
Using the RCDD Package

Charles J. Geyer

January 4, 2008

1 The Name of the Game

We call the package rcdd which stands for “C Double Description in R,” our
name being copied from cddlib, the library we call to do the computations.
This library was written by Komei Fukuda and is available at

http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/

Our rcdd package for R makes available some (by no means all) of the function-
ality of the cddlib library.

2 Representations

The two descriptions in question are the descriptions of a convex polyhedron
as either

� the intersection of a finite collection of closed half spaces or

� the convex hull of of a finite collection of points and directions.

A direction in Rd can be identified with either a nonzero point x or with the
ray {λx : λ ≥ 0} generated by such a point. The convex hull of a set of points
x1, . . ., xk and a set of directions represented as nonzero points xk+1, . . ., xm

is the set of linear combinations

x =
m∑

i=1

λixi

where the coefficients λi satisfy

λi ≥ 0, i = 1, . . . ,m

and
k∑

i=1

λi = 1

1

(note that only the λi for points, not directions, are in the latter sum). The fact
that these two descriptions characterize the same class of convex sets (the poly-
hedral convex sets) is Theorem 19.1 in Rockafellar (Convex Analysis, Princeton
University Press, 1970). The points and directions are said to be generators of
the convex polyhedron. Those who like eponyms call this the Minkowski-Weyl
theorem

http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/node14.html

2.1 The H-representation

In the terminology of the cddlib documentation, the two descriptions are
called the “H-representation” and the “V-representation” (“H” for half space and
“V” for vertex, although, strictly speaking, generators are not always vertices).

For both efficiency and computational stability, the H-representation allows
not only closed half spaces but hyperplanes (which are, of course, the inter-
section of two closed half spaces), or, what is equivalent, the H-representation
characterizes the convex polyhedron as the solution set of a finite set of linear
equalities and inequalities, that is, the set of points x satisfying

A1x ≤ b1 and A2x = b2

where A1 and A2 are matrices and b1 and b2 are vectors and the dimensions are
such that these equations make sense.

In the representation used for our rcdd package for R, these parts of the
specification are combined into one big matrix

M =
(

0 b1 −A1

1 b2 −A2

)
If the dimension of the space in which the polyhedron lives is d, then M has
column dimension d+2 and the first two columns are special. The first column is
an indicator vector, zero indicates an inequality constraint and one an equality
constraint. The second column contains the “right hand side” vectors b1 and b2.
Although we have given an example in which all the inequality rows are on top
of all the equality rows, this is not required. The rows can be in any order.

If m is such a matrix and we let

l <- m[, 1]
b <- m[, 2]
a <- m[, - c(1, 2)]

then the convex polyhedron described is the set of points x that satisfy

axb <- a %*% x - b
all(axb <= 0)
all(l * axb == 0)

2

2.2 The V-representation

For both efficiency and computational stability, the V-representation allows
not only points and directions, but also lines and something I don’t know the
name of (perhaps “affine generators”).

In R a V-representation is matrix with the same column dimension as the
corresponding H-representation, and again the first two columns are special, but
their interpretation is different. Now the first two columns are both indicators
(zero or one valued). The rest of each row represents a point.

The convex polyhedron described is the set of linear combinations of these
points such that the coefficients are (1) nonnegative if column one is zero and
(2) sum to one where the sum runs over rows having a one in column two.

If m is such an object and we define a, b, and l as in the preceding section
(l is column one, b is column two, and a is the rest), then the polyhedron in
question is the set of points of the form

y <- t(lambda) %*% a

where lambda satisfies the constraints

all(lambda * (1 - l) >= 0)
sum(b * lambda) == max(b)

2.3 Fukuda’s Representations

Readers interested in comparing with Fukuda’s documentation should be
aware that cddlib uses different but mathematically equivalent representations.
If our representation is a matrix m, then Fukuda’s representation consists of a
matrix, which is our m[, -1] and a vector (which he calls the linearity), which
is our seq(1, nrow(m))[m[, 1] == 1] (that is the vector of indices of the
rows having a one in our column one).

3 Trying it Out

3.1 A Unit Simplex

Let’s try a really simple example, so we can see what’s going on: the unit
simplex in R3 (essentially copied from the scdd help page, never mind how
makeH works, just look that the matrix qux that it produces, which is an H-
representation).

> library(rcdd)

> d <- 3

> qux <- makeH(-diag(d), rep(0, d), rep(1, d), 1)

> print(qux)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 -1 -1 -1

3

[2,] 0 0 1 0 0
[3,] 0 0 0 1 0
[4,] 0 0 0 0 1
attr(,"representation")
[1] "H"

The first row represents the equality constraint sum(x) == 1 and the other three
rows represent the inequality constraints x[i] >= 0 for i in 1:d.

> out <- scdd(qux)

> print(out)

$output
[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 0 0 1
[2,] 0 1 0 1 0
[3,] 0 1 1 0 0
attr(,"representation")
[1] "V"

The corresponding V-representation has 3 vertices, (1, 0, 0), (0, 1, 0), (0, 0, 1).

> out <- scdd(out$output)

> print(out)

$output
[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 -1 -1 0
[2,] 0 0 1 0 0
[3,] 0 0 0 1 0
[4,] 1 -1 1 1 1
attr(,"representation")
[1] "H"

Note that scdd goes both ways. If we toggle back, we get a different H-
representation, but one that still represents the unit simplex.

3.2 Adding a Constraint

Now let us complicate the situation a bit. The unit simplex represents pos-
sible probability vectors. Let us say the points in the state space are x <- 1:d
and we the elements of the unit simplex are probability vectors p and we want
to add the equality constraint sum(p * x) == 2.2.

> quux <- addHeq(1:d, 2.2, qux)

> print(quux)

4

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1.0 -1 -1 -1
[2,] 0 0.0 1 0 0
[3,] 0 0.0 0 1 0
[4,] 0 0.0 0 0 1
[5,] 1 2.2 -1 -2 -3
attr(,"representation")
[1] "H"

> out <- scdd(quux)

> print(out)

$output
[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 0.4 0.0 0.6
[2,] 0 1 0.0 0.8 0.2
attr(,"representation")
[1] "V"

Adding the equality constraint takes us down a dimension. The unit simplex
was two-dimensional (a triangle). Now the represented convex polyhedron is
one-dimensional (a line segment).

3.3 Convex Hull

Let’s try to find convex hulls in d dimensions.

> d <- 4

> n <- 100

> set.seed(42)

> x <- matrix(rnorm(d * n), nrow = n)

> foo <- cbind(0, cbind(1, x))

> outh <- scdd(foo, inputincidence = TRUE, representation = "V")

> inies <- sapply(outh$inputincidence, length) == 0

> sum(inies)

[1] 60

The points on the surface of the convex hull are the rows of x[! inies,]. (The
code in cddlib provides a faster way to do this, but rcdd does not currently
provide an interface to it.)

4 Using GMP Rational Arithmetic

4.1 A Simple Example

The cddlib code can also use the GMP (GNU Multiple Precision) Library to
compute results using exact arithmetic with unlimited precision rational num-
bers and we bring this facility to rcdd as well.

5

In order to use rational arithmetic, we need a rational number format.
Adding a new numeric type to R would be a job of horrendous complexity, so
we don’t even try. We just use the representation of the rational as a character
string, e. g., "3/4" or "-15/32".

> quuxq <- d2q(quux)

> print(quuxq)

[,1] [,2] [,3] [,4] [,5]
[1,] "1" "1" "-1" "-1" "-1"
[2,] "0" "0" "1" "0" "0"
[3,] "0" "0" "0" "1" "0"
[4,] "0" "0" "0" "0" "1"
[5,] "1" "2476979795053773/1125899906842624" "-1" "-2" "-3"
attr(,"representation")
[1] "H"

What is that? Well computers count in binary and 2.2 is not a round number
to computers (because 1/10 is not a power of 2). We can see that the rational
representation does make sense

> bar <- as.numeric(unlist(strsplit(quuxq[5, 2], "/")))

> print(bar)

[1] 2.47698e+15 1.12590e+15

> bar[1]/bar[2]

[1] 2.2

But we don’t want to check our rational approximations that way because (1)
it’s a pain and (2) big integers needn’t be exactly represented either. So if you’re
willing to take rcdd’s word for it

> q2d(quuxq)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1.0 -1 -1 -1
[2,] 0 0.0 1 0 0
[3,] 0 0.0 0 1 0
[4,] 0 0.0 0 0 1
[5,] 1 2.2 -1 -2 -3
attr(,"representation")
[1] "H"

But that was just a preliminary explanation. The point is that scdd uses ra-
tional representations like quuxq just as well as (better actually) inexact floating
point representations like quux.

6

> outq <- scdd(quuxq)

> print(outq)

$output
[,1] [,2] [,3]

[1,] "0" "1" "900719925474099/2251799813685248"
[2,] "0" "1" "0"

[,4] [,5]
[1,] "0" "1351079888211149/2251799813685248"
[2,] "900719925474099/1125899906842624" "225179981368525/1125899906842624"
attr(,"representation")
[1] "V"

Oops! Excuse the verbose mess.

> print(q2d(outq$output))

[,1] [,2] [,3] [,4] [,5]
[1,] 0 1 0.4 0.0 0.6
[2,] 0 1 0.0 0.8 0.2
attr(,"representation")
[1] "V"

But that too, was not exactly what I wanted to present. It’s not rational
arithmetic that is really messy here, but floating point! Let’s make the rational
approximation to be exactly what we wanted.

> quuxq <- z2q(round(quux * 10), rep(10, length(quux)))

> print(quuxq)

[,1] [,2] [,3] [,4] [,5]
[1,] "1" "1" "-1" "-1" "-1"
[2,] "0" "0" "1" "0" "0"
[3,] "0" "0" "0" "1" "0"
[4,] "0" "0" "0" "0" "1"
[5,] "1" "11/5" "-1" "-2" "-3"
attr(,"representation")
[1] "H"

> outq <- scdd(quuxq)

> print(outq)

$output
[,1] [,2] [,3] [,4] [,5]

[1,] "0" "1" "2/5" "0" "3/5"
[2,] "0" "1" "0" "4/5" "1/5"
attr(,"representation")
[1] "V"

7

Now we have a nice exact representation. It’s the floating point stuff that is
wrong.

> qmq(outq$output, out$output)

[,1] [,2] [,3] [,4]
[1,] "0" "0" "13/90071992547409920" "0"
[2,] "0" "0" "0" "13/45035996273704960"

[,5]
[1,] "-1/11258999068426240"
[2,] "-1/5629499534213120"
attr(,"representation")
[1] "V"

4.2 A More Complicated Example

Let’s check our convex hull calculation.

> outhq <- scdd(d2q(foo), inputincidence = TRUE, representation = "V")

> iniesq <- sapply(outhq$inputincidence, length) == 0

> all.equal(inies, iniesq)

[1] TRUE

> nrow(outh$output) == nrow(outhq$output)

[1] TRUE

> outh <- scdd(foo, incidence = TRUE, representation = "V")

> outhq <- scdd(d2q(foo), incidence = TRUE, representation = "V")

> all.equal(outh$incidence, outhq$incidence)

[1] TRUE

So we happened to get the same number of points on the surface of the hull.
And we got the same number of facets of the convex polyhedron, and they all
had the same shape. The inexactness of floating point arithmetic didn’t hurt us
this time. But if you put this in a loop doing simulations, eventually you will
get wrong answers with floating point. Or worse, scdd will just give up on the
problem being unable to decide whether a point is inside or on the surface of
the hull (or whatever). An example of this is in rcdd/tests/oops.R* where the
problem in oops.RData does make scdd fail unless rational arithmetic is used.
This problem arose in a simulation done by Glen Meeden.

8

