secrdesign miscellaneous tools
Murray Efford

2017-10-09
Contents
Introduction 1
Expected sample size 2

Predicted precision of density estimates 2
A rule of thumb for precision 2
Poisson N vs fixed N e 2
Geometry correction factor L 2

Characterisation of detector arrays 3
Costing 3
Example Lo 3
Demonstration of scenarioSummary 4
Optimal detector spacing 4
What does optimalSpacing do? L 4
Parameter values L e 5
Rule-of-thumb optimisation e 5
Simulations L e 6
More plotting L 7
Pathological designs 8
Making do without pilot values: function getdetectpar 9
Limitations 10
References 10
Appendix 1. A rule of thumb for RSE(D) 11
Appendix 2. Extending rule-of-thumb RSE to fixed N, binomial n 14
Appendix 3. Technical issues. 14

Introduction

This vignette focuses on functions in secrdesign that aid the evaluation of study designs without the more
time-consuming step of simulation (see secrdesign-vignette.pdf for simulation).

For each scenario we would like to determine —

1. Expected sample size for a given design (Enrm)

http://www.otago.ac.nz/density/pdfs/secrdesign-vignette.pdf

2. Predicted precision of density estimates, given expected sample size (minnrRSE)
3. Costing (costing)
4. Detector spacing that maximises precision (optimalSpacing)

Components 1-3 are wrapped together in the function scenarioSummary, which accepts a dataframe of
scenarios constructed with make.scenarios (described in secrdesign-vignette.pdf).

Expected sample size

Expected sample sizes (component 1 above) are covered in detail in secrdesign-Enrm.pdf. Formulae are
provided for hazard detection functions (‘HHN’, ‘HEX’ etc. with parameters ‘lambda0’ and ‘sigma’) rather
than the more familiar probability-based functions (‘HN’, ‘EX’ etc. with parameters ‘g0’ and ‘sigma’).
There is no exact conversion between corresponding functions (e.g. ‘HN’ and ‘HHN’) because they differ
in shape. However, an approximate conversion is built into Enrm and functions that draw on it. This sets
Ao = —log(1 — go) and scales o so that the probability-of-detection curves cross at ¢’ = o.

Predicted precision of density estimates

Our measure of precision (strictly, its inverse) is the relative standard error (RSE)!. Precision depends on
sample size. We characterise the size of a SECR sample by the number of distinct individuals n and the
number of recaptures r, where the total number of detections is C' = n + r. Expected values of n and r
can be computed directly for detectors of type? “multi”, “proximity” or “count”, given an SECR model
(secrdesign-Enrm.pdf).

A rule of thumb for precision

There is an approximate relationship between expected sample size (n and r) and the precision of density
estimates. This ‘rule of thumb’ suggests that RSE(D) & 1/4/min(n,r) (Appendix 1). The method is faster
and easier than simulating many scenarios, Wthh is the usual approach in the literature and elsewhere in
secrdesign. However, the result is approximate and disregards possible bias: it is wise to check with a few
simulations (the optimalSpacing function includes optional simulations).

Poisson N vs fixed N

The distinction between Poisson n and binomial n (Poisson vs fixed N) can have a substantial effect on
RSE(D) as detailed in Appendix 2. Output from scenarioSummary includes both the rule-of-thumb RSE for
Poisson n (‘rotRSE’) and this value adjusted for binomial n (‘rotRSEB’).

Geometry correction factor

For some geometries, RSEi(ﬁ) is underestimated by the plain rule-of-thumb. This is covered by including
a simple multiplier RSE(D) ~ CF/4/min(n,r) where CF > 1. The value of CF should be determined by
simulation; typical values are CF ~ 1.2 for a hollow grid and CF =& 1.4 for a line of detectors.

1RSE(D) = @(ﬁ)/ﬁ, ‘coefficient of variation’ (CV) is also sometimes used for RSE(D).
2See secr-overview.pdf for more on detector types.

http://www.otago.ac.nz/density/pdfs/secrdesign-vignette.pdf
http://www.otago.ac.nz/density/pdfs/secrdesign-Enrm.pdf
http://www.otago.ac.nz/density/pdfs/secrdesign-Enrm.pdf
http://www.otago.ac.nz/density/pdfs/secr-overview.pdf

Characterisation of detector arrays

Metrics not reported by summary.traps may be useful for understanding the performance of a detector
layout. scenarioSummary currently reports —

Metric Description

arrayN Number of detectors per array
arrayspace Mean distance to nearest detector in sigma units
arrayspan Maximum dimension of array in sigma units

Costing

The current arguments of the costing function are

function (traps, nr, noccasions, unitcost = list(), nrepeats = 1, routelength = NULL,
setupoccasion = TRUE)

Unit costs are provided in the unitcost argument. The costing algorithm applies up to 5 unit costs as in the
following table.

Component Unit cost Costing

arrays perarray perarray X nrepeats

detectors perdetector perdetector x nrow(traps) X nrepeats

travel perkm perkm X routelength x (noccasions+1) X nrepeats
visits pervisit > (pervisit x trapcost) X (noccasions+1) x nrepeats
detections perdetection perdetection x (E(n) + E(r))

‘arrays’ and ‘detectors‘ represent one-off costs. ‘nrepeats’ is the number of replicate detector arrays (default
1): it is a multiplier in all costings except for ‘detections’, where it is implicit in E(n) and E(r).

‘travel’ and ‘visits’ are alternative ways to cost field time. The variable ‘routelength’ represents the length
of a path followed to visit all detectors; if not specified it is approximated by the sum of the nearest-trap
distances (nrow(traps)-1) x spacing(traps). The variable ‘trapcost’ is a vector of length equal to the number
of detectors. By default it is a vector of 1’s, but detector-specific values may be provided as trap covariate
‘costpervisit’ In the latter case the value of ‘pervisit’ should be 1.0 for clarity.

The total cost is the sum of the 5 components, some of which may be zero.

Example

Suppose each detector check costs $5 and each detection costs $15 to process —

tr <- make.grid(8, 8, spacing = 25)

msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')

nrm <- Enrm(D = 5, tr, msk, list(lambdaO = 0.2, sigma = 20), 5)
costing (tr, nrm, 5, unitcost = list(pervisit = 5, perdetection = 15))

travel arrays detectors visits detections totalcost
0.0000 0.0000 0.0000 1920.0000 895.3985 2815.3985

If detectors differ in their cost of access we record detector-specific costs in the trap covariate ‘costpervisit’.
Here we mock up an example in which cost increases with distance from the bottom left detector —

covariates(tr) <- data.frame(costpervisit = 5 + edist(tr, tr[1,])/20)

You might like to visualise the gradient in per-detector cost with plot(as.mask(tr), cov =
'costpervisit'). Cost of access varies from $5 to $17.37, and it costs $757.76 to visit all 64
sites.

The covariate ‘costpervisit’ is detected automatically and multiplied by pervisit during costing. Hence

costing (tr, nrm, 5, unitcost = list(pervisit = 1, perdetection = 15))

H# travel arrays detectors visits detections totalcost
#Hi# 0.0000 0.0000 0.0000 4546.5651 895.3985 5441.9636

Demonstration of scenarioSummary

Here is a simple demonstration comparing two scenarios in the dataframe scenl constructed with
make.scenarios. The default probability-based halfnormal detection function (paramaters g0, sigma) is
converted to a hazard detection function with a warning (not shown here).

scenl <- make.scenarios(D = c(5,10), g0 = 0.2, sigma = 25, noccasions = 3)
scenarioSummary(scenl, tr)

scenario trapsindex noccasions nrepeats D g0 sigma detectfn En Er Em
1 1 1 3 1 50.2 25 0 27.652 22.453 19.601
2 2 1 3 110 0.2 25 0 55.303 44.905 39.203
esa CF rotRSE rotRSEB arrayN arrayspace arrayspan
1 5.530333 1 0.2110 0.1714 64 1 9.8995
2 5.530333 1 0.1492 0.1212 64 1 9.8995

Focusing on costings, if each detector check costs $5 and each detection costs $15 to process —

summ <- scenarioSummary(scenl, tr, costing = TRUE,
unitcost = list(pervisit = 5, perdetection = 15))
summ[,c(1,22:24)] # selected columns

scenario visits detections totalcost
1 1 15155.22 751.5651 15906.78
2 2 15155.22 1503.1301 16658.35

Optimal detector spacing

Our goal is to find the detector spacing that maximises the precision of SECR estimates of density.

The function optimalSpacing starts with a preferred array geometry (e.g., a square grid of 64 traps)®. We
assume you have pilot estimates of density D and the detection parameters Ao and o (see Making do without
pilot values if you lack these).

What does optimalSpacing do?

The function performs four tasks for a given geometry and SECR model:

1. Find the detector spacing that minimises RSE(D), using the rule of thumb.

3optimalSpacing is also useful for comparing different candidate geometries, but we do not demonstrate that.

N

2. Compute rule-of-thumb RSE(D) for a range of spacings

3. For selected detector spacings, determine RSE(ﬁ) and the relative root-mean-square-error of D by
simulation®.

4. Plot the results.

The current argument list is

str(optimalSpacing)

function (D, traps, detectpar, noccasions, nrepeats = 1, detectfn = c("HHN",

it "HHR", "HEX", "HAN", "HCG", "HN", "HR", "EX"), fittedmodel = NULL, xsigma = 4,
#it R = seq(0.2, 4, 0.2), CF = 1, simulationR = seq(0.4, 4, 0.4), nrepl = O,
plt = FALSE, ...)

Steps 3 and 4 are optional, depending respectively on ‘nrepl’ and ‘plt’. Setting CF does not change the
optimal spacing determined by optimalSpacing.

Parameter values

Pilot values are required for the population density D and detection parameters \g and o. It is assumed that
D has units animals per hectare (0.01 km?) and ¢ is in metres. For these units the product oD usually
falls in the range 20-110.

Parameters A\g and o define a detection function. The supported detection functions are a subset of those
available in secr - those that directly model the hazard of detection (‘HHN’, ‘HEX’ etc.; see ?detectfn in
secr). Values of Ay and o obtained by fitting a hazard function are numerically similar to the corresponding
values of go and o from fitting a probability function (‘HN’, ‘EX’ etc.), but they are not identical. See also
Making do without pilot values.

Rule-of-thumb optimisation

grid <- make.grid(8, 8, detector = "proximity") # 64 binary prozimity detectors

par(mar = c(4,5,2,2), mgp = c(2.4,0.6,0))

out <- optimalSpacing(D = 5, traps = grid, detectpar = list(lambda0 = 0.2, sigma = 20),
noccasions = 5, plt = TRUE)

4Estimated as rRMSE(D) = % \/Z:y;l(ﬁl — D)2/m from m replicate simulations.

0.5

0.4

0.3

RSE D

0.2

0.1

0.0

Spacing — ¢ units

Fig. 1. Precision of density estimates predicted by rule-of-thumb for various spacings. Dot shows optimal
spacing. The x axis corresponds to argument R.

Now examine the numeric rule-of-thumb output, dropping the first component which is a lengthy dataframe:
out$rotRSE[-1]

$optimum.spacing
[1] 34.70044

##

$optimum.R

[1] 1.735022

##

$minimum.RSE

[1] 0.1616114

The optimum spacing of about 35 metres is predicted to yield estimates with RSE(ﬁ) ~ 16%.

Simulations

Simulations are more reliable for predicting RSE(D) than the rule of thumb, and additionally allow the
assessment of bias, but they are much slower. Simulations may be performed for a selection of relative detector
spacings merely by specifying nrepl > 0 in optimalSpacing. Only simple models are allowed, with the same
restrictions as for the rule-of-thumb calculations (single session, constant detector type, homogeneous density,
constant detection parameters etc.).

Simulation to predict RSE does not require many replicates — nrepl = 20 is often enough. RB and rRMSE
are more variable than RSE and hence require larger values of nrepl.

Here is a simple example®. Results are overplotted.

5In Windows you may need to respond to a firewall request to allow parallel processing (ncores>1).

par(mar = c(4,5,2,2), mgp = c(2.4,0.6,0))

out2 <- optimalSpacing(D = 5, traps = grid, detectpar = list(lambda0 = 0.2, sigma = 20),
noccasions = 5, plt = TRUE, ylim = c(0,0.6),
nrepl = 20, ncores = 2, seed = 237)

0.6

0.5

0.4

0.3

RSE D
<

0.2

0.1

0.0

Spacing — ¢ units

Fig. 2. Simulated RSE(D-hat) (open circles) corresponding to Fig. 1. Vertical lines indicate a £2SE
confidence interval.

Predicted RSE was extreme (off the plot, or nearly so) for the smallest and largest spacings simulated.

More plotting

Plots may be overlaid to better illustrate relationships. This example shows the effect of varying Ag.

par(mar = c(4,5,2,2), mgp = c(2.4,0.6,0), mfrow = c(1,1))

cols <- c("blue","orange","red")

set up plot

plot(0, O, type = "n", xlim = c(0,4), ylim = c(0,0.6),
xlab = expression(paste("Spacing - ", sigma, " wunits")),
ylab = expression(paste("RSE ", hat(italic(D)))))

for three wvalues of lambdaO. ..

lam0 <- c(0.1, 0.2, 0.5)

for (i in 1:3) {
out <- optimalSpacing(D = 5, traps = grid, noccasions = 5,
detectpar = list(lambdaO = lamO[i], sigma = 20))
plot(out, add = TRUE, col = cols[i], 1lwd = 1.5)
}
legend ("top", col = cols, lwd = 1.5, pch = 16, legend = lamO,

bty = "n", horiz = TRUE)

@_
o —— (0.1 0.2—— 05
o
0
v_
o
<0
W ™M_]
n o
4
N
N -
|
o
o _|
© 5 i i i i
0 1 2 3 4

Spacing - o units

Fig. 3. Rule-of-thumb RSE(ﬁ) and optimal spacing for three levels of \yg. Other parameters as in Figs. 1
& 2.

Pathological designs

If we examine the simulation results from optimalSpacing more closely we see that the large simulated RSE
are associated with large bias and RMSE:

out2$simRSE[-1] # do not show each simulation

$summary
R n RSE.mean RSE.se RB.mean RB.se rRMSE

1 0.4 20 0.45341 0.02901 -0.07823 0.09463 0.4198500
2 0.8 20 0.27234 0.00760 0.01113 0.05862 0.2557469
3 1.2 20 0.21274 0.00504 -0.01222 0.04445 0.1941167
4 1.6 20 0.17470 0.00304 0.09740 0.03449 0.1791289
5 2.0 20 0.18390 0.00524 0.01661 0.04363 0.1909130
6 2.4 20 0.18628 0.00511 0.06975 0.05294 0.2410639
7 2.8 20 0.21976 0.00803 0.04261 0.05109 0.2267497
8 3.2 20 0.22613 0.00817 0.11583 0.06699 0.3141348
9 3.6 20 2.32601 1.96537 0.45628 0.33361 1.5240866
10 4.0 20 254.58228 252.35949 0.69471 0.45808 2.1141319

Clearly SECR is unreliable for these spacing scenarios — we can describe them as ‘pathological’. The rule-
of-thumb RSE is unreliable for pathological scenarios, so we have an incentive to first reject such scenarios.
However, objective criteria for pathological scenarios are elusive.

At one extreme, the SECR model is unidentifiable when recaptures provide no information about the scale
of detection - the case when all recaptures are at zero distance from the first capture. This happens when
detectors are too far apart (R >> 1).

Recaptures also provide inadequate information about the scale of detection when the entire array spans only
a few of the sites at which an individual may be detected - the case when the array is much smaller than one
home-range.

Making do without pilot values: function getdetectpar

So far we have required plausible estimates of the model parameters D, Ag and o. These may be based on a
pilot study or literature search.

If no prior information is available for A\¢g and ¢ then ballpark values may be inferred from the likely density
D and the expected total number of detections C'.

Function getdetectpar first infers o from D using the relationship o = k/v/D (Efford et al. 2016). This
requires a value for k; unpublished results suggest k is commonly in the range 0.3—1.1, and the default of
k = 0.5 is somewhat conservative. If o is known then it may be provided to override this step.

A numerical search is then conducted for the value of Ag that results in C' expected detections with the given
design.

Using the 64-detector grid from before:

msk <- make.mask(grid, buffer = 100, type = 'trapbuffer')
getdetectpar(D = 5, C = 200, traps = grid, mask = msk, noccasions = 5)

$lambdal

[1] 0.2458863
##

$sigma

[1] 22.36068

Beyond seeking a single Ay, we can examine the effect of varying C and k:

Cval <- seq(20, 400, 40)
kval <- c(0.4, 0.6, 0.8)
plot (0, O, type = 'n', xlim = c(0,400), ylim = c(0,1.1), las = 1,
xlab = expression(paste('Total detections ', italic(C))),
ylab = expression(paste('Inferred ', lambdal[0])))
for (i in 1:3) {
lam0 <- sapply(Cval, getdetectpar, D = 5, sigma = NULL, k = kvall[i],
traps = grid, mask = msk, noccasions = 5)[1,]
lines (Cval, lam0O, col = cols[i])
}
legend ("top", col = cols, lwd = 1.5, pch = 16, legend = kval,
bty = "n", horiz = TRUE)

10 — —— 04 0.6—— 0.8

Inferred A,
o
(@]
|

0.2

0.0 e

I I I I I
0 100 200 300 400

Total detections C

Fig. 4. Values of the parameter Ay (lambda0) corresponding to varying total number of detections for
a particular density and sampling design. Curves correspond to different levels of the crowding (overlap)
parameter k as shown. The levels of k in this case correspond to sigma = 17.9, 26.8, 35.8m.

Limitations

)

The scope of ‘optimalSpacing’ is limited to single-session capture-recapture models with ‘multi’; ‘proximity
or ‘count’ detectors (this excludes single-catch traps). It is assumed that ‘detectpar’ and ‘detector’ do not
differ among occasions.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for capture-recapture
studies. Biometrics 64, 377-385.

Efford, M. G., Dawson, D. K., Jhala, Y. V. and Qureshi, Q. (2016) Density-dependent home-range size
revealed by spatially explicit capture-recapture. Ecography 39, 676-688.

Huggins, R. M. (1989) On the statistical analysis of capture experiments. Biometrika 76, 133-140.
Seber, G. A. F. (1982) The estimation of animal abundance and related parameters. 2nd Ed. Griffin, London.

10

Appendix 1. A rule of thumb for RSE(D)

Recaptures are the lifeblood of capture-recapture estimators. It has long been known that the variance of a
simple Lincoln-Petersen 2-sample estimate of population size N depends directly on the number of captures
of marked animals r (var(N) & 1/r; Seber 1982 p. 61).

Perhaps surprisingly, the relationship also holds approximately for the variance of density estimated by SECR.
However, in practice there is a clear divergence from the variance of simulated estimates for large » when n
remains small (Fig. 5a). Empirically, this may be corrected by relying on n rather than r as the measure of
sample size when n < r, hence the rule-of-thumb RSE(D) ~ 1/+/min(n,r) (Fig. 5b). The approximation
overstates the precision of D for more linear detector arrays and a correction factor may be needed (M. Efford
unpubl. results).

The simulations in Fig. 5 are for a scenario in which a square 8 x 8 grid of “count” detectors was operated
for 5 occasions. Code follows.

nk <- function (x, k = 0.5, target= 20, grid, mask, noccasions = 5) {
x s lambdaO; k ts sigma in units of 1_D
D = 1 because tn LD units
nrm <- Enrm(D = 10000, traps = grid, mask = mask, detectpar =
list(lambda0 = x, sigma = k), noccasions = noccasions)
nrm['Er'] - target

}
tryit <- function (r= 20, k = 0.5, grid, mask, noccasions = 5, nrepl = 5) {
find occasion-specific lambda0O that provides r recaptures given sigma = k
ur <- try(uniroot(nk, interval = c(0.001, 100), target = r, k = k,
grid = grid, mask = mask, noccasions = noccasions))
if (inherits(ur, 'try-error'))
lam0 <- NA
else
lam0 <- ur$root * noccasions
output <- matrix(nrow = nrepl, ncol = 12,
dimnames=1ist(NULL,c('Er','k','lam0','n','r', 'pMove',
'D','SE', 'sig', 'SEsig','CV', 'CVsig')))
output[,1] <- r
output[,2] <- k
output [,3] <- lamO
if (is.na(lam0)) return(output)
for (i in 1:nrepl) {
CH <- sim.capthist(grid, popn = list(D = 10000, buffer = 4), noccasions = 1,
detectfn = 14, detectpar = list(lambdaO = lamO, sigma = k))
output [i,4] <- nrow(CH) #n
output[i,5] <- sum(CH)-nrow(CH) # r
output[i,6] <- sum(unlist(moves(CH))>0, na.rm=TRUE) / output[i,5]
if (nrow(CH)>4) { # autoini limit n>4 in secr.fit
fit <- secr.fit(CH, mask=mask, detectfn=14, trace=F)
if (inherits(fit, 'secr')) {
out <- c(unlist(predict(fit)['D',2:3]),
unlist(predict(fit) ['sigma',2:3]))
out [5] <- out[2]/out[1]
out [6] <- out[4]/out[3]
output[i,7:12] <- out

11

output

}

runtrials <- function(grid, mask, Er = c¢(5,10,20,50,100,200), kval = c(0.5,1)) {
rk <- expand.grid(Er, kval)
mapply (tryit, rk[,1], rk[,2], MoreArgs = list(grid = grid, mask = mask),

SIMPLIFY = FALSE)

}

grid6é4 <- make.grid(nx = 8, ny = 8, detector = 'count', spacing = 1)

mask64 <- make.mask(grid64, nx = 32, type = 'trapbuffer', buffer = 4)

trials2 <- runtrials(grid64, mask64)

plottrials <- function (trials, title = '', hline = c(0.1, 0.2, 0.5, 1),
xmax, type = 'r', x1, label = '') {
plot(0,0,type = 'n',xlim = c(0,xmax), ylim = c(0.05,2), log = 'y',
yaxs = 'i', xaxs = 'i',
ylab = expression(paste('RSE(', hat(italic(D)), ')")),
xlab = '', axes = FALSE)
axis(1)

axis(2, at = ¢(0.05,0.1,0.2,0.5,1,2), las =1,
labels = ¢('0.05','0.1','0.2','0.5','1','2"))
box ()
lines(1:xmax, 1/sqrt(1l:xmax))
abline(h = hline, 1ty = 2, xpd = FALSE)
tmp <- as.data.frame(do.call(rbind,trials))
mtext(side = 1, line = 2.4, x1, cex = 0.9, xpd = TRUE)
xval <- if (type == 'r') tmp$r else pmin(tmp$n,tmp$r)
points(xval, tmp$CV, pch=21, bg = "red", cex=1.4, xpd=TRUE)
usr <- par()$usr
text ((usr[2]-usr[1])*-0.2, (usr[4]-usr[3])*1.9, label, cex = 1.3, xpd = TRUE)

invisible()
}
par(mfrow = c(1,2), mar = c(4,5,3,1), mgp = c(2.4,0.8,0))
plottrials(trials2, '', xmax = 270, x1 = expression(italic(r)), type = 'r', label = 'a.')
plottrials(trials2, '', xmax = 120, x1 = expression(paste("min(",italic(n), ","

italic(r),")")), type = 'nr', label = 'b.')

12

a.
2

))

i} i}

0)

4 4

0.05 T T T T T 0.05 T T T T T
0 20 40 60 80 100 120

min(n,r)

Fig. 5. Precision of simulated SECR density estimates as function of two measures of sample size, number
of recaptures of marked animals r and number of individuals n. (a) r alone, and (b) minimum of n and r.

Each point represents one of 5 replicates for each of 12 scenarios (see text).

13

Appendix 2. Extending rule-of-thumb RSE to fixed N, binomial n

Appendix 1 ignored an important distinction that is addressed here. The sampling variance (precision) of
density estimates depends on the nature of the sample:

e By default secr, treats the study population as a cookie-cutter sample from a larger universe, and
the variance includes survey-to-survey variation in N, the number of individuals in the (realised) local
population. The variation in N usually Poisson, and the number of individuals actually detected n is
also Poisson-distributed. This approach has the advantage that the estimated sampling variance does
not depend on the (possibly arbitrary) extent of the local population (the size of the cookie cutter).

o Another scenario is that we are concerned only to estimate the unique, immediate, realised population
size. The local population is our target, and IV is a fixed quantity that depends on the size of the cookie
cutter A. The number of individuals actually detected is then binomial rather than Poisson.

In the first case our estimate is of the expected density across multiple surveys of a population with the
same density parameters. In the second case our estimate is of the realised density in a particular survey.
The difference lies in the inclusion or exclusion of between-survey variance. Excluding that component of
uncertainty results in lower variance and narrower confidence intervals. The magnitude of the difference
decreases as A increases, and in the limit as A — oo it disappears.

The rule of thumb as presented in the previous section concerns the Poisson-NN case that is the default in
secr. Here we develop an adjustment for the rule of thumb when the target population occupies a known
region of area A. Consider the RSE(ﬁ) for a homogeneous population estimated by the Horvitz-Thompson
approach (see Huggins (1989) and Borchers and Efford (2007)):

var(D) = s> + V.

The term Vj concerns uncertainty in the detection parameters and is unaffected by fixed vs Poisson N. The
term s? represents uncertainty due to n, which may be Poisson (s = n/a?) or binomial (s?> = (1—a/A).n/a?),
where a is the effective sampling area®. If rse is the expected RSE(ﬁ) for the Poisson-N case, then by
manipulating these expressions we get the expected RSE(ﬁ) for fixed N in area A (N = DA):

1
rseg = \/Jrse2 -

Appendix 3. Technical issues.

optimalSpacing considers detector spacing relative to the spatial scale parameter o, given the shape of
detection function specified by the argument ‘detectfn’. It does this by holding the detector array fixed
and varying o. However, in order to emulate varying spacing for fixed o, the real aim of the exercise, it is
necessary also to vary other spatial parameters, specifically density D and attributes of the habitat mask
(spacing and buffer width). Consider the relative spacing R = s/o. Starting from a baseline density D; in
which R =1 (0 = s), density must be scaled as Dr = D; x R?. Linear mask attributes are scaled by 1/R.

D(x) is assumed constant for all x in the implementation of optimalSpacing.

The spacing corresponding to minimum RSE(ﬁ) is determined by linear interpolation in optimalSpacing.
The function minnrRSE typically (perhaps always) has a minimum where E(n) = E(r). This suggests that
the optimal spacing could be found by solving for this point. However, both E(n) and E(r) require extensive
computation, so there is probably nothing to be gained.

6g = pr (x) dx where p.(x) is the probability an animal centred at x is detected at least once (Borchers and Efford 2008).

14

http://www.otago.ac.nz/density/pdfs/Supplement%20to%20Borchers%20and%20Efford%20v2.pdf

	Introduction
	Expected sample size
	Predicted precision of density estimates
	A rule of thumb for precision
	Poisson N vs fixed N
	Geometry correction factor

	Characterisation of detector arrays
	Costing
	Example

	Demonstration of scenarioSummary
	Optimal detector spacing
	What does optimalSpacing do?
	Parameter values
	Rule-of-thumb optimisation
	Simulations
	More plotting

	Pathological designs
	Making do without pilot values: function getdetectpar
	Limitations
	References
	Appendix 1. A rule of thumb for \mbox{RSE}(\hat D)
	Appendix 2. Extending rule-of-thumb RSE to fixed N, binomial n
	Appendix 3. Technical issues.

