
rtkore: R and STK++ Integration using Rcpp

Serge Iovleff

Abstract

This vignette give some hints about the usage of the rtkore (successor of the rtkpp) package. It explains
shortly how to wrap R vectors and matrices into STK++ structures. It gives also an example of Makevars for
linking an R package with rtkore.

1 Introduction

STK++ is a versatile, fast, reliable and elegant collection of C++ classes for statistics, clustering, linear algebra
(using native methods or Lapack[1]), arrays (with an Eigen-like API [2]), regression, dimension reduction, etc.
Some functionalities provided by the library are available in the R environment as R functions or distributed as
R packages (MixAll [6] and HDPenReg [5] among others).

The rtkore package provides a subset of the STK++ library and is only composed of templated classes and
inlined functions. The rtkpp package is also available and provides the header files composing the whole STK++

library. Theses packages furnish implementations of Rcpp::as and Rcpp::wrap for the C++ classes defined in
STK++. In this sense it is similar to the RcppEigen [3, 2] and RcppArmadillo [4] packages.

The current version of the stk++ library is given below

> .Call("stk_version", FALSE, PACKAGE="rtkore")

major minor patch

0 9 3

2 Wrapping R data with STK++ arrays

Rcpp facilitates conversion of objects from R to C++ through the templated functions Rcpp::as. The function
Rcpp::as is implemented in STK++ but it is not strictly necessary to use it. You can rather use this kind of code

SEXP myFunction(SEXP data)

{

STK::RMatrix <double > mat(data); // if data is not a matrix , Rcpp will throw an exception

//

}

The templated class STK::RMatrix wraps a Rcpp matrix which itself wrap the R SEXP structure. You can access
directly (and eventually modify) the R data in your application like if it were a usual STK++ array.

The second templated class you can use is STK::RVector which allows to wrap Rcpp::NumericVector.

3 Converting STK++ arrays and expressions to R data

Rcpp facilitates data conversion from C++ to R through Rcpp::wrap. This function is extended by rtkore for
the stk++ arrays and vectors.

The following example is taken from the STK::ClusterLauncher class

Array2D <Real > mean(K, nbVariable), sigma(K, nbVariable);

// get estimated parameters

//

// and save them

NumericVector m_mean = Rcpp::wrap(mean);

NumericVector m_sigma = Rcpp::wrap(sigma);

1

Note that the Rcpp::wrap is rather limited in its usage and if you need, for example, to convert expression
rather than arrays then you can use the STK::wrap function (see example below).

4 An example

The package countMissings can be downloaded at the http://sourceforge.net/projects/stkpp/files/R%

20packages/countMissings_1.0.tar.gz/download url. It is basically composed of one R-script file (countNA.R)
and one C++ file (countNA.cpp).

Given a R matrix, you will get a list composed of two vectors constaining respectively the number of missing
values in each rows and the number of missing values in each columns of the R matrix.

The R-script countNA.R is essentially

countNA <- function(data)

{

if (!is.matrix(data)) { stop("in countNA , data must be a matrix.")}

.Call("countNA", data , PACKAGE = "countMissings")

}

and the C++ files is

#include "RTKpp.h"

RcppExport SEXP countNA(SEXP r_matrix)

{

BEGIN_RCPP

STK::RMatrix <double > m_data(r_matrix);

// use STK :: wrap function (Rcpp :: wrap function will not work)

return Rcpp::List:: create(Rcpp::Named("rows")= STK::wrap(STK:: countByRow(m_data.isNA()))

, Rcpp::Named("cols")= STK::wrap(STK::count(m_data.isNA()))

);

END_RCPP

}

5 Linking with rtkore

At the R level, you have to add the LinkingTo: rtkore,Rcpp line in the DESCRIPTION file.
At the C++ level, the only thing to do is to include the header file

// Rcpp.h will be include by rtkore

#include <RTKpp.h>

in the C++ code.
When compiling the sources, you indicate the location of the stk++ library using rtkore:::CxxFlags(),

rtkore:::CppFlags() and rtkore:::LdFlags() in the src/Makevars file.
If you are building a package with a lot of cpp files, you may find convenient to locate your sources in a

separate directory. Hereafter we give an example of a Makevars you can modify at your convenience in order
to handle this situation.

#---

Purpose: Makevars for the R packages using rtkore (stk++)

#---

PKGNAME = NAME_OF_YOUR_SRC # for example MyPackage

PKGDIR = PATH_TO_YOUR_SRC # for example ./MyPackage

PKGLIBDIR = $(PKGDIR)/lib # ./MyPackage/lib

PKGLIB = $(PKGLIBDIR)/lib$(PKGNAME).a # ./MyPackage/lib/libMyPackage.a

Use the R_HOME indirection to support installations of multiple R version.

PKG_CXXFLAGS = `${R_HOME}/bin/Rscript -e "rtkore:::CxxFlags()"`

PKG_CPPFLAGS = `${R_HOME}/bin/Rscript -e "rtkore:::CppFlags()"` \

$(SHLIB_OPENMP_CXXFLAGS)

2

We link the source in the src/ directory with the stkpp library and libMyPackage.a

use $(SHLIB_OPENMP_CFLAGS) as stkpp use openMP

use $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS) if you want to use lapack and/or stk++

wrappers of lapack

PKG_LIBS = `$(R_HOME)/bin/Rscript -e "rtkore:::LdFlags()"` $(PKGLIB) \

$(SHLIB_OPENMP_CFLAGS) \

$(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

Define any flags you may need for compiling your sources and export them

MY_CXXFLAGS = $(PKG_CXXFLAGS)

MY_CPPFLAGS = $(PKG_CPPFLAGS)

export

.PHONY: all pkglib

$(SHLIB) is the usual default target that is built automatically from all source

files in this directory. pkglib is an additional target for the package

that will be found in $(PKGDIR).

all: $(SHLIB)

$(SHLIB): pkglib

build the PKGLIB (lib$(PKGNAME).a)

pkglib:

(cd $(PKGDIR) && $(MAKE) all)

(cd $(PKGDIR) && $(MAKE) clean)

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[2] Douglas Bates and Dirk Eddelbuettel. Fast and elegant numerical linear algebra using the RcppEigen
package. Journal of Statistical Software, 52(5):1–24, 2013.

[3] Douglas Bates, Romain François, and Dirk Eddelbuettel. RcppEigen: Rcpp integration for the Eigen tem-
plated linear algebra library, 2014. R package version 0.3.2.0.2.

[4] Romain François, Dirk Eddelbuettel, and Douglas Bates. RcppArmadillo: Rcpp integration for Armadillo
templated linear algebra library, 2014. R package version 0.4.000.2.

[5] Quentin Grimonprez. HDPenReg: High-Dimensional Penalized Regression, 2015. R package version 0.91.

[6] Serge Iovleff. MixAll: Clustering using Mixture Models, 2015. R package version 1.0.2.

3

