaviour is independent of the source, type and
prevalence.

Extension 2 involves adding temporal or location dependence to the type effects. Type
effects do not change in each location as they depend on the genetics of each bacterial subtype.
Evolution of subtypes over time could cause changes to their virulence, pathogenicity and
survivability (and hence type effect). There is evidence that Campylobacter can evolve quickly
Wilson, Gabriel, Leatherbarrow, Cheesbrough, Gee, Bolton, Fox, Hart, Diggle, and Fearnhead
(2009), however, assuming the type effects are fixed over time is equivalent to assuming that
the types are likely adapted to a particular source, and that any further adaptation to a new
source is likely to coincide with a change in biology, and hence, the introduction of a new
sequence type (French and Marshall 2009). Changes to the type effects over time (or location)
are likely to have a much smaller impact on the source attribution than changes to the source
effects because the source factor applies to all subtypes on a given source (and there are many
more types than sources). At present, the package does not support type effects changing
over time, however, this is a feature that may be implemented in a further release.

Future releases of the package will also allow the user to independently specify whether the
source, type and prevalence parameters are time or location dependent. Currently, if the
human cases are modelled with time and location information, the source effects must also
vary over the same times and locations, whilst the relative prevalence matrix must vary over
only the times. For example, it may be preferable to use a single prevalence matrix (if
subsetting the matrix over time makes it too sparse, or if the source data was collected at
different times to the human data), but allow the human cases and source effects to vary over
time.

Extension 3: another improvement would be to allow autocorrelation between the param-
eters over time, rather than modelling them as separable. An AR(1) model has been used in
NZ attribution studies via modifications to the asymmetric island model (French and Marshall
2015).

Extension 4 involves adding interaction terms between the source and type effects to the
model to allow for the biologically plausible possibility that certain subtypes are more or less
likely to survive and cause disease, dependent on the food source they appear in. However,
this would significantly increase the number of parameters and reduce identifiability of the
model.

7. Conclusions

In this article, we have presented a novel source attribution model which builds upon, and
unites, the Hald and Modified Hald approaches. This model allows the data to inform type
effect clustering using a Bayesian non-parametric model. This is a significant improvement
over the previous attempts to improve model identifiability by reducing the effective number of
parameters (fixing some source and type effects, or modelling the type effects as random using
a 2 stage model). Like the Modified Hald model, the new model incorporates uncertainty in
the prevalence matrix into the model, however, it does this by fitting a fully joint model rather
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than a 2 step model. This has the advantage of allowing the human cases to influence the
uncertainty in the source cases and preserves the restriction on the sum of the prevalences for
each source. The sourceR package implements this flexible Bayesian non-parametric model
to enable straightforward attribution of cases of zoonotic infection to putative sources of
infection by epidemiologists and other scientists.
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Algorithm 1 Chinese restaurant algorithm to update the type effects.

Initialise: Setup output matrices and initial values
for z in 1:niter do

Step 1 : Update source effects (a) for each time ¢ and location ! (adaptive single site
Normal random walk Metropolis-Hastings).
Propose a; ~ Normal (aj,0) where o equals ¥, w.p. 0.95 and o, otherwise.
if z mod(50) == 1 then
Update ,: ¥ = 3, + sign (current acceptance rate a; — 0.45) x min (0.01, 27%5)
end if
Rescale a_; such that 377", a; =1
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Accept proposed aj w.p.

Step 2 : Update components of the relative prevalence matrices (r;;) for each time ¢
(adaptive single site Normal random walk Metropolis-Hastings).
Propose r;; ~ Normal (r;5,0) where o equals X, w.p. 0.95 and o, otherwise.
if 2 mod(50) == 1 then
Update X,: X% = X, + sign (current acceptance rate r;; — 0.45) x min (0.01, z
end if
Rescale r_;; such that > ;' 7 =1
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—0.5)

Accept proposed i W.p.

Step 3 : Update type effects (q) using a blocked Gibbs sampler (chinese restaurant

construction).
See Algorithm ?7? for details.

end for
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