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1 Introduction

This document is a set of notes to accompany the plotmo R package [7,10].

Plotmo can be used on a wide variety of regression models. It plots a degreel (main
effect) plot by calling predict to predict the response when changing one variable while
holding all other variables at their median values. For degree?2 (interaction) plots, two
variables are changed while holding others at their medians.

The first level is used instead of the median for factors. You can change this with the
grid.func and grid.levels arguments.

Each graph shows only a thin slice of the data because most variables are fixed. Please
be aware of that when interpreting the graph — over-interpretation is a temptation.

There is section on plotmo in the vignette for the rpart.plot package [8] “Plotting
rpart trees with prp”. This vignette is also downloadable from http://www.milbo.
org/rpart-plot/prp.pdf.

Plotmo was originally part of the earth package [9] and a few connections to that
package still remain.

Citing the package

If you use this package in a published document, please do the right thing and cite
it [7]:

Stephen Milborrow. plotmo: Plot a model’s response while

varying the values of the predictors. R Package (2011).

@Manual{plotmopackage,
author = {Stephen Milborrow},

title = {{plotmo: Plot a model’s response while varying
the values of the predictors}},

year = {2011},

note = {R packagel,

url = {http://CRAN.R-project.org/package=plotmo }
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2 Using plotmo on various models

Here are some examples which illustrate plotmo on various objects (Figure 1). The
models here are just for illustrating plotmo and shouldn’t be taken too seriously.

# use a small set of variables for illustration
library(earth) # for ozonel data

data(ozonel)

oz <- ozonel[, c("03", "humidity", "temp", "ibt")]

Im.model <- 1m(03 ~ humidity + temp*ibt, data=oz) # linear model
plotmo(lm.model, col.response="gray", nrug=-1)

library(rpart) # rpart
rpart.model <- rpart(03 ~ ., data=oz)
plotmo(rpart.model, all2=TRUE)

library(randomForest) # randomForest
rf.model <- randomForest(03~., data=oz)

plotmo(rf.model)

# partialPlot(rf.model, oz, temp) # compare to partial-dependence plot

library(gbm) # gbm
gbm.model <- gbm(03~., data=oz, dist="gaussian", inter=2, n.trees=1000)
plotmo (gbm.model)

# plot(gbm.model, i.var=2) # compare to partial-dependence plots

# plot(gbm.model, i.var=c(2,3))

library(mgcv) # gam
gam.model <- gam(03 ~ s(humidity)+s(temp)+s(ibt)+s(temp,ibt), data=oz)
plotmo(gam.model, level=.95, all2=TRUE)

library(nnet) # nnet
set.seed(4)

nnet.model <- nnet(03”., data=scale(oz), size=2, decay=0.01, trace=FALSE)
plotmo(nnet.model, type="raw", all2=T)

library (MASS) # qda
lcush <- data.frame(Type=as.numeric(Cushings$Type),log(Cushings[,1:2]))
lcush <- lcush[1:21,]
qda.model <- gda(Type~., data=lcush)
plotmo(qda.model, type="class", all2=TRUE,
type2="contour", ngrid2=100, nlevels=2, drawlabels=FALSE,
col.response=as.numeric(lcush$Type)+1,
pch.response=as.character (1cush$Type))

The packages used in the above code are [5,11,12,14,16].



Im rpart randomForest

Figure 1: Plotmo on various models.
These plots were generated with the models on on the previous page. Just one degree?2
plot for each model type is illustrated here.



3 Limitations

NAs aren’t supported. To prevent confusing error messages from functions called by
plotmo, it is safest to remove NAs before building your model.

(However, rpart models are treated specially by plotmo. For these, plotmo predicts
with na.pass so plotmo can be used with rpart’s default NA handling.)

Keep the variable names in the original model formula simple. Use temporary variables
or attach rather than using $ and similar in formulas.

4 Environment for the model data

Plotmo evaluates the model data in the R environment used when the model was built,
if that environment was saved with the model (typically this is the case if the formula
interface was used to the model function). If the environment wasn’t saved with the
model (typically if the x,y interface was used), the model data is evaluated in the
environment in which plotmo is called.

In other words, plotmo uses the environment attribute of object$terms, and if that’s
not available it uses parent.frame().

5 The clip argument

With the default clip=TRUE, predicted values out of the expected range aren’t dis-
played.

Generally, the “expected range” is the range of the response y used when building the
model. But that depends on the type of model, and plotmo knows about some special
cases. For example, it knows that for some models we are predicting a probability, and it
scales the axes accordingly, 0 to 1. However, plotmo cannot know about every possible
model and prediction type, and will sometimes determine the expected response range
incorrectly. In that case use c1ip=FALSE.

The default clip is TRUE because it is a useful sanity check to test that the predicted
values are in the expected range. While not necessarily an error, predictions outside the
expected range are usually something we want to know about. Also, with c1ip=FALSE,
a few errant predictions can expand the entire y-axis, making it difficult to see the
shape of the other predictions.

6 Alternatives

An alternative approach is to use partial-dependence plots (e.g. Hastie et al. [3] Section
10.13.2). Plotmo sets the “other” variables to their median value, whereas in a partial-
dependence plot at each plotted point the effect of the other variables is averaged. In



general, partial-dependence plots and plotmo plots will differ, but for additive models
the shape of the curves will match identically. Eventually plotmo may be enhanced to
draw partial-dependence plots.

The termplot function is effective but can be used only on models with a predict
method that supports type="terms", and it doesn’t generate degree2 plots.

Some other possibilities for plotting the response on a per-predictor basis are partial-
residual plots, partial-regression variable plots, and marginal-model plots (e.g. crPlots,
avPlots, and marginalModelPlot in the car package [1]). These plots are orientated
towards linear models. The effects package is also of interest [2].



7 Which variables are plotted?

The set of variables plotted for some common objects is listed below [5,9,11-13].

The default behavior may leave out some variables that you would like to see. In that
case, use al11=TRUE and all2=TRUE.

earth

degreel variables in additive (non interaction) terms

degree?2 variables appearing together in interaction terms

rpart

degreel variables used in the tree

degree?2 parent-child pairs

randomForest

degreel all variables

degree2 pairs of the four most important variables (ranked on
the first column of object$importance)

e gbm

degreel variables with relative.influence >= 1%

degree?2 pairs of the four variables with the largest relative influence

lm, glm, gam, lda, etc.

These are processed using plotmo’s default methods (Section 9):
degreel all variables

degree?2 variables in the formula associated with each other by
terms like x1 * x2, x1:x2, and s(x1,x2)



8 Prediction intervals

Use the level argument to plot pointwise confidence or prediction intervals. The
predict method of the object must support this. Examples (Figure 2):

par (mfrow=c(2,3))
log.trees <- log(trees) # make the resids more homoscedastic
# (necessary for 1lm)

# 1m
lm.model <- 1lm(Volume~Height, data=log.trees)
plot(lm.model, which=1, main="1m") # Residual vs Fitted graph
plotmo(lm.model, level=.90, col.response=1,
main="1m\n(conf and pred intervals)", do.par=F)

# earth (requires earth 3.3)
library(earth)
earth.model <- earth(Volume”Height, data=log.trees,
nfold=5, ncross=30, varmod.method="1m")
plotmo(earth.model, level=.90, col.response=1, main="earth", do.par=F)

# quantreg
library(quantreg)
rq.model <- rq(Volume~Height, data=log.trees, tau=c(.05, .5, .95))
plotmo(rg.model, level=.90, col.response=1, main="rq", do.par=F)

# quantregForest
# quantregForest is a layer on randomForest that allows prediction intervals
library(quantregForest)
x <- data.frame(Height=log.trees$Height)
grf.model <- quantregForest(x, log.trees$Volume)
plotmo(qrf.model, level=.90, col.response=1, main="qrf", do.par=F)

# gam
library(mgcv)
gam.model <- gam(Volume~s(Height), data=log.trees)
plotmo(gam.model, level=.90, col.response=1,
main="gam\n(conf not pred intervals)", do.par=F)

The packages used in the above code are [4,6,9,16].

Confidence intervals versus prediction intervals

Be aware of the distinction between the two types of interval:
(i) intervals for the prediction of the mean response (often called confidence intervals)

(ii) intervals for the prediction of a future value (often called prediction intervals).
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Figure 2: Prediction intervals with plotmo. These plots were produced by the code on
the previous page.

A reference is Section 3.5 of Julian Faraway’s online linear regression book http://
cran.r-project.org/doc/contrib/Faraway-PRA.pdf.

Your object’s predict method determines which of these intervals get returned and
plotted by plotmo. Currently only 1m supports both types of interval on new data (see
predict.lm’s interval argument), and both are plotted by plotmo.

Assumptions

Be aware of the assumptions made to generate the limits. At the very least, the model
needs to fit the data adequately. Most models will impose further conditions. For
example, linear models residuals must be homoscedastic.

Examination of the ” Residual versus Fitted” plot is the standard way of detecting issues.
So for example, with linear models use plot.lm(which=1) and with earth models use
plot.which(which=3). Look at the the distribution of residual points to detect non-
homoscedasity. Also look at the smooth line (the lowess line) in the residuals plot to
detect non-linearity. If this is highly curved, you cannot trust the intervals.

One good place for more background on residual analysis is Regression Diagnostics:
Residuals in Weisberg [15]. See also the “Variance Models with earth” vignette for the
earth package.

These are pointwise limits. They can only be interpreted in a pointwise fashion. So
for non-parametric models they shouldn’t be used to infer bumps or dips that are
dependent on a range of the curve. For that you need simultaneous confidence bands,
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which none of the models above support.
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9 Extending plotmo
Plotmo needs to access the data used to build the model. It does that with the method
functions listed below. The default methods suffice for many objects.

For example, the job of the get.plotmo.x function is to return the x matrix used when
building the given model. The default function get.plotmo.x.default essentially does
the following;:

(i) it uses model [["x"]]

)
(ii) if that doesn’t exist, it uses the rhs of the model formula
(iii) if that doesn’t exist, it uses model$call[["x"]]

)

(iv) if all that fails, it prints an error message.

The default methods will fail if the model function didn’t save the data or call with the
object in a standard fashion (and plotmo will issue an error message). Object-specific
methods can usually be written to deal with such issues. For examples, See the source
files plotmo.methods. *.R.

The methods are:
plotmo.prolog

called before plotting begins, sanity check of the object
plotmo.predict

invokes predict for each sub-plot
get.plotmo.x

the model matrix x
get.plotmo.y

the model response y
get.plotmo.default.type

the value of the type argument when not specified by the user
get.plotmo.singles

the vector of variables to be plotted in degreel plots
get.plotmo.pairs

the array of pairs to be plotted in degree2 plots
get.plotmo.ylim

the value of ylim when not specified by the user
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get.plotmo.clip.limits

the clip range when clip=TRUE
get.plotmo.nresponse

the correct column when the response has multiple columns
plotmo.pint

the prediction intervals for plotmo’s level argument
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10 Common error messages

Error in match.arg(type): ’arg’ should be one of

The message is probably issued by the predict method for your model object. Set
plotmo’s type argument to a legal value for that object, as described on the help page
for the predict method for the object.

Error: predicted values are out of ylim, try clip=FALSE

Probably plotmo has incorrectly determined the expected range of the response, and
hence also ylim. Re-invoke plotmo with clip=FALSE. See Section 5 “The clip argu-
ment”.

Error: predict.lm(xgrid, type="response") returned the wrong length
Warning: ’newdata’ had 100 rows but variable(s) found have 30 rows

Error: variable ’x’ was fitted with type "nmatrix.2" but type "numeric"
was supplied

Error in model.frame: invalid type (list) for variable ’x[,3]’

These and similar messages usually mean that predict is misinterpreting the new data
generated by plotmo.

The underlying issue is that many predict methods, including predict.lm, seem to
reject any reasonably constructed new data if the function used to create the model
was called in an unconventional way. The work-around is to simplify or standardize the
way the model function is called. Use a formula and a data frame, or at least explicitly
name the variables rather than passing a matrix. Use simple variable names (so x1
rather than dat$x1, for example).

If the symptoms persist after changing the way the model is called, and the model isn’t
one of those listed in Section 7, it is possible that the model class isn’t supported by
plotmo. See Section 9.

Error: get.plotmo.x.default cannot get the x matrix

This and similar messages mean that plotmo cannot get the data it needs from the
model object.

You can try simplifying and standardizing the way the model function is called, as
described above. Perhaps you need to use keepxy or similar in the call to the model
function, so the data is attached to the object and available for plotmo. Is a variable
that was used to build the model no longer available in the environment when plotmo

13



is called?

Error: this object is not supported by plotmo

Plotmo’s default methods are insufficient for your model object. See Section 9 (and
contact the author — this is often easy to fix).
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11 FAQ

I’m not seeing any interaction plots. How can I change that?

Use all2=TRUE. By default, degree2 plots are drawn only for some types of model. See
Section 7.

The persp display is unnaturally jagged. How can I change
that?

Use clip=FALSE. The jaggedness is probably an artifact of the way persp works at the
boundaries. You can also try increasing ngrid?2.

The image display has blue “holes” in it. What gives?

The holes are areas where the predicted response is out-of-range. Try using c1ip=FALSE.

I want to add lines or points to a plot created by plotmo. and
am having trouble getting my axis scaling right. Help?

Use do.par=FALSE or do.par=2. With the default do.par=TRUE, plotmo restores the
par parameters and axis scales to their values before plotmo was called.
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