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Abstract

Research with structured Electronic Health Records (EHRs) is expanding as data becomes more
accessible; analytic methods advance; and the scientific validity of such studies is increasingly accepted.
However, data science methodology to enable the rapid searching/extraction, cleaning and analysis of
these large, often complex, datasets is less well developed. In addition, commonly used software is
inadequate, resulting in bottlenecks in research workflows and in obstacles to increased transparency and
reproducibility of the research. Preparing a research-ready dataset from EHRs is a complex and time
consuming task requiring substantial data science skills, even for simple designs. In addition, certain
aspects of the workflow are computationally intensive, for example extraction of longitudinal data and
matching controls to a large cohort, which may take days or even weeks to run using standard software.
The rEHR package simplifies and accelerates the process of extracting ready-for-analysis datasets from
EHR databases. It has a simple import function to a database backend that greatly accelerates data
access times. A set of generic query functions allow users to extract data efficiently without needing
detailed knowledge of SQL queries. Longitudinal data extractions can also be made in a single command,
making use of parallel processing. The package also contains functions for cutting data by time-varying
covariates, matching controls to cases, unit conversion and construction of clinical code lists. There are
also functions to synthesise dummy EHR. The package has been tested with one for the largest primary
care EHRs, the Clinical Practice Research Datalink (CPRD), but allows for a common interface to other
EHRs. This simplified and accelerated work flow for EHR data extraction results in simpler, cleaner
scripts that are more easily debugged, shared and reproduced.

1. Introduction

We present the R (R Core Team 2014) package rEHR for manipulating and analysing Electronic Health
Record (EHR) data and demonstrate its use with rEHR-generated synthetic data. rEHR is available from the
Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/web/packages=rEHR.

The package has been developed using structured primary care data from the UK, which has enjoyed
near-universal deployment of EHRs in general practice and clinical coding performed by general practitioners
for over twenty years. Comprehensive extracts of these UK primary care records are made available for
research - the main sources are: The Clinical Practice Research Datalink (CPRD, previously known as the
General Practice Research Database, GPRD), The Health Improvement Network (THIN), QResearch, The
Doctors’ Independent Network (DIN-LINK) and more recently, Research One. These databases hold near
complete medical records for millions of patients. To date, over 1600 papers have published using these UK
primary care databases (PCDs), with well over 150 papers published per year since 2012. EHR, research is set
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to grow still faster due to advances in analysis methodology (e.g. Danaei et al. 2013, Zorych et al. (2013)),
an increasing body of evidence supporting the validity of such studies (e.g. Reeves et al. (2014), Springate et
al. (2015)) and efforts to improve transparency and reproducibility (Springate et al. (2014)).

Despite the research interest in PCDs, data science methodology to enable the rapid searching/extraction,
cleaning and analysis of these increasingly large and complex datasets is less well developed. In addition,
commonly used software tools are often inadequate, resulting in bottlenecks in the research workflow and
in obstacles to increased transparency and reproducibility of research. PCDs such as CPRD store data
in complex relational and nested structures, and preparing an analysis-ready dataset requires substantial
data science skills, even for simple designs. This complexity is an inevitable consequence of the wide range
of information contained within these databases, which detail the primary care history for every patient,
including coded data for all diagnoses, prescriptions, referrals and test results for all consultations. To
manage this vast wealth of data requires a relational structure based on multiple tables, classifications and
terminologies (e.g. Read codes for diagnoses and referrals, product codes for prescriptions). To extract
relevant data, research teams have to complete a sequence of non-trivial technical tasks. The more complex
the research design the more steps are required to obtain the final dataset. For example, investigating drug
outcomes typically involves constructing complex definitions of codes for diagnosis, drug exposure (may be
varying over time), mortality, and possible confounding factors (e.g. comorbidities, additional medications,
gender, age, referrals, date of diagnosis, etc.). In addition, certain aspects of the workflow are computationally
intensive (for example extraction of longitudinal data and matching controls to a large cohort) - often taking
days or even weeks to run using standard software. Although more powerful compute facilities help (and are
practically a prerequisite for working with these data), an inefficient and slow program running on a fast
server will still be inefficient and slow. Some ‘how-to’ papers exist for good practice in observational data
management but they address only some of the issues or focus on specific applications (Danaei et al. (2013);
Davé and Petersen (2009); J. M. Overhage and Overhage (2013); Perlis et al. (2012)). At the same time there
is a wealth of health informatics and computer science literature on how to make these research processes more
transparent, reducing the duplication of effort and improving the consistency of data processing (Ainsworth,
Cunningham, and Buchan (2012); Bechhofer et al. (2013)). Finally, several software packages exist for
speeding up data analysis, but these are generic, do not apply directly to EHR manipulation and may require
specialist knowledge to effectively use for fast manipulation of dataframes (Wickham and Francois 2015), for
database integration (Grothendieck 2014) and for parallel processing parallel (in base R).

rEHR simplifies and accelerates the process of extracting ready-for-analysis datasets from EHR databases. In
section 2 we provide instructions on loading the software and importing flat text files of the kind supplied by
EHR providers into a local SQL database. In section 3 we describe the basic query operations provided by the
package, the building of longitudinal data and calculation of prevalence and incidence statistics. In section 4
we convert the longitudinal data from the previous section to a cohort dataset suitable for survival analysis
and illustrate algorithms to match controls to cases and to cut cohort data by time-varying covariates. In
section 5 we briefly discuss some accessory functions provided in the package. In the final section we discuss
the .ehr environment used to define the EHR database being used and how this can be set to work with
different databases.

The package includes a number of simulated flat files to allow users to familiarise themselves with advanced
aspects, which we use in this paper to provide examples.

2. Importing EHR data

rEHR is installed and loaded in the usual way:

if (! "rEHR" %in) rownames(installed.packages())) install.packages("rEHR")
library (rEHR)

The development version of the package is available from Github and is accessible via the devtools package
(Wickham and Chang 2014):
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library(devtools)
install_github("rOpenHealth/rEHR")
library(rEHR)

EHR data are stored as relational databases but are most commonly made available to researchers in the
form of flat text files. This has the advantage of easier access for simple tasks and, for example, viewing the
files in a spreadsheet. However, most non-trivial operations require researchers to iterate over a series of
(potentially large) different groups of files. For example here we present pseudocode for a simple workflow
leading to the production of a dataset of prevalent cases for a condition such as diabetes:

# Pseudocode prevalent cases algorithm
define a list of clinical codes for the condition
for each practice:
load clinical events files (clinical, referral, drugs etc.)
select clinical events matching the clinical code list
load patient and practice files
for each year:
select active patients
select events in year
merge active patients and events in year according to condition algorithm
combine all years in practice
combine patients in all practices

Each level of iteration (represented by the nested for loops) and each type of file (e.g. clinical, referral,
drugs etc.) in the above algorithm introduces the opportunity for bugs to creep into extraction code, while
the repeated opening and closing of multiple text files, combined with the inherent inefficiency of for loops in
R often result in slow, error prone code. The rEHR package allows researchers to first automatically import
these flat files into a SQLite database and then use predefined functions to query this database efficiently and
precisely. We use SQLite databases for a variety of reasons:

e SQLite databases are stored as files in the directory system of the computer and require no installation
setup. SQLite3 is installed automatically as a result of installing the dependencies for the package

o SQLite files are stored efficiently and are relatively small compared to text files

e The SQL language has been optimised for very rapid and efficient queries of SQLite files, resulting in
much faster queries than would be available to multiple flat files

o Working with SQLite databases allows users to use some very well developed tools that are already
available to the R community such as sqldf (Grothendieck 2014) and RSQLite (Hadley Wickham 2013)
if they are familiar with R SQL integration tools. These tools also allow for more specific tool functions
to be built to shield users from the complexities of SQL queries.

## Use the simulated ehr files supplied with the package to build our database
ehr_path <- dirname(system.file("ehr_data", "ehr_ Clinical.txt", package = "rEHR"))
## create a new database connection to a temporary file
db <- database(tempfile(fileext = ".sqlite"))
## Import multiple data files into the database
import_CPRD_data(db, data_dir = ehr_path,
filetypes = c("Clinical", "Consultation",
"Patient", "Practice",
"Referral"),
dateformat = "%Y-Jm-%d",
yob_origin = 1800,
regex = "ehr",
recursive = TRUE)
## Individual files can also be added:
add_to_database(db, files = system.file("ehr_data", "ehr_Therapy.txt", package = "rEHR"),



table_name = "Therapy", dateformat = "%Y-Ym-%d")
## Use the overloaded “head™ function to view a list of
## tables or the head of individual tables:

head(db)

## type name tbl_name
## 1 table Clinical Clinical
## 2 table Consultation Consultation
## 3 table Patient Patient
## 4 table Practice Practice
## 5 table Referral Referral
## 6 table Therapy Therapy

head(db, table = "Clinical")

##  patid eventdate constype consid medcode comorbidity practid
## 1 1001 2003-08-25 0 4 69753 hypertension 1
## 2 1001 2004-04-13 1 5 96277 atrial_fibrilation 1
## 3 1001 2004-04-13 1 5 2212 atrial_fibrilation 1
## 4 1001 2004-04-13 1 5 96076 atrial_fibrilation 1
## 5 1001 2005-02-08 1 6 23579 chd 1
## 6 1001 2005-02-18 1 7 16059 hypertension 1

The import_CPRD_data and add_to_database functions are able to import tab-delimited text files or zipped
tab-delimited text-files. By default, all date strings are converted to R dates with standard ISO format
(“%Y-%m-%d”). A regex argument should be supplied that is a regular expression to match a common
prefix to the filenames, separated from the file type by an underscore.

3. Querying the database

Selecting all events

Once EHR data has been imported to the database, the rEHR package has a number of flexible built-in
querying functions for extracting data. These functions are much faster to execute and less error prone than
having to loop through hundreds of text files.

The primary generic query function is select_events () and is able to select all the events in a database table
matching a provided where argument. This function is also called by the other more specific query functions.
An example set of lists of clinical codes for a number of medical conditions is provided with the package
(data(clinical_codes)). select_events() returns a dataframe of extracted data.This collection of disease
specific code lists stems from our previous work and are reposited in www.clinicalcode.org (Springate et al.
(2014)). However, code lists are dynamic and context specific and researchers will very likely need to consider
strategies to develop their own code lists, if existing code lists are considered inadequate (D. A. A. A. Olier
Ivan AND Springate 2016).

diabetes_codes <- clinical_codes[clinical_codes$list == "Diabetes",]
select_events(db, tab = "Clinical", columns = c("patid", "eventdate", "medcode"),
where = "medcode %in% .(diabetes codes$medcode) &

eventdate < '2006-01-01' & eventdate >= '2005-01-01'")

##  patid eventdate medcode

## 1 3012 2005-09-30 273
## 2 1037 2005-04-08 277
## 3 1038 2005-05-19 273
## 4 1091 2005-05-27 351



## 5 1091 2005-07-25 351
## 6 1097 2005-03-10 273

The tab argument is used to select the file type (Clinical, Consultation, Patient, Practice or Referral in
the previous code example), while the columns argument selects variables from these files. The where
argument is equivalent to the WHERE clause in SQL, in that it is used to select subsets of the data table.
The user must supply a string representation of valid R code, which is then translated to SQL via the
dplyr::translate_sql_ function. There are two important caveats to this:

1. If an element of the clause represents an R object to be accessed (such as the elements of a vector) it
must be wrapped in a . () (See the example above). String elements wrapped in . () are processed by
the expand_string function before being passed to dplyr: :translate_sql_.

2. Dates should separately quoted and entered in ISO format (‘%Y-%m-%d’). This is because dates are
stored as ISO text in the database, not as r Date types.

If the argument sql_only == TRUE, the function only generates the SQL needed for the query, rather than
running the query itself. In this way, select_events can be used as the base for more complex query
functions. The results of this function can also then be passed to temp_table() to create temporary tables
where it is not desirable to keep large query results in RAM. For example:

Asthma_codes <- clinical_codes[clinical_codes$list == "Asthma",]
q <- select_events(db, tab = "Clinical", columns = c("patid", "eventdate", "medcode"),
where = "medcode %in% .(Asthma_codes$medcode)",

sql_only = TRUE)
temp_table(db, tab_name = "Asthma", select_query = q)

## Temporary table 'Asthma' created
head(db, temp = TRUE)

## type name tbl_name
## 1 table Asthma  Asthma

head(db, table = "Asthma")

## patid eventdate medcode
## 1 1025 2014-04-11 1105
## 2 1035 2012-03-05 1116
## 3 2065 2006-03-20 1095

Using raw SQL queries

Since EHR data is stored as a standard SQLite database, users can alternatively make SQL queries to the
database using sqldf, which is imported into the namespace on loading of the rEHR package:

sqldf ("SELECT patid, practid, gender, yob, deathdate from Patient WHERE
deathdate IS NOT NULL LIMIT 6",
connection = db)

##  patid practid gender yob deathdate

## 1 1003 3 0 1983 2001-11-16
## 2 3015 15 1 1995 2000-05-09
## 3 2016 16 1 1959 2002-10-28
## 4 1018 18 0 1992 2009-12-29
## 5 2020 20 1 1956 2002-11-29
## 6 1023 23 0 1983 2013-03-24



There are two methods for including R objects in raw SQL strings. First, wrapping the string in a call to
expand_string() allows for the . () notation to be used as in where arguments to select_events() based
functions. Alternatively, a helper function, wrap_sql_query () is provided that functions in a similar way to
base: :sprintf but formats objects according to SQL syntax. If the result of evaluating the argument is a
vector of length 1, it is inserted as is; if it is a vector of length > 1, it is wrapped in parentheses and comma
separated.

library (rEHR)

medcodesl <- 1:5

practice <- 255

rEHR: :expand_string("SELECT * FROM clinical WHERE practid == .(practice)")

## [1] "SELECT * FROM clinical WHERE practid == 255"

wrap_sql_query("SELECT * FROM clinical WHERE practid == #1 AND medcodes in #2",
practice, medcodesl)

## [1] "SELECT * FROM clinical WHERE practid == 255 AND medcodes in ( 1, 2, 3, 4, 5 )"

Selecting first or last events

Frequently, users need to find the first clinical event for a given patient (e.g. to identify dates of diagnosis of
chronic diseases) or the most recent clinical event (e.g. to identify if a drug therapy has been prescribed within
a certain time period). rEHR provides convenience functions for these common situations. The functions run
a select_events() query and then group by patient id and selects only the earliest/latest event for each
patient:

first_DM <- first_events(db, tab = "Clinical",
columns = c("patid", "eventdate", "medcode"),
where = "medcode %in% .(diabetes_codes$medcode)")
last_DM <- last_events(db, tab = "Clinical",
columns = c("patid", "eventdate", '"medcode"),
where = "medcode %in% .(diabetes_codes$medcode)")
head(first_DM)

##  patid eventdate medcode

## 1 1004 2007-12-25 351
## 2 1005 2004-08-31 351
## 3 1008 2002-03-02 351
## 4 1010 2014-04-11 351
## 5 1012 2012-05-28 351
## 6 1015 2008-08-16 351

head(last_DM)

## patid eventdate medcode

## 1 1004 2007-12-25 351
## 2 1005 2009-03-09 351
## 3 1008 2002-03-02 351
## 4 1010 2014-04-11 351
## 5 1012 2013-02-14 351
## 6 1015 2013-08-17 273



Querying longitudinal data with select_by_year()

Researchers will often want to extract data over a range of different time-points, for example they may want to
calculate the prevalence of a condition and how this changes through time. When working with flat text files,
this must be done with a complex nested loop that is both slow and error-prone. The select_by_year()
function provides a simple interface to extract longitudinal data. On posix-compliant computers (Linux, BSD,
Mac), this function can make use of parallel processes to select data for different years concurrently, greatly
accelerating the extraction process on multicore machines. The function runs a series of selects over a year
range and collects in a list of dataframes.

The function applies a database select over a range of years and outputs as a list or a dataframe. Either
a database object or a path to a database file can be supplied. If multiple cores are being used (i.e. cores
> 1), a path to a database file must be used because the same database connection cannot be used across
threads. In this case, a new database connection is made with every fork. Note that when working with
temporary tables, cores must be set to 1 and the open database connection must be set with db. This is
because the use of parallel::mclapply means that new database connections need to be started for each
fork and temporary files are only available inside the same connection.

Queries can be made against multiple tables, assuming that the columns being extracted are present in all
tables. The columns argument is a character vector of column names to be selected. The individual elements
can be of arbitrary length. This means it is possible to insert SQL clauses e.g. “DISTINCT patid”.

A numeric vector of years is passed to the year_range argument to specify the years to select data for.
Selection is done according to the function passed to the selector_fn argument. select_events is the
default but first_events and last_events can also be used, as well as custom selection functions. The
where argument works in the same way as in select_events except that year-start and year-end criteria
can be added as ‘STARTDATE’ and ‘ENDDATE’. These are translated to the correct year- start and end
dates. Different start and end dates can be specified by supplying a function to the year_fn argument. This
function must accept a single year argument and return a list with two elements - “startdate” and “enddate”,
each of which must be date characters in posix format (i.e. “%Y-%m-%d”). Three functions are provided to
define years (standard_years for 1st January to 31st December, qof_years for UK financial years as used
in the UK Quality and Outcomes Framework (Roland (2004)) and qof_15_months for the period starting
1st January in the year in question and finishing on the 31st March the following year) and a convenience
function, build_date_fn() is provided to which users can supply lists of year offsets, months and days for
year- start and end to return a function that can be supplied as the year_fn argument. Finally the user can
set the as_list argument to determine whether data from each year is returned as a separate list element or
as a single data frame.

Selecting prevalent and incident events

To show the utility of the package we demonstrate how one might extract an incident and prevalent cohort of
diabetes patients from the simulated example data. Prevalent events for a chronic condition are selected
by the earliest diagnostic event prior to the end of the time period in question. The denominator for the
calculation of the prevalence is the total number of patients registered at that time point.

# Select all patients with current registration date (crd) < the start date
# for each year.
registered_patients <- select_by_year(db = db,

tables = "patient",

columns = c("patid", "practid", "gender",

"yob", "crd", "tod", "deathdate"),

where = "crd < STARTDATE",

year_range = c(2008:2012),

year_fn = standard_years)



## Using open database connection

str(registered_patients)

##
##
##
##
##
##
##
##
##

'data.frame':

$ patid

$ practid
$ gender
yob

crd

tod :
deathdate:
$ year

#H H hH P

int
int
int

: num
: chr
: chr

chr
int

1005 obs. of 8 variables:

1001 1002 2002 3002 4002 1003 2003 1004 2004 3004 ...
1222233444 ...

1111001011

1989 1942 1965 1959 1932 ...

"1998-03-22" "2003-07-10" "1997-10-15" "1981-09-01"
NA NA NA NA ...

NA NA NA NA ...

2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 ...

table(registered_patients$year)

##

## 2008 2009 2010 2011 2012
206 214

##

189 195 201

Notice that select_by_year returns a dataframe in long form, with a year column for the longitudinal
component. Next we calculate the incident cases, which are those patients with first diagnoses at any point
before the end of the year in question, plus the dates for the first diagnoses. In this case we include events
matching our list of diabetes clinical codes in either clinical or referral files. Because we only want the first
diagnosis dates we set the selector_fn argument to first_events:

incident_cases <- select_by_year(db = db,

tables = c("Clinical", "Referral"),

columns = c("patid", "eventdate", '"medcode"),

where = "medcode %in% .(diabetes_codes$medcode) &
eventdate <= ENDDATE",

year_range = c(2008:2012),

year_fn = standard_years,

selector_fn = first_events)

## Using open database connection

str(incident_cases)

##
##
##
##
##
##

'data.frame':

$ patid

$ eventdate:
$ medcode
$ table

$ year

int
chr
int

: chr

int

262 obs. of b5 variables:

1004 1005 1008 1015 1025 1035 1037 1038 1043 1047 ...
"2007-12-25" "2004-08-31" "2002-03-02" "2008-08-16"
351 351 351 351 351 293 277 273 351 257 ...
"Clinical" "Clinical" "Clinical" "Clinical"

2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 ...

Note that in this case extra columns have been added for both year and table, to identify the table the event
was found in. Because events were taken from more than one table (Clinical and Referrals), the incident_ cases
dataframe should be sorted and duplicates removed to ensure that only the first events are kept. The two
datasets are then merged to give the dataset from which the denominators and numerators can be calculated.
The dplyr package is imported to the namespace when the rEHR package is loaded. This simplifies and
accelerates merging operations, using left_join from the dplyr package in the example below, and is an
important part of the rEHR workflow:

## All patients are kept (equivalent to merge(all.x = TRUE))
prevalence_dat <- left_join(registered_patients, incident_cases)

## Remove duplicates across clinical and referral tables:



incident_cases %>%
group_by(patid, year) %>%
arrange(eventdate) %>%
distinct() %>%
ungroup -> incident_cases

Prevalence and incidence can be calculated by the built-in functions prev_terms() and prev_totals().
prev_terms () adds logical columns for membership of incidence and prevalence denominators as well as
a column for the contribution of the individual to that year’s followup time. prev_totals() summarises
this information to calculate the denominators and numerators for prevalence and incidence, according to
the users’ grouping factors. The criteria for membership of the incidence and prevalence numerators and
denominators as well as for followup time are shown in table 1.

Column Definition

Incident Numerator existing event date 4+ event occurs within year 4 transfer out date > event date
Incident Denominator ~ No events in previous years + transfer out date > year start date
Prevalent Numerator existing event date + transfer out date > event date

Prevalent transfer out date > year start date
Denominator
Followup minimum of (year end date, transfer out date, death date) - year start date

table 1: Definitions of incidence and prevalence terms

An example in the use of these functions is provided below:

prevalence_dat <- prev_terms(prevalence_dat)

## Converting date columns...

totals <- prev_totals(prevalence_dat)

## Joining, by = "year"

## Joining, by = c("year", "practid")

## Joining, by = "year"

## Joining, by = c("year", "practid")

totals$prevalence$year_counts

## # A tibble: 5 x 4

#it year numerator denominator prevalence
##  <int> <int> <dbl> <dbl>
## 1 2008 32 175.6715  18.21582
## 2 2009 37 181.3717  20.40010
## 3 2010 43 185.1335  23.22649
## 4 2011 53 188.4079  28.13045
# 5 2012 59 195.5811  30.16651

totals$incidence$year_counts

## # A tibble: 5 x 4

## year numerator denominator incidence
##  <int> <int> <dbl> <dbl>
## 1 2008 5 143.9014 3.474600
## 2 2009 4 144.4983 2.768199



## 3 2010 4 142.2806 2.811345
## 4 2011 8 135.5893 5.900170
## 5 2012 6 137.4675 4.364668

Here we see that, in our simulated dataset, we have a diabetes prevalence of 18.2% in 2008 raising to 30.2%
in 2012 and an incidence of 3.5% in 2008 increasing to 4.4% in 2012.

4. Building cohorts, matching and time-varying covariates

In this section we demonstrate how to convert the longitudinal data from the previous section to a cohort
dataset suitable for survival analysis and also illustrate algorithms to match controls to cases and to cut
cohort data by time-varying covariates.

One of the most common uses of EHR data in research is to build cohorts for survival analyses. The longitudinal
data in the previous section is easily converted to survival cohort format using the build_cohort () function.
This returns a dataset with a single row for each patient and includes only patients in the numerator or
denominator for whichever cohort type is chosen (either incident or prevalent cohorts). Columns are added
for start and end dates and for start and end times as integer differences from the cohort start date. A binary
column is added to indicate membership of the case group. All patients with start dates greater than their
end dates are removed from the dataset. The diagnosis_ start argument is used to include the diagnosis
date in the definition of the start dates for the patients. If it is not required for the diagnosis date to be
included in the start date definition, this argument can be set to NULL. Here, we will first merge in practice
data (i.e. dates for when practices are deemed to be up to standard) and then construct the cohort:

practices <- select_events(db = db, tab = "Practice", convert_dates = TRUE)
prevalence_dat <- left_join(prevalence_dat, practices)

cohort <- build_cohort(prevalence_dat, cohort_type = "prev",
cohort_start = "2006-01-01", cohort_end = "2012-12-31",
diagnosis_start = "eventdate")

The cohort is now ready for analysis. e.g.

## Add a logical column for death during cohort
cohort$death <- with(cohort,
ifelse(!is.null(deathdate) &
(deathdate > as.Date("2006-01-01") &
deathdate < as.Date("2012-12-31")),
1, 0))
cohort$death[is.na(cohort$death)] <- 0

library(survival)
surv_obj <- with(cohort, Surv(start, end, death))
coxph(surv_obj ~ gender + case, data = cohort)

## Call:

## coxph(formula = surv_obj ~ gender + case, data = cohort)
##

#it coef exp(coef) se(coef) z P

## gender 0.506 1.659 0.837 0.61 0.55

## case -0.645 0.524 1.081 -0.60 0.55

##

## Likelihood ratio test=0.81 on 2 df, p=0.667
## n= 199, number of events= 7

10



Matching

Matching cases to controls is an important pre-analysis step. The rEHR package provided three methods for
matching cases to controls:

1. Incidence density matching (IDM)
2. Exact matching
3. Matching on a dummy index date sourced from consultation files

Incidence density matching

This is performed using the get_matches() function. With IDM, controls are selected for a particular case
at the time of diagnosis (or other event such as death) from from other members of the cohort who, at that
time, do not have the diagnosis. The IDM sampling procedure allows the same patient to be selected as a
control for more than one case, thus providing a full set controls for each case while still producing unbiased
estimates of risk (Richardson (2004); Reeves et al. (2014)). This also means that the matching procedure can
be parallelised to increase computational efficiency.

cohort2 <- build_cohort(prevalence_dat, cohort_type = "incid",
cohort_start = "2006-01-01", cohort_end = "2012-12-31",
diagnosis_start = "eventdate")
IDM_controls <- get_matches(cases = filter(cohort2, case == 1),
control_pool = filter(cohort2, case == 0),

match_vars = c("gender", "region"),
n_controls = 4, cores = 1,
method = "incidence_density", diagnosis_date = "eventdate")

In this example matching scenario, 96 controls were matched to 24 cases, which is 4 controls matched to each
case.

In all of the matching algorithms, matching is performed by default on categories selected in the match_vars
argument. However, more complex matching strategies can also be employed via the extra_conditions
argument. You can wrap calls to expressions in dotted brackets to automatically expand them. This is
particularly useful when you want to find the value for each individual case. Each case is denoted by CASE,
e.g. "start_date < .(CASE$start_date)" will ensure the start date for controls is prior to the start date
for the matched case. The following code also selects controls whose birth year (yob) is within 2 years either
side of their matched case:

IDM_controls2 <- get_matches(cases = filter(cohort2, case == 1),
control_pool = filter(cohort2, case == 0),
match_vars = c("gender", "region"),
extra_conditions = "yob >= ( .(CASE$yob) - 2) &
yob <= ( .(CASE$yob) + 2)",
n_controls = 4, cores = 1,
method = "incidence_density", diagnosis_date = "eventdate")

## .No matches for id 1012 ..No matches for id 1015 ..No matches for id 1034 ..No matches for id 1035 .

Exact matching
Exact matching only matches controls from the control pool, unlike in IDM matching. Also, matched controls

are removed from the control pool after each case has been matched, so each control can be used a maximum
of one time. Therefore it is possible to have fewer matched controls for some cases than are requested via the
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n_controls argument. Because the control pool is being altered for every case, exact matching is not thread
safe and so will only run on a single core. The cores and diagnosis_date arguments are ignored when this
method is selected.

exact_controls3 <- get_matches(cases = filter(cohort2, case == 1),
control_pool = filter(cohort2, case == 0),
match_vars = c("gender", "region"),
n_controls = 4, cores = 2,
method = "exact", diagnosis_date = "eventdate")

In a small cohort, this can rapidly reduce the control pool, leading to many cases without matches. In this
example, 20 out of 24 were matched with mean 3.5 controls matched to every case.

Matching on a dummy index date

A common matching approach is to match on an index date, for example the diagnosis date of the cases or
the date followup starts. There are several reasons to match on index date:

1. It ensures cases and controls are followed-up, on average, for the same amount of time. Not including
an index date for controls may result in them being, on average, in the cohort for longer than the cases
because their cohort start date is not constrained by the index date

2. There is a possible reduction of detection bias, for example if cases are expected to visit their doctors
more often because they have more co-morbidities

3. If controls are known to have attended their practice at around the same time as their matched case, it
is likely they will experience similar conditions in terms of practice policy and active GPs

4. Patients who, though registered, have no records of contact with the medical system (“Ghost patients”)
are excluded

However, the controls will often not have the same index to match on (this is true by definition if the diagnosis
date is used). In this situation, it is common to match on a dummy index date which may be a clinical
event or interaction in the control’s electronic health record that occurs around the same time as the index
date of the case (Parisi et al. (2015); Gelfand et al. (2006)). The match_on_index() function allows for
matching on an arbitrary number of categorical match_var variables and on continuous variables via the
extra_conditions argument in the same way as the get_matches() function above. In addition, a supplied
index date for each case is matched to event dates in a series of consultation files (1 file for each practice),
providing a dummy index date for controls of a consultation date within index_diff_limit days of the
matched case’s index date.

Note that the consultation files must be in flat-file format, i.e. not as part of the database, but as text (or other
filetype, e.g stata dta) files. This is the data format provided by CPRD (“Clinical Practice Research Datalink
(CPRD) GOLD,” n.d.). Although in most situations it is more efficient to process EHR data in SQL databases,
as in the earlier functions described here, consultation tables are often very large and searching these for every
case in a large cohort would be very slow. By processing consultation files that have been split by practice, it
is possible to search for matches a practice at a time which is both efficient and allows for parallel processing
to speed the process up still further. For convenience, a function flat_files() is provided that can export a
database table to flat files split by practice in a format of their choosing. The match_on_index () function has
an import_fn argument to use different file formats (e.g. foreign: :read.dta or readstatal3: :read.dtal3
for Stata 12 or Stata 13 file).

consultation_dir <- "~/R/rEHR_testing"
rEHR: :flat_files(db, out_dir = consultation_dir, file_type = "csv"

index_controls <- match_on_index(cases = filter(cohort2, case == 1),
control_pool = filter(cohort2, case == 0),
index_var = "eventdate",

match_vars = c("gender", "region"),
index_diff_limit = 90,
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consult_path = consultation_dir,

n_controls = 4,

import_fn = function(x) convert_dates(read.csv(x)))
unlink(consultation_dir, recursive = TRUE) # clean up constructed dirs after analysis

This function performs matching that is still more conservative than the previous methods, since it requires
matching of patients within the same practice and with consultation dates near the index date. In the
test example above, no matched controls were found which is not surprising with a control pool of only
143. In practice this method is only appropriate where there is a control pool of hundreds of thousands or
even millions of patients. If too few controls are found, the constraint can be relaxed by setting a higher
index_diff_limit. Setting this to an arbitrarily high value effectively means that matching is not done on
index date, but just on practice and the other user-specified matching variables. Users may find that this
is a more efficient way to perform exact matching than using the get_matches() function. We have used
this method to accelerate matching runs with several million controls that previously took days or weeks to
minutes or a few hours.

Time-varying covariates

Often, researchers want to cut a survival cohort by time-varying covariates. In this situation, individual
patients may run over more than one row in the cohort dataset. For example, a drug exposure may occur
after the entry into the cohort and one might be interested in how this might affect the outcome. In this
situation, it is useful to have a pre-exposure and post-exposure time period in the dataset.

The cut_tv() function cuts up a dataset based on times supplied for the time-varying covariate. If there is
already a variable for the time-varying covariate, you can chose to flip the existing values or increment them.
This means the function can be called multiple times to, e.g. deal with drugs starting and stopping and
also to model the progression of treatment. Other packages implement similar functions (e.g. the cutLexis
function from the Epi package (Bendix Carstensen and Hills 2014)). The cut_tv() function is considerably
faster than other cutting methods (particularly on large datasetss), does not require conversion of the dataset
to other formats (such as Lexis), can be parallelised on posix compliant machines and is designed to be
chained with dplyr workflows using the %>% operator. cut_tv() can deal with the following scenarios:

o Binary chronic covariates e.g. The time of diagnosis for a chronic (unresolvable) condition. This
requires a single column variable of times from entry in the dataset

e Binary covariates e.g. times of starting and stopping medication. This requires more than one column
variable in the dataset, one for each start or stop event. The state flips with each new change.

e Incremental time-varying covariates e.g. different stages of a condition. This requires a single
column variable for each incremental stage

e Any combination of the above This is achieved by chaining multiple calls together

One must supply a dataframe, variable names for entry and exit times, the time-varying covariate, the patient
id and the constructed variable. Also one supplies the number of processor cores to run the function on and
the behaviour of the function if the constructed variable already exists (either to flip from 1-0 or to increment
by one). Here we demonstrate the different scenarios with a small sample dataset:

tv_test <- data.frame(id = 1:5, start = rep(0, 5), end = c(1000, 689, 1000, 874, 777),
event = c(0,1,0,1,1), drug_1 = c(NA, NA, NA, 340, 460),
drug_2 = c(NA, 234, 554, 123, NA),
drug_3_start = c(110, 110,111, 109, 110),
drug_3_stop = c(400, 400, 400, 400, 400),
stage_1 = c(300, NA, NA, NA, NA),
stage_2 = c(450, NA, NA, NA, NA))

## Multiple binary chronic covariates:
tv_outl <- cut_tv(tv_test,
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entry = start,

exit = end,

cut_var = drug_1,

id_var = id,

tv_name = drug_1_state)
tv_outl <- cut_tv(tv_outl, start, end, drug_2, id_var = id, drug_2_state)
head(tv_out1l)

## id start end event drug_1 drug_2 drug_3_start drug_3_stop stage_1

## 1 1 0 1000 0 NA NA 110 400 300
## 2 2 0 233 1 NA 234 110 400 NA
## 3 2 234 689 1 NA 234 110 400 NA
##t 4 3 0 553 0 NA 554 111 400 NA
## 5 3 554 1000 0 NA 554 111 400 NA
## 6 4 0 122 1 340 123 109 400 NA
## stage_2 drug_1_state drug_2_state
## 1 450 0 0
#t 2 NA 0 0
#t 3 NA 0 1
## 4 NA 0 0
## 5 NA 0 1
## 6 NA 0 0

## Binary covariates:

tv_out3 <- cut_tv(tv_test, start, end, drug_3_start, id_var = id, drug_3_state)
tv_out3 <- cut_tv(tv_out3, start, end, drug_3_stop, id_var = id, drug_3_state)
head (tv_out3)

## id start end event drug_1 drug_2 drug_3_start drug_3_stop stage_1

## 1 1 0 109 0 NA NA 110 400 300
## 2 1 110 399 0 NA NA 110 400 300
## 3 1 400 1000 0 NA NA 110 400 300
## 4 2 0 109 1 NA 234 110 400 NA
## 5 2 110 399 1 NA 234 110 400 NA
## 6 2 400 689 1 NA 234 110 400 NA
## stage_2 drug_3_state
##t 1 450 0
## 2 450 1
## 3 450 0
## 4 NA 0
## 5 NA 1
## 6 NA 0

## incremental covariates:
inc_1 <- cut_tv(tv_test, start, end, stage_1, id_var = id, disease_stage,

on_existing = "inc"
inc_1 <- cut_tv(inc_1, start, end, stage_2, id_var = id, disease_stage,
on_existing = "inc")

head(inc_1)

## id start end event drug_1 drug_2 drug_3_start drug_3_stop stage_1

## 1 1 0 299 0 NA NA 110 400 300
## 2 1 300 449 0 NA NA 110 400 300
## 3 1 450 1000 0 NA NA 110 400 300
## 4 2 0 689 1 NA 234 110 400 NA

14



## 5 3 0 1000 0 NA 554 111 400 NA

## 6 4 0 874 1 340 123 109 400 NA
##  stage_2 disease_stage
## 1 450 0
## 2 450 1
## 3 450 2
## 4 NA 0
## 5 NA 0
## 6 NA 0

## Chaining combinations of the above using %>%

library(dplyr)

tv_test %>%
cut_tv(start, end, drug_1, id_var = id, drug_1_state) ¥>%
cut_tv(start, end, drug_2, id_var = id, drug_2_state) %>%
cut_tv(start, end, drug_3_start, id_var = id, drug_3_state) %>’
cut_tv(start, end, drug_3_stop, id_var = id, drug_3_state) %>%

cut_tv(start, end, stage_1, id_var = id, disease_stage, on_existing = "inc") %>%
cut_tv(start, end, stage_2, id_var = id, disease_stage, on_existing = "inc") ¥%>%
head

## id start end event drug_1 drug_2 drug_3_start drug_3_stop stage_1

## 1 1 0 109 0 NA NA 110 400 300
## 2 1 110 299 0 NA NA 110 400 300
## 3 1 300 399 0 NA NA 110 400 300
## 4 1 400 449 0 NA NA 110 400 300
## 5 1 450 1000 0 NA NA 110 400 300
## 6 2 0 109 1 NA 234 110 400 NA
## stage_2 drug_1_state drug_2_state drug_3_state disease_stage
## 1 450 0 0 0 0
## 2 450 0 0 1 0
## 3 450 0 0 1 1
## 4 450 0 0 0 1
## 5 450 0 0 0 2
## 6 NA 0 0 0 0

5. Accessory functions

In this section we briefly discuss some miscellaneous functions provided in the package.

Clinical code list construction

An important part of EHR analyses is the construction of lists of clinical codes to define conditions,
comorbidities and other clinical entities of interest to the study (Springate et al. (2014)). We have previously
described methodologies to construct draft lists of clinical codes from keyword and code searches (D. A. A.
A. Olier Ivan AND Springate (2016)). The R implementation of this methodology is now part of the rEHR
package.

Building draft lists of clinical codes is a two-stage process: First, the search is defined by instantiating an object
of class MedicalDefinition, containing the terms to be searched for in the lookup tables. MedicalDefinition
objects can be instantiated from terms defined within R or imported from a csv file. The constructor function
can be provided with lists of: terms(clinical search terms), codes (clinical codes), tests (test search terms),
drugs (drug search terms), drugcodes (drug product codes). Within the individual argument lists, vectors
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of length > 1 are searched for together (logical AND), in any order. Different vectors in the same list are
searched for separately (logical OR). Placing a “-” character at the start of a character vector element excludes
that terms from the search. Providing NULL to any of the arguments means that this element will not be
searched for. Underscores are treated as spaces. When searching for codes, a range of clinical codes can be
searched for by providing two codes separated by a hyphen. e.g “E114-E1172z”.

## Example construction of a clinical code list
def <- MedicalDefinition(
terms = list(
"peripheral vascular disease", "peripheral gangrene", "-wrong answer",
"intermittent claudication", "thromboangiitis obliterans",
"thromboangiitis obliterans", "diabetic peripheral angiopathy",
c("diabetes", "peripheral angiopathy"), # single AND ezpression
c("buerger", "disease presenile_gangrene"),
"-excepted", # ezclusion
codes = list("G73"),
tests NULL,
drugs = list("insulin", "diabet", "aspirin")))

Code lists can be defined in a csv file with format as shown in table 2. These files can then be imported
to MedicalDefinition objects using the import_definitions(input_file = "path/to/file.csv") func-
tion.

definition  status items

terms include peripheral vascular disease

terms include peripheral gangrene

terms exclude wrong answer

terms include intermittent claudication

terms include thromboangiitis obliterans

terms include  Diabetic peripheral angiopathy

terms include diabetes peripheral angiopathy
terms include  buerger disease presenile_ gengrene
terms exclude excepted

codes include GT73

drugs include  insulin

drugs include diabet

drugs include aspirin

table 2: Example code list definition in csv format

The MedicalDefinition objects are then used to run searches against lookup tables provided with EHRs
via the build_definition_lists() function:

## Use fileEncoding="latinl" to avoid any issues with non-ascii characters

medical_table <- read.delim("Lookups/medical.txt", fileEncoding = "latinl", stringsAsFactors

FALSE)

drug_table <- read.delim("Lookups/product.txt", fileEncoding = "latinl", stringsAsFactors = FALSE)

draft_lists <- build_definition_lists(def, medical_table = medical_table, drug_table = drug_table)

Unit conversion

HDbAI1C tests for glycated haemoglobin are one of the best recorded clinical tests in UK primary care databases,
to a large extent because of testing being incentivised under the UK Quality and Outcomes Framework
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pay-for-performance scheme (Roland (2004); Kontopantelis et al. (2014)). However, HbA1C data is not
recorded in CPRD consistently. Measurements may have been made in mmol/mol, mmol/L or mg/dL. Also
the closely analogous fructosamine test can also be converted into the same units for direct comparison.
The CPRD-specific cprd_uniform_hbalc_values() function accepts a single argument of a dataframe in
the CPRD “Additional” table form containing only entity types for HbA1C and Fructosamine and converts
any HbA1C and fructosamine values to a common mmol/mol scale. Once this conversion has taken place,
the function also removes obvious mis-coding errors that are far outside the possible range. A dataframe is
returned with an extra column hbalc_score.

Exporting data to Stata format

Sometimes researchers may need to share data with others in the same group who may not have R expertise.
We have provided the to_stata function to export dataframes to stata dta format. This function compresses
a dataframe to reduce file size in the following ways:

1. Date variables (as specified by the date_fields argument) are converted to integer days from 1960-01-01
to avoid compatibility issues between R and Stata. An alternative origin can be set with the origin
argument

2. Fields specified in the integer_fields are converted from numeric to integer

the statal3 boolean argument indicates whether files should be stored in Statal3 format (Using
readstatal3::savedtal3) or in Stata 12 compatible format (using foreign::write.dta). The former
includes a further compression step, similar to the compress command in Stata.

Working with temporary database tables

The size of EHR databases may require keeping intermediate data extractions as database tables, rather
than as in-memory R dataframes. For example, extractions of clinical events for a common condition such
as diabetes or asthma will require the extraction of millions of rows of data. These may be easily stored as
temporary database tables. This is also useful if you are working with a protected database that you only
have read-only access to. The rEHR package has a suite of functions to deal with temporary database tables:

o temp_table() is used to construct temporary tables and is illustrated in section 3

e append_to_temp_table() appends rows to a temporary table based on a specified select statement
e to_temp_table() exports a dataframe to a temporary database table

e drop_temp_table() checks if a temporary table exists and then deletes if it does

e drop_all_temp_tables() drops all temporary tables from the database

Note that temporary tables are only associated with the currently open database connection. This means
that functions capable of parallel processing (e.g. select_by_year()) can only be used in the single core
mode (i.e. set cores = 1) since multicore processes open up multiple parallel connections.

6. Setting EHR type

In the final section we discuss the .ehr environment used to define the EHR database being used and how
this can be set to work with different databases.

In many of the functions in this package, specific tables and variables in the database need to be accessed. A
particular database system, such as CPRD, will have its own schema describing the organisation of the data
within it. To simplify the functions in this package, we have opted to include an interface to the database
schema in the form of an environment, .ehr, that is accessed by the various analysis functions in order to
extract the correct data from the correct place in the database. This is effectively a list of attributes relating
to the EHR system being used. For example there is an attribute specifying the patient id variable in the
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database. By default, a schema environment for CPRD is loaded when the package is loaded via a call to
set_CPRD(). We have provided accessor functions to get and set attributes in the .ehr environment. It is
preferable to use these accessor functions rather than setting elements directly. A list of all of the attributes
is provided by the 1ist_EHR_attributes() function. For example:

list_EHR_attributes()

## [1] "EHR_name" "birth_year" "cohort"

## [4] "date_fields" "ehr_medcode" "event_date"
## [7] "lookup" "patient_id" "practice_id"
## [10] "raw_date_format" "tables" "year_origin"

The values of individual attributes can be accessed with the get_EHR_attribute() function:

get_EHR_attribute(patient_id) # gives the attribute for patient ids

## [1] "patid"
get_EHR_attribute(date_fields) # fields in the database stored as dates

## event entry last_coll up_to_std first_reg
## "eventdate" "sysdate" "lcd" "uts" "frd"
## current_reg transfer_out death
# "crd" "tod" "deathdate"

get_EHR_attribute(cohort) # wariables used in cohort construction

## $start_criteria
## [1] "crd" "uts"

##
## $end_criteria
## [1] "tod" "deathdate" "lcd"

Individual attribute values can be set using the set_EHR_Attribute() function:
set_EHR_attribute(patient_id, value = "PATIENT") # set the patient %id attribute
get_EHR_attribute(patient_id)

## [1] "PATIENT"

The default settings can be reverted to using the set_CPRD() function:
set_CPRD()

## Using CPRD settings
get_EHR_attribute(patient_id)

## [1] "patid"

The .ehr environments will allow for the simple definition of interfaces to other EHR systems, via the
construction of new setting functions.

7. Conclusion

Working with structured EHR data requires a combination of computational and statistical expertise. The
rEHR package greatly simplifies and accelerates the extraction and processing of coded data from EHR
databases, enabling researchers to spend more time on their analyses, time that would otherwise be consumed
with laborious preparation of research-ready data. The workflow is straightforward, amounting to a flat series
of function calls rather than a complex set of nested loops, therefore errors are much more easily spotted
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and fixed. The combination of SQL native databases, optimised data manipulation packages and multicore
functionality results in a package that runs many times faster than equivalent code.

Limitations and future work

Although rEHR is currently only tested with CPRD data, the .ehr environment system will allow it to be
easily linked to other EHR databases. Future versions of the rEHR software will include:

o Implementation of the repsample algorithm for representative sampling of practices (Kontopantelis
(2013)).

« Iterative proportional fitting for matching on population characteristics between different EHR databases
(Springate et al. (2015) Appendix 2).

e A robust algorithm for determining smoking status.

o Interfaces to other EHR systems, in particular UK primary care databases such as THIN, QResearch
and Research One.

e Uniform units functions for other clinical measurements such as blood pressure, cholesterol and serum
creatinine.
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