
Package ‘secrdesign’

October 9, 2017

Type Package

Title Sampling Design for Spatially Explicit Capture-Recapture

Version 2.5.1

Depends R (>= 3.2.0), secr(>= 3.0.1)

Suggests knitr

Imports parallel, abind

VignetteBuilder knitr

Date 2017-10-09

Author Murray Efford

Maintainer Murray Efford <murray.efford@otago.ac.nz>

Description Tools for designing spatially explicit capture-recapture studies of animal popula-

tions. This is primarily a simulation manager for package 'secr'. Extensions in version 2.5.0 in-

clude costing and evaluation of detector spacing.

License GPL (>=2)

URL http://www.otago.ac.nz/density

R topics documented:

secrdesign-package . 2

costing . 3

getdetectpar . 4

Lambda . 5

make.array . 7

make.scenarios . 8

optimalSpacing . 9

plot.optimalSpacing . 12

predict.fittedmodels . 13

run.scenarios . 14

scenariosFromStatistics . 18

scenarioSummary . 19

select.stats . 21

summary.secrdesign . 22

validate . 25

Index 27

1

http://www.otago.ac.nz/density

2 secrdesign-package

secrdesign-package Spatially Explicit Capture–Recapture Study Design

Description

Tools to assist the design of spatially explicit capture–recapture studies of animal populations.

Details

Package: secr

Type: Package

Version: 2.5.1

Date: 2017-10-09

License: GNU General Public License Version 2 or later

The primary use of secrdesign is to predict by Monte Carlo simulation the precision or bias of

density estimates from different detector layouts, given pilot values for density and the detection

parameters lambda0/g0 and sigma.

The simulation functions in secrdesign are:

make.scenarios generate dataframe of parameter values etc.

run.scenarios perform simulations, with or without model fitting

fit.models fit SECR model(s) to rawdata output from run.scenarios

predict.fittedmodels infer ‘real’ parameter estimates from fitted models

select.stats collect output for a particular parameter

summary.selectedstatistics numerical summary of results

plot.selectedstatistics histogram or CI plot for each scenario

Documentation for simulation functions is provided in a vignette ../doc/secrdesign-vignette.

pdf. An Appendix has code for various examples that should help get you started.

Other functions not used exclusively for simulation are:

Enrm expected numbers of individuals n, re-detections r and movements m

minnrRSE approximate RSE(D-hat) given sample size (n, r)

costing compute various cost components

scenarioSummary applies Enrm, minnrRSE, and other summaries to each scenario in a dataframe

optimalSpacing optimal detector spacing by rule-of-thumb and simulation RSE(D-hat)

scenariosFromStatistics match specified n, r

Documentation for expected counts is in ../doc/secrdesign-Enrm.pdf. Another vignette ..

/doc/secrdesign-tools.pdf demonstrates other tools. These include the optimalSpacing func-

tion, for finding the detector spacing that yields the greatest precision for a given detector geometry,

number of sampling occasions, density and detection parameters.

Help pages are also available as ../doc/secrdesign-manual.pdf.

../doc/secrdesign-vignette.pdf
../doc/secrdesign-vignette.pdf
../doc/secrdesign-Enrm.pdf
../doc/secrdesign-tools.pdf
../doc/secrdesign-tools.pdf
../doc/secrdesign-manual.pdf

costing 3

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

See Also

make.grid, sim.popn, sim.capthist, secr.fit

costing Cost of SECR design

Description

The cost of implementing a spatially explicit capture–recapture design depends on the detector

layout, the number of detections and the various unit costs.

Usage

costing(traps, nr, noccasions, unitcost = list(), nrepeats = 1, routelength = NULL,

setupoccasion = TRUE)

Arguments

traps traps object for detector array

nr numeric vector with E(n) and E(r) as first two elements

noccasions integer number of sampling occasions

unitcost list with unit costs (see Details)

nrepeats integer number of repeated arrays

routelength numeric route length (km)

setupoccasion logical; if TRUE then the cost of a setup visit is included (noccasions+1)

Details

nr is a vector with the expected sample sizes (numbers of individuals and recaptures), usually the

output from Enrm.

unitcost should be a list with at least one of the components ‘perkm’, ‘perarray’, ‘perdetector’,

‘pervisit’ and ‘perdetection’.

The number of occasions (noccasions) is incremented by 1 if setupoccasion is TRUE.

Component Unit cost Costing

Arrays perarray perarray x nrepeats

Detectors perdetector perdetector x nrow(traps) x nrepeats

Travel perkm perkm x routelength x noccasions x nrepeats

Visits pervisit sum(pervisit x trapcost) x noccasions x nrepeats

Detections perdetection perdetection x total detections (E(n) + E(r))

‘Travel’ and ‘Visits’ are alternative ways to cost field time. The variable ‘routelength’ represents

the length of a path followed to visit all detectors; if not specified it is approximated by the sum

4 getdetectpar

of the nearest-trap distances. The variable ‘trapcost’ is a vector of length equal to the number of

detectors. By default it is a vector of 1’s, but detector- specific values may be provided as trap

covariate ‘costpervisit’. In the latter case the value of ‘pervisit’ should probably be 1.0.

‘Arrays’ and ‘Detectors‘ represent one-off costs.

‘Detections’ includes costs such as handling time and laboratory DNA analysis.

See ../doc/secrdesign-tools.pdf for more.

Value

A named numeric vector

See Also

Enrm, scenarioSummary

Examples

tr <- make.grid(8, 8, spacing = 25)

msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')

nrm <- Enrm(D = 5, tr, msk, list(lambda0 = 0.2, sigma = 20), 5)

costing (tr, nrm, 5, unitcost = list(pervisit = 5, perdetection = 15))

getdetectpar Ballpark Detection Parameters

Description

Detection parameters for an animal population may be guessed from some basic inputs (population

density, a coefficent of home-range overlap, and the expected number of detections on a given

detector array). These values are useful as a starting point for study design. They are not ’estimates’.

Usage

getdetectpar(D, C, sigma = NULL, k = 0.5, ...)

Arguments

D population density animals / hectare; may be scalar or vector of length nrow(mask)

C integer expected total number of detections

sigma numeric spatial scale parameter of chosen detection function, in metres (op-

tional)

k coefficient of overlap - typically in range 0.3 to 1.1

... named arguments passed to Enrm and Lambda (traps, mask, noccasions, detectfn)

../doc/secrdesign-tools.pdf

Lambda 5

Details

If sigma is missing and detectfn = ‘HHN’ then sigma is first inferred from the relationship σ =
100k

√
D (D in animals per hectare and σ in metres). Other detectfn give an error.

A numerical search is then conducted for the value of lambda0 that results in C expected detections

for the given density and design. The calculation takes account of the detector array, the habitat

mask and the number of sampling occasions (all specified in the . . . argument - see example).

Only hazard detection functions are supported (‘HHN’, ‘HHR’, ‘HEX’, ‘HAN’, ‘HCG’). The de-

fault is ‘HHN’.

Value

A list with one component for each detection parameter.

See Also

Enrm, Lambda

Examples

tr <- traps(captdata)

detector(tr) <- "multi"

msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')

getdetectpar(D = 5.48, C = 235, traps = tr, mask = msk, noccasions = 5)

Lambda Expected Detections

Description

Compute the expected number of detections as a function of location (Lambda), and the expected

total numbers of individuals n, recaptures r and movements m for a population sampled with an

array of detectors (Enrm).

Usage

Lambda(traps, mask, detectpar, noccasions, detectfn = c("HHN", "HHR", "HEX",

"HAN", "HCG", 'HN', 'HR', 'EX'))

Enrm(D, ...)

minnrRSE(D, ..., CF = 1.0, distribution = c("poisson","binomial"))

6 Lambda

Arguments

traps traps object

mask mask object

detectpar a named list giving a value for each parameter of detection function

noccasions integer number of sampling occasions

detectfn integer code or character string for shape of detection function – see detectfn

D population density animals / hectare; may be scalar or vector of length nrow(mask)

... arguments passed to Lambda

CF numeric correction factor

distribution character distribution of n

Details

The detector attribute of traps may be ‘multi’, ‘proximity’ or ‘count’. It is assumed that detectpar

and detector type do not differ among occasions.

The calculation is based on an additive hazard model. If detectfn is not a hazard function (‘HHN’,

‘HEX’, ‘HHR’, ‘HAN’ and ‘HCG’) then an attempt is made to approximate one of the hazard

functions (HN -> HHN, HR -> HHR, EX -> HEX). The default is ‘HHN’.

For hazard function λ(d) and S occasions, we define Λ(x) =
∑

s

∑
k
λ(dk(x)).

Formulae for expected counts are given in ../doc/secrdesign-Enrm.pdf.

minnrRSE has mostly the same inputs as Enrm but returns sqrt(CF/min(n,r)). The correction fac-

tor CF may be used to adjust for systematic bias (e.g., for a line of detectors CF = 1.4 may be

appropriate). The default distribution = 'poisson' is for Poisson-distributed N and n. To

adjust the prediction for fixed N (binomial n) use distribution = 'binomial' (see ../doc/

secrdesign-tools.pdf Appendix 2).

Value

Lambda – mask object with covariates ‘Lambda’ (Λ(x)), ‘sumpk’ and ‘sumq2’ (intermediate values

for computation of expected counts - see ../doc/expectedcounts.pdf)

Enrm – numeric vector of length 3, the values of E(n), E(r) and E(m).

minnrRSE – rule-of-thumb RSE(D-hat)

See Also

getdetectpar, optimalSpacing, scenarioSummary

Examples

tr <- traps(captdata)

detector(tr) <- "multi"

msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')

L <- Lambda(tr, msk, list(lambda0 = 0.2, sigma = 20), 5)

nrm <- Enrm(D = 5, tr, msk, list(lambda0 = 0.2, sigma = 20), 5)

nrm

plot(L, cov = "Lambda", dots = FALSE)

../doc/secrdesign-Enrm.pdf
../doc/secrdesign-tools.pdf
../doc/secrdesign-tools.pdf
../doc/expectedcounts.pdf

make.array 7

plot(tr, add = TRUE)

mtext(side = 3, paste(paste(names(nrm), round(nrm,1)), collapse = ", "))

make.array Re-cast Simulated Statistical Output as Array

Description

This function is used internally by summary.secrdesign, and may occasionally be of general use.

Usage

make.array(object)

Arguments

object secrdesign object containing numerical values for a particular parameter (i.e.

output from select.stats inheriting from ‘selectedstatistics’)

Details

make.array converts a particular simulated numerical output into an array with one dimension for

each varying input.

Value

A numeric array with dimensions corresponding to the varying inputs.

See Also

run.scenarios

Examples

collect raw counts

scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)

traps1 <- make.grid()

tmp1 <- run.scenarios(nrepl = 50, trapset = traps1, scenarios = scen1,

fit = FALSE)

make.array(tmp1)

8 make.scenarios

make.scenarios Construct Scenario Data Frame

Description

This function prepares a dataframe in which each row specifies a simulation scenario. The dataframe

is used as input to run.scenarios.

Usage

make.scenarios(trapsindex = 1, noccasions = 3, nrepeats = 1, D, g0, sigma, lambda0,

detectfn = 0, recapfactor = 1, popindex = 1, detindex = 1, fitindex = 1, groups,

crosstraps = TRUE)

Arguments

trapsindex integer vector determining the traps object to use

noccasions integer vector for the number of sampling occasions

nrepeats integer vector of multipliers for D (see Details)

D numeric vector of values for the density parameter (animals / hectare)

g0 numeric vector of values for the g0 parameter

sigma numeric vector of values for the sigma parameter (m)

lambda0 numeric vector of values for the lambda0 parameter

detectfn vector of valid detection function codes (numeric or character)

recapfactor numeric vector of values for recapfactor (sim.capthist)

popindex integer vector determining which population model is used

detindex integer vector determining which detection options are used

fitindex integer vector determining which model is fitted

groups character vector of group labels (optional)

crosstraps logical; if TRUE the output includes all combinations of trapsindex, noccasions

and nrepeats

Details

The index in trapsindex is used in run.scenarios to select particular detector arrays from the

list of arrays provided as an argument to that function.

The function generates all combinations of the given parameter values using expand.grid. By

default, it also generates all combinations of the parameters with trapsindex and the number of

sampling occasions. If crosstraps is FALSE then trapsindex, noccasions, and nrepeats are

merely used to fill in these columns in the output dataframe.

The argument lambda0 replaces g0 for the hazard detection functions 14–18 (detectfn).

Designs may use multiple detector arrays with the same internal geometry (e.g., number and spacing

of traps). The number of such arrays is varied with the nrepeats argument. For example, you may

compare designs with many small arrays or a few large ones. In practice, run.scenarios simulates

optimalSpacing 9

a single layout is simulated with density D * nrepeats. This shortcut is not appropriate when animals

compete for traps (detector = ‘single’).

fitindex allows a choice of different models when the argument fit.args of run.scenarios is

a compound list.

If groups is provided each scenario is replicated to the length of groups and a column ‘group’ is

added.

Value

Dataframe with one row per scenario (or sub-scenario) and the columns

scenario a number identifying the scenario

group (optional)

trapsindex

noccasions

nrepeats

D

g0 or lambda0

sigma

detectfn see detectfn; always numeric

recapfactor

popindex

detindex

fitindex

An attribute ‘inputs’ is saved for possible use in make.array.

See Also

run.scenarios, scenarioSummary, sim.capthist

Examples

make.scenarios(trapsindex = 1, nrepeats = 1, D = c(5,10), sigma = 25,

g0 = 0.2)

optimalSpacing Optimal Detector Spacing

Description

Estimate the detector spacing that yields the greatest precision for a given detector geometry, num-

ber of sampling occasions, density and detection parameters.

10 optimalSpacing

Usage

optimalSpacing (D, traps, detectpar, noccasions, nrepeats = 1,

detectfn = c('HHN', 'HHR', 'HEX','HAN','HCG', 'HN', 'HR', 'EX'),

fittedmodel = NULL, xsigma = 4,

R = seq(0.2, 4, 0.2), CF = 1.0,

simulationR = seq(0.4,4,0.4), nrepl = 0,

plt = FALSE, ...)

Arguments

D population density animals / hectare (constant)

traps traps object

detectpar named list giving a value for each parameter of detection function (sigma not

needed)

noccasions integer number of sampling occasions

nrepeats integer number of replicate arrays (not yet used)

detectfn integer code or character string for shape of detection function – see detectfn

fittedmodel secr fitted model (instead of preceding arguments)

xsigma numeric buffer width as multiple of sigma

R numeric vector of relative spacings at which to plot rule-of-thumb RSE(D-hat)

CF numeric correction factor for rule-of-thumb RSE

simulationR numeric vector of relative spacings at which to simulate

nrepl integer number of replicate simulations (default no simulations)

plt logical; if TRUE then results are plotted

... other arguments passed to various functions (see Details)

Details

A numerical search over possible spacings uses the rule-of-thumb RSE(D-hat) given by minnrRSE

as the objective function.

traps provides the geometry of the detector layout and the initial spacing s. Function optimize is

used to search for a solution (minimum RSE) in the range of R x s.

The computation emulates variation in detector spacing by inverse variation in sigma (sigma’ =

sigma / R) with compensating variation in density. Mask buffer width and spacing are also scaled

by R.

If nrepl is greater than zero then simulations are also performed for the relative spacings in

simulationR. Density, sigma and mask attributes are scaled as for the rule-of-thumb calculations.

Using ‘method = "none"‘ gives fast prediction of RSE (from the Hessian evaluated at the known

parameter values), but does not estimate bias.

The . . . argument may be used to set the values of these arguments:

Function Arguments

make.mask ‘nx’, ‘type’, ‘poly’,‘poly.habitat’

run.scenarios ‘seed’, ‘ncores’, ‘method’

plot.optimalSpacing ‘add’, . . .

optimalSpacing 11

The argument CF may be set to NA to suppress rule-of-thumb RSE, including optimisation. The

value of argument R has no effect on optimisation.

A plot method is provided, with options for plotting different components.

Value

List of two components, one for the rule-of-thumb optimisation (rotRSE) and the other for simula-

tion results, if requested (simRSE).

The optimisation results are

values dataframe with E(n), E(r) and the rule-of-thumb RSE for each requested R

optimum.spacing

the absolute spacing that yields maximum precision (minimum rule-of-thumb

RSE(D-hat))

optimum.R spacing relative to sigma

minimum.RSE final value of the objective function (minimum rule-of-thumb RSE(D-hat))

The simulation results in the dataframe simRSE are the mean and SE of the simulated RSE(D-hat)

for each level of simulationR, with added columns for the relative bias (RB) and relative root-

mean-square-error (rRMSE) of D-hat.

Results are returned invisibly if plt = TRUE.

Warnings

For single-catch traps, use of a maximum likelihood estimate of lambda0 from a fitted multi-catch

model results in negative bias.

Only hazard-based detection functions are supported. The meaning of the ‘sigma’ parameter de-

pends on the function, and so will the optimal spacing in sigma units.

See Also

minnrRSE, plot.optimalSpacing

Examples

grid <- make.grid(7, 7) # default multi-catch detector

optimalSpacing(D = 5, traps = grid, detectpar = list(lambda0 = 0.2, sigma = 20),

noccasions = 5, plt = TRUE)

Not run:

optimalSpacing(D = 5, traps = grid, detectpar = list(lambda0 = 0.4, sigma = 20),

detectfn = 'HEX', R = seq(1,6,0.4), noccasions = 10, plt = TRUE, col = "blue")

with simulations

grid <- make.grid(8, 8, spacing = 20, detector = 'proximity')

optimalSpacing(D = 5, traps = grid, detectfn = "HHN", detectpar =

list(lambda0 = 0.2, sigma = 20), noccasions = 5, nrepl = 20, nx = 32,

ncores = 4, plt = TRUE, col = "blue")

manual check

grid <- make.grid(8, 8, spacing = 60, detector = 'proximity')

12 plot.optimalSpacing

scen <- make.scenarios(sigma = 20, D = 5, detectfn = 14, lambda0 = 0.2, sigma = 20,

noccasions = 5)

sim1 <- run.scenarios(nrepl = 20, scen, trapset = list(grid), fit = TRUE,

fit.args = list(detectfn = 14), ncores = 4, byscenario = FALSE)

summary(sim1)

End(Not run)

plot.optimalSpacing Plot and print methods for optimalSpacing object

Description

Plotsor print results from optimalSpacing.

Usage

S3 method for class 'optimalSpacing'

plot(x, add = FALSE, plottype = c("RSE", "nrm"), ...)

S3 method for class 'optimalSpacing'

print(x, ...)

Arguments

x object from optimalSpacing

add logical; if TRUE will add to existing plot

plottype character code

... other arguments for plot, lines or points

Details

If type = "RSE" then RSE(D-hat) is plotted against R (relative detector spacing), otherwise the

expected numbers of individuals, recaptures and movements are plotted against R.

The . . . argument may be used to pass other plotting arguments to override defaults:

Function Arguments Note

plot ‘xlab’, ‘ylab, ‘xlim’, ‘ylim’, ‘las’, ‘xaxs’, ‘yaxs’ add = FALSE

points ‘col’, ‘cex’, ‘pch’ optimum and simulated RSE

lines ‘col’, ‘lwd’, ‘lty’ rule-of-thumb RSE

The print method removes attributes before printing.

Value

None

predict.fittedmodels 13

See Also

optimalSpacing

predict.fittedmodels Extract Estimates From Fitted Models

Description

If simulations have been saved from run.scenarios as fitted secr models it is necessary to use one

of these functions to extract estimates for later summarization.

Usage

S3 method for class 'fittedmodels'

predict(object, ...)

S3 method for class 'fittedmodels'

coef(object, ...)

derived.SL(object, ...)

regionN.SL(object, ...)

Arguments

object fitted model simulation output from run.scenarios

... other arguments passed to predict, coef, derived or region.N

Details

These functions are used when output from run.scenarios has been saved as fitted models.

derived.SL and regionN.SL require a full fit (including the design object) whereas a trimmed

model is sufficient for predict and coef.

derived.SL is used to compute the Horvitz-Thompson-like estimate of density when secr.fit has

been used with CL = TRUE; it is roughly equivalent to predict.

regionN.SL predicts the realised number (R.N) or expected number (E.N) in a masked area. When

detector layouts and/or sigma vary, the masked area will also vary (arbitrarily, depending on the

buffer argument ‘xsigma’) unless a mask is provided by the user; this may be done either in

run.scenarios or in regionN.SL.

Value

An object with class (‘estimatetables’, ‘secrdesign’, ‘list’) with appropriate outputtype (‘predicted’,

‘coef’, ‘derived’, ‘regionN’; sSee also run.scenarios).

See Also

run.scenarios

14 run.scenarios

Examples

Not run:

scen1 <- make.scenarios(D = c(3,6), sigma = 25, g0 = 0.2)

traps1 <- make.grid() ## default 6 x 6 grid of multi-catch traps

tmp1 <- run.scenarios(nrepl = 10, trapset = traps1, scenarios = scen1,

fit = TRUE, extractfn = trim)

tmp2 <- predict(tmp1)

tmp3 <- select.stats(tmp2, 'D', c('estimate','RB','RSE'))

summary(tmp3)

End(Not run)

run.scenarios Simulate Sampling Designs

Description

This function performs simulations to predict the precision of abundance estimates from simple

1-session SECR designs. Scenarios are specified via an input dataframe that will usually be con-

structed with make.scenarios. Each scenario comprises an index to a detector layout, the number

of sampling occasions, and specified density (D) and detection parameters (usually g0 and σ).

Detector layouts are provided in a separate list trapset. This may comprise an actual field design

input with read.traps or ‘traps’ objects constructed with make.grid etc., as in the Examples.

Even a single layout must be presented as a component of a list (e.g., list(make.grid())).

If ncores > 1 then by default each scenario will be run in a separate worker process using parLapply

from parallel (see also Parallel).

If byscenario = FALSE then replicates are split among cores (the default is to split scenarios

among cores), which is useful if you have more cores than scenarios. Dividing replicates among

cores (byscenario = FALSE) also largely avoids the inefficiency that results when some workers

finish much sooner than others (load balancing is not an option in run.scenarios). Setting ncores

greater than the number of scenarios causes an error when byscenario = TRUE.

Alternative approaches are offered for predicting precision. Both start by generating a pseudoran-

dom dataset under the design using the parameter values for a particular scenario. The first estimates

the parameter values and their standard errors from each dataset by maximizing the full likelihood,

as usual in secr.fit. The second takes the short cut of computing variances and SE from the Hes-

sian estimated numerically at the known expected values of the parameters, without maximizing the

likelihood. Set method = "none" for this shortcut.

Usage

run.scenarios(nrepl, scenarios, trapset, maskset, xsigma = 4, nx = 32,

pop.args, det.args, fit = FALSE, fit.args, chatnsim, extractfn = NULL,

multisession = FALSE, ncores = 1, byscenario = TRUE, seed = 123, ...)

fit.models(rawdata, fit = FALSE, fit.args, chatnsim, extractfn = NULL,

ncores = 1, byscenario = TRUE, scen, repl, ...)

run.scenarios 15

Arguments

nrepl integer number of replicate simulations

scenarios dataframe of simulation scenarios

trapset secr traps object or a list of traps objects

maskset secr mask object or a list of mask objects (optional)

xsigma numeric buffer width as multiple of sigma (alternative to maskset)

nx integer number of cells in mask in x direction (alternative to maskset)

pop.args list of named arguments to sim.popn (optional)

det.args list of named arguments to sim.capthist (optional)

fit logical; if TRUE a model is fitted with secr.fit, otherwise data are generated

but no model is fitted

fit.args list of named arguments to secr.fit (optional)

chatnsim integer number of simulations for overdispersion of mark-resight models

extractfn function to extract a vector of statistics from secr model

multisession logical; if TRUE groups are treated as additional sessions

ncores integer number of cores for parallel processing

byscenario logical; if TRUE and ncores>1 then scenarios are sent to different cores

seed integer pseudorandom number seed

... other arguments passed to extractfn

rawdata ‘rawdata’ object from previous call to run.scenarios

scen integer vector of scenario subscripts

repl integer vector of subscripts in range 1:nrepl

Details

Designs are constructed from the trap layouts in trapset, the numbers of grids in ngrid, and the

numbers of sampling occasions (secondary sessions) in noccasions. These are not crossed: the

number of designs is the maximum length of any of these arguments. Any of these arguments

whose length is less than the maximum will be replicated to match.

pop.args is used to customize the simulated population distribution. It will usually comprise a

single list, but may be a list of lists (one per popindex value in scenarios).

det.args may be used to customize some aspects of the detection modelling in sim.capthist, but

not traps, popn, detectpar, detectfn, and noccasions, which are controlled directly by

the scenarios. It will usually comprise a single list, but may be a list of lists (one per detindex value

in scenarios).

fit.args is used to customize the fitted model; it will usually comprise a single list. If you are

interested in precision alone, use fit.args=list(method = 'none') to obtain variance estimates

from the hessian evaluated at the parameter estimates. This is much faster than a complete model

fit, and usually accurate enough.

If no extractfn is supplied then a default is used - see Examples. Replacement functions should

follow this pattern i.e. test for whether the single argument is an secr object, and if not supply a

named vector of NA values of the correct length.

From 2.2.0, two or more rows in scenarios may share the same scenario number. This is used to

generate multiple population subclasses (e.g. sexes) differing in density and/or detection parame-

ters. If multisession = TRUE the subclasses become separate sessions in a multi-session capthist

16 run.scenarios

object (this may require a custom extractfn). multisession is ignored with a warning if each

scenario row has a unique number.

The L’Ecuyer pseudorandom generator is used with a separate random number stream for each core

(see clusterSetRNGStream).

A summary method is provided (see summary.secrdesign). It is usually necessary to process the

simulation results further with predict.fittedmodels and/or select.stats before summariza-

tion.

In fit.models the arguments scen and repl may be used to select a subset of datasets for model

fitting.

chatnsim controls an additional quasi-likelihood model step to adjust for overdispersion of sighting

counts. No adjustment happens when chatnsim = 0; otherwise abs(chatnsim) gives the number

of simulations to perform to estimate overdispersion. If chatnsim < 0 then the quasilikelihood is

used only to re-estimate the variance at the previous MLE (method = "none").

Value

An object of class (x, ‘secrdesign’, ‘list’), where x is one of ‘fittedmodels’, ‘estimatetables’, ‘se-

lectedstatistics’ or ‘rawdata’, with components

call function call

version character string including the software version number

starttime character string for date and time of run

proctime processor time for simulations, in seconds

scenarios dataframe as input

trapset list of trap layouts as input

maskset list of habitat masks (input or generated)

xsigma from input

nx from input

pop.args from input

det.args from input

fit from input

fit.args from input

extractfn function used to extract statistics from each simulation

seed from input

nrepl from input

output list with one component per scenario

outputtype character code - see vignette

If fit = FALSE and extractfn = identity the result is of class (‘rawdata’, ‘secrdesign’, ‘list’).

This may be used as input to fit.models, which interprets each model specification in fit.args

as a new ‘sub-scenario’ of each input scenario (i.e. all models are fitted to every dataset). The

output possibilities are the same as for run.scenarios.

If subclasses have been defined (i.e. scenarios has multiple rows with the same scenario ID), each

simulated capthist object has covariates with a character-valued column named "group" ("1", "2"

etc.) (there is also a column "sex" generated automatically by sim.popn).

run.scenarios 17

Note

100 ha = 1 km^2

Note

For ncores > 1 it pays to keep an eye on the processes from the Performance page of Windows

Task Manager (<ctrl><alt>), or ‘top’ in linux OS. If you interrupt run.scenarios (<Esc>

from Windows) you may occasionally find some processes do not terminate and have to be manually

terminated from the Task Manager - they appear as Rscript.exe on the Processes page.

Author(s)

Murray Efford

See Also

predict.fittedmodels, scenarioSummary, select.stats, summary.secrdesign, summary.selectedstatistics,

sim.popn, sim.capthist, secr.fit

Examples

Simple example: generate and summarise trapping data

at two densities and for two levels of sampling frequency

scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2, noccasions =

c(5,10))

traps1 <- make.grid() ## default 6 x 6 trap grid

tmp1 <- run.scenarios(nrepl = 20, trapset = traps1, scenarios = scen1,

fit = FALSE)

summary(tmp1)

Not run:

###########################

2-phase example

first make and save rawdata

scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)

traps1 <- make.grid() ## default 6 x 6 trap grid

tmp1 <- run.scenarios(nrepl = 20, trapset = traps1, scenarios = scen1,

fit = FALSE, extractfn = identity)

review rawdata

summary(tmp1)

then fit and summarise models

tmp2 <- fit.models(tmp1, fit.args = list(list(model = g0~1),

list(model = g0~T)), fit = TRUE, ncores = 4)

summary(tmp2)

###########################

Construct a list of detector arrays

Each is a set of 5 parallel lines with variable between-line spacing;

the argument that we want to vary (spacey) follows nx, ny and spacex

in the argument list of make.grid().

spacey <- seq(2000,5000,500)

18 scenariosFromStatistics

names(spacey) <- paste('line', spacey, sep = '.')

trapset <- lapply(spacey, make.grid, nx = 101, ny = 5, spacex = 1000,

detector = 'proximity')

Make corresponding set of masks with constant spacing (1 km)

maskset <- lapply(trapset, make.mask, buffer = 8000, spacing = 1000,

type = 'trapbuffer')

Generate scenarios

scen <- make.scenarios (trapsindex = 1:length(spacey), nrepeats = 8,

noccasions = 2, D = 0.0002, g0 = c(0.05, 0.1), sigma = 1600, cross = TRUE)

RSE without fitting model

sim <- run.scenarios (50, scenarios = scen, trapset = trapset, maskset = maskset,

ncores = 8, fit = TRUE, fit.args = list(method = 'none'), seed = 123)

Extract statistics for predicted density

sim <- select.stats(sim, parameter = 'D')

Plot to compare line spacing

summ <- summary (sim, type='array', fields = c('mean','lcl','ucl'))$summary

plot(0,0,type='n', xlim=c(1.500,5.500), ylim = c(0,0.36), yaxs = 'i',

xaxs = 'i', xlab = 'Line spacing km', ylab = 'RSE (D)')

xv <- seq(2,5,0.5)

points(xv, summ$mean[,1,'RSE'], type='b', pch=1)

points(xv, summ$mean[,2,'RSE'], type='b', pch=16)

segments(xv, summ$lcl[,1,'RSE'], xv, summ$ucl[,1,'RSE'])

segments(xv, summ$lcl[,2,'RSE'], xv, summ$ucl[,2,'RSE'])

legend(4,0.345, pch=c(1,16), title = 'Baseline detection',

legend = c('g0 = 0.05', 'g0 = 0.1'))

End(Not run)

scenariosFromStatistics

Make Scenarios to Match Capture Statistics

Description

The make.scenarios function requires prior knowledge of population density and the intercept

of the detection function (g0). This function provides an alternative mechanism for generating

scenarios from a value of sigma and target values for the numbers of individuals n and recaptures

r. Only a halfnormal detection function is supported (probability, not hazard), and many options in

make.scenarios have yet to be implemented. Only a single detector layout and single mask may

be specified.

Usage

scenariosFromStatistics(sigma, noccasions, traps, mask, nval, rval,

g0.int = c(0.001, 0.999))

scenarioSummary 19

Arguments

sigma numeric vector of one or more values for sigma

noccasions integer vector of number of sampling occasions

traps traps object

mask mask object

nval integer vector of values of n

rval integer vector of values of r

g0.int numeric vector defining the interval to be searched for g0

Details

The algorithm is based on R code in Appendix B of Efford, Dawson and Borchers (2009).

Value

A scenario dataframe with one row for each combination of sigma, noccasions, nval and rval.

References

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-

tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

make.scenarios

Examples

grid36 <- make.grid(nx = 6, ny = 6, spacing = 200)

mask <- make.mask(grid36, buffer = 2000)

scen <- scenariosFromStatistics (sigma = c(200,400), noccasions = 44,

traps = grid36, mask = mask, nval = 14, rval = 34)

sim <- run.scenarios(scen, nrepl = 5, traps = grid36, mask = mask)

summary(sim)

scenarioSummary Summary of Scenarios

Description

Compute various deterministic summaries for scenarios generated by make.scenarios

Usage

scenarioSummary(scenarios, trapset, maskset, xsigma = 4, nx = 64, CF = 1.0,

costing = FALSE, ..., ncores = 1)

20 scenarioSummary

Arguments

scenarios dataframe of simulation scenarios

trapset secr traps object or a list of traps objects

maskset secr mask object or a list of mask objects (optional)

xsigma numeric buffer width as multiple of sigma (alternative to maskset)

nx integer number of cells in mask in x direction (alternative to maskset)

CF numeric correction factor for rule-of-thumb RSE (see minnrRSE)

costing logical; if TRUE then costings will be appended

... arguments passed to costing

ncores integer number of cores for parallel processing

Details

Not all scenarios from make.scenarios() are suitable. Grouped (multi-line) scenarios are ex-

cluded. Hazard detection functions are preferred (‘HHN’, ‘HHR’, ‘HEX’, ‘HAN’, ‘HCG’). ‘HN’,

‘HR’ and ‘EX’ are converted approximately to ‘HHN’, ‘HHR’ and ‘HEX’ respectively, with a

warning; other functions are rejected.

CF may be a vector of values that is recycled across the components of trapset.

The approximate RSE(D-hat) is rotRSE = CF/ sqrt(min(E(n), E(r))). This assumes n is Poisson-

distributed. For binomial n an ad hoc adjustment is rotRSEB = sqrt(rotRSE^2 - 1 / (D x A)) where

A is the mask area.

The . . . argument is for inputs to costing, including unitcost (required) and routelength (op-

tional).

Value

A dataframe including the first 8 columns from scenarios and the computed columns –

En expected number of individuals

Er expected number of recaptures

Em expected number of movement recaptures

esa effective sampling area (ha)

CF rule-of-thumb correction factor

rotRSE rule-of-thumb relative standard error of density estimate

rotRSEB rotRSE with adjustment for fixed N in region defined by mask (i.e. Binomial n

rather than Poisson n)

arrayN number of detectors in each array

arrayspace array spacing in sigma units

arrayspan largest dimension of array in sigma units

travel travel cost

arrays cost of each repeated array

detectors fixed cost per detector

visits cost per detector per visit

detections cost per detection

totalcost summed costs

Costings (the last 6 columns) are omitted if costing = FALSE.

select.stats 21

See Also

make.scenarios, Enrm, costing, minnrRSE

Examples

scen <- make.scenarios(D = c(5,10), sigma = 25, lambda0 = 0.2, detectfn = 'HHN')

grid <- make.grid(6,6, detector = 'multi')

scenarioSummary(scen, list(grid), costing = TRUE, unitcost = list(perkm = 10))

select.stats Select Statistics to Summarize

Description

When the results of each simulation with run.scenarios are saved as a dataframe (e.g. from

predict()) it is necessary to select estimates of just one parameter for numerical summarization.

This does the job. find.param is a helper function to quickly display the parameters available for

summarisation.

Usage

select.stats(object, parameter = "D", statistics, true)

find.param(object)

find.stats(object)

Arguments

object ‘estimatetables’ object from run.scenarios

parameter character name of parameter to extract

statistics character vector of statistic names

true numeric vector of ‘’true’ values of parameter, one per scenario

Details

select.stats is used to select a particular vector of numeric values for summarization. The ‘pa-

rameter’ argument indexes a row in the data.frame for one replicate (i.e., one ‘real’ parameter).

Each ‘statistic’ is either a column in that data.frame or a statistic derived from a column.

If statistics is not specified, the default is to use all numeric columns in the input (i.e., c(‘estimate’,

‘SE.estimate’, ‘lcl’, ‘ucl’) for predict and c(‘beta’, ‘SE.beta’, ‘lcl’, ‘ucl’) for coef).

statistics may include any of ‘estimate’, ‘SE.estimate’, ‘lcl’, ‘ucl’, ’true’, ‘RB’, ‘RSE’, ‘COV’

and ‘ERR’ (for outputtype ‘coef’ use ‘beta’ and ‘SE.beta’ instead of ‘estimate and ‘SE.estimate’).

‘true’ refers to the known parameter value used to generate the data.

The computed statistics are:

Statistic Name Value

RB Relative bias (estimate - true) / true

22 summary.secrdesign

RSE Relative SE SE.estimate / estimate

ERR Absolute deviation abs(estimate - true)

COV Coverage (estimate > lcl) & (estimate < ucl)

‘RB’, ‘COV’ and ‘ERR’ relate an estimate to the known (true) value of the parameter in object$scenarios.

They are computed only when a model has been fitted without method = ‘none’.

‘COV’ remains binary (0/1) in the output from select.stats; the result of interest is the mean of

this statistic across replicates (see summary.secrdesign). Similarly, ‘ERR’ is used with field ‘rms’

in summary.secrdesign to compute the root-mean-squared-error RMSE.

find.param and find.stats may be used to ‘peek’ at objects of class ‘estimatetables’ and ‘select-

edstatistics’ respectively to recall the available parameter estimates or ‘statistics’.

An attempt is made to extract true automatically if it is not provided. This does not always work

(e.g. with extractfn region.N, region differing from the mask, and a heterogeneous density model).

Check this by including “true” as a statistic to summarise (see Examples).

Value

For select.stats, an object with class c(‘selectedstatistics’,‘secrdesign’, ‘list’) suitable for nu-

merical summarization with summary.selectedstatistics. The value of ‘parameter’ is stored as

an attribute.

For find.param, a character vector of the names of parameters with estimates in object.

See Also

run.scenarios, validate

Examples

using nrepl = 2 just for checking

scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)

traps1 <- make.grid()

tmp1 <- run.scenarios(nrepl = 2, trapset = traps1, scenarios = scen1,

fit = TRUE, extractfn = secr::trim)

tmp2 <- predict(tmp1)

tmp3 <- select.stats(tmp2, 'D', c('estimate','true','RB','RSE','COV'))

summary(tmp3)

summary.secrdesign Generic Methods for secrdesign Objects

Description

Methods to summarize simulated datasets.

summary.secrdesign 23

Usage

S3 method for class 'secrdesign'

summary(object, ...)

S3 method for class 'rawdata'

summary(object, ...)

S3 method for class 'estimatetables'

summary(object, ...)

S3 method for class 'selectedstatistics'

summary(object, fields = c('n', 'mean',

'se'), dec = 5, alpha = 0.05, type = c('list','dataframe','array'), ...)

S3 method for class 'selectedstatistics'

plot(x, scenarios, statistic, type =

c('hist', 'CI'), refline, xlab = NULL, ...)

header(object)

Arguments

object object of class simulations from run.scenarios

dec number of decimal places in output

fields character vector; names of required summary statistics (see Details)

alpha alpha level for confidence intervals and quantiles

type character code for type of output (see Details)

... other arguments – not currently used by summary but passed to hist by the plot

method

x object of class ‘selectedstatistics’ from run.scenarios

scenarios integer indices of scenarios to plot (all plotted if not specified)

statistic integer or character indices if the statistics in x for which histograms are re-

quested

refline logical; if TRUE a reference line is plotted at the true value of a parameter

xlab character; optional label for x-axis

Details

If object inherits from ‘selectedstatistics’ then the numeric results from replicate simulations are

summarized using the chosen ‘fields’ (by default, the number of non-missing values, mean and

standard error), along with header information describing the simulations. Otherwise the header

alone is returned.

fields is a vector of any selection from c(‘n’, ‘mean’, ‘sd’, ‘se’, ‘min’, ‘max’, ‘lcl’, ‘ucl’, ‘median’,

‘q’, ‘rms’), or the character value ‘all’.

Field ‘q’ provides 1000 alpha/2 and 1000[1 - alpha/2] quantiles qxxx and qyyy.

‘lcl’ and ‘ucl’ refer to the upper and lower limits of a 100(1 - alpha)% confidence interval for the

statistic, across replicates.

24 summary.secrdesign

‘rms’ gives the root-mean-square of the statistic - most useful for the statistic ‘ERR’ (see select.stats)

when it represents the overall accuracy or RMSE.

The plot method plots either (i) histograms of the selected statistics (type = ‘hist’) or (ii) the

estimate and confidence interval for each replicate (type = ‘CI’). The default for type = ‘hist’ is to

plot the first statistic - this is usually ‘n’ (number of detected animals) when fit = FALSE, and

‘estimate’ (parameter estimate) when fit = TRUE. If length(statistic) > 1 then more than one plot

will be produced, so a multi-column or multi-row layout should be prepared with par arguments

‘mfcol’ or ‘mfrow’.

For type = ‘CI’ the statistics must include ‘estimate’, ‘lcl’ and ‘ucl’ (or ‘beta’, ‘lcl’ and ‘ucl’ if

outputtype = ‘coef’).

Value

List with components ‘header’

call original function call

starttime from object

proctime from object

constants small dataframe with values of non-varying inputs

varying small dataframe with values of varying inputs

fit.args small dataframe with values arguments for secr.fit, if specified

and ‘OUTPUT’, a list with one component for each field. Each component may be a list or an array.

See Also

run.scenarios, make.array, select.stats validate

Examples

collect raw counts

scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)

traps1 <- make.grid()

tmp1 <- run.scenarios(nrepl = 50, trapset = traps1, scenarios = scen1,

fit = FALSE)

opar <- par(mfrow=c(2,3))

plot(tmp1, statistic = 1:3)

par(opar)

summary(tmp1)

summary(tmp1, field=c('q025', 'median', 'q975'))

validate 25

validate Reject Implausible Statistics

Description

Simulation output may contain rogue values due to idiosyncracies of model fitting. For example,

nonidentifiability due to inadequate data can result in spurious extreme ‘estimates’ of the sampling

variance. Undue influence of rogue replicates can be reduced by using the median as a summary

field rather than the mean. This function is another way to deal with the problem, by setting to NA

selected statistics from replicates for which some ‘test’ statistic is out-of-range.

Usage

validate(x, test, validrange = c(0, Inf), targets = test, quietly = FALSE)

Arguments

x object that inherits from ‘selectedstatistics’

test character; name of statistic to check

validrange numeric vector comprising the minimum and maximum permitted values of

‘test’, or a matrix (see details)

targets character vector with names of one or more statistics to set to missing (NA)

when test is out-of-range

quietly logical; if TRUE messages are suppressed

Details

Values of ‘test’ and ‘targets’ should be columns in each component ‘replicate x statistic’ matrix

(i.e., scenario) of x$output. You can check for these with find.stats.

If validrange is a matrix its first and second columns are interpreted as scenario-specific bounds

(minima and maxima), and the number of rows must match the number of scenarios.

If all non-missing values of ‘test’ are in the valid range, the effect is to force the target statistics to

NA wherever ‘test’ is NA.

The default is to change only the test field itself. If the value of ‘test’ does not appear in ‘targets’

then the test field is unchanged.

If targets = "all" then all columns are set to NA when the test fails.

Value

An object of class c(‘selectedstatistics’, secrdesign’, ‘list’) with the same structure and header in-

formation as the input, but possibly with some values in the ‘output’ component converted to NA.

See Also

select.stats, find.stats

26 validate

Examples

Not run:

generate some data

scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)

traps1 <- make.grid()

tmp1 <- run.scenarios(nrepl = 5, trapset = traps1, scenarios = scen1,

fit = TRUE, extractfn = trim)

tmp2 <- predict(tmp1)

tmp3 <- select.stats(tmp2, 'D', c('estimate','RB','RSE','COV'))

just for demonstration --

apply scenario-specific +/- 20% bounds for estimated density

set RB, RSE and COV to NA when estimate is outside this range

permitted <- outer(tmp3$scenarios$D, c(0.8,1.2))

permitted ## a 2 x 2 matrix

tmp4 <- validate(tmp3, 'estimate', permitted, c('RB', 'RSE','COV'))

what have we done?!

tmp4$output

summary(tmp4)

End(Not run)

Index

∗Topic Datagen
run.scenarios, 14

∗Topic Generic
summary.secrdesign, 22

∗Topic datagen
getdetectpar, 4

scenariosFromStatistics, 18

∗Topic design
optimalSpacing, 9

∗Topic hplot
plot.optimalSpacing, 12

∗Topic manip
Lambda, 5

make.array, 7

make.scenarios, 8

predict.fittedmodels, 13

select.stats, 21

validate, 25

∗Topic package
secrdesign-package, 2

clusterSetRNGStream, 16

coef.fittedmodels

(predict.fittedmodels), 13

costing, 2, 3, 20, 21

derived.SL (predict.fittedmodels), 13

detectfn, 6, 8–10

Enrm, 2–5, 21

Enrm (Lambda), 5

expand.grid, 8

find.param (select.stats), 21

find.stats, 25

find.stats (select.stats), 21

fit.models, 2

fit.models (run.scenarios), 14

getdetectpar, 4, 6

header (summary.secrdesign), 22

hist, 23

Lambda, 4, 5, 5

make.array, 7, 9, 24

make.grid, 3, 14

make.scenarios, 2, 8, 14, 18, 19, 21

mask, 6

minnrRSE, 2, 10, 11, 20, 21

minnrRSE (Lambda), 5

optimalSpacing, 2, 6, 9, 12, 13

optimize, 10

Parallel, 14

plot.optimalSpacing, 11, 12

plot.selectedstatistics, 2

plot.selectedstatistics

(summary.secrdesign), 22

predict.fittedmodels, 2, 13, 16, 17

print.optimalSpacing

(plot.optimalSpacing), 12

read.traps, 14

regionN.SL (predict.fittedmodels), 13

run.scenarios, 2, 7–9, 13, 14, 21, 22, 24

scenariosFromStatistics, 2, 18

scenarioSummary, 2, 4, 6, 9, 17, 19

secr.fit, 3, 13, 15, 17

secrdesign (secrdesign-package), 2

secrdesign-package, 2

select.stats, 2, 7, 16, 17, 21, 24, 25

sim.capthist, 3, 8, 9, 15, 17

sim.popn, 3, 15, 17

summary.estimatetables

(summary.secrdesign), 22

summary.rawdata (summary.secrdesign), 22

summary.secrdesign, 7, 16, 17, 22, 22

summary.selectedstatistics, 2, 17, 22

summary.selectedstatistics

(summary.secrdesign), 22

traps, 6, 10

validate, 22, 24, 25

27

	secrdesign-package
	costing
	getdetectpar
	Lambda
	make.array
	make.scenarios
	optimalSpacing
	plot.optimalSpacing
	predict.fittedmodels
	run.scenarios
	scenariosFromStatistics
	scenarioSummary
	select.stats
	summary.secrdesign
	validate
	Index

